1
|
Leakey JEA, Seng JE, Barnas CR, Baker VM, Hart RW. A Mechanistic Basis for the Beneficial Effects of Caloric Restriction On Longevity and Disease: Consequences for the Interpretation of Rodent Toxicity Studies. Int J Toxicol 2016. [DOI: 10.1177/109158189801700203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caloric restriction in rodents has been repeatedly shown to increase life span while reducing the severity and retarding the onset of both spontaneous and chemically induced neoplasms. These effects of caloric restriction are associated with a spectrum of biochemical and physiological changes that characterize the organism's adaptation to reduced caloric intake and provide the mechanistic basis for caloric restriction's effect on longevity. Here, we review evidence suggesting that the primary adaptation appears to be a rhythmic hypercorticism in the absence of elevated adrenocorticotropin (ACTH) levels. This characteristic hypercorticism evokes a spectrum of responses, including reduced body temperature and increased metabolic efficiency, decreased mitogenic response coupled with increased rates of apoptosis, reduced inflammatory response, reduced oxidative damage to proteins and DNA, reduced reproductive capacity, and altered drug-metabolizing enzyme expression. The net effect of these changes is to (1) decrease growth and metabolism in peripheral tissues to spare energy for central functions, and (2) increase the organism's capacity to withstand stress and chemical toxicity. Thus, caloric restriction research has uncovered an evolutionary mechanism that provides rodents with an adaptive advantage in conditions of fluctuating food supply. During periods of abundance, body growth and fecundity are favored over endurance and longevity. Conversely, during periods of famine, reproductive performance and growth are sacrificed to ensure survival of individuals to breed in better times. This phenomena can be observed in rodent populations that are used in toxicity testing. Improvements over the last 30 years in animal husbandry and nutrition, coupled with selective breeding for growth and fecundity, have resulted in several strains now exhibiting larger animals with reduced survival and increased incidence of background lesions. The mechanistic data from caloric restriction studies suggest that these large animals will also be more susceptible to chemically induced toxicity. This creates a problem in comparing tests performed on animals of different weights and comparing data generated today with the historical database. The rational use of caloric restriction to control body weight to within preset guidelines is a possible way of alleviating this problem.
Collapse
Affiliation(s)
- Julian E. A. Leakey
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - John E. Seng
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - Crissy R. Barnas
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA, Department of Clinical Pharmacology and Geriatrics,
Northwestern University, 303 E. Superior St., Chicago, IL 60611, USA
| | - Vanessa M. Baker
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - Ronald W. Hart
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Park J, Park J, Nahm SS, Choi I, Kim J. Identification of anti-adipogenic proteins in adult bovine serum suppressing 3T3-L1 preadipocyte differentiation. BMB Rep 2014; 46:582-7. [PMID: 24195790 PMCID: PMC4133865 DOI: 10.5483/bmbrep.2013.46.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 11/25/2022] Open
Abstract
Adipocyte differentiation is a complex developmental process forming adipocytes from various precursor cells. The murine 3T3-L1 preadipocyte cell line has been most frequently used in the studies of adipocyte differentiation. Differentiation of 3T3-L1 preadipocytes includes a medium containing fetal bovine serum (FBS) with hormonal induction. In this study, we observed that differentiation medium containing adult bovine serum (ABS) instead of FBS did not support differentiation of preadipocytes. Impaired adipocyte differentiation was due to the presence of a serum protein factor in ABS that suppresses differentiation of preadipocytes. Using a proteomic analysis, alpha-2-macroglobulin and paraoxonase/arylesterase 1, which were previously shown to suppress differentiation of preadipocytes, were identified as anti-adipogenic proteins. Although their functional mechanisms have not yet been elucidated, the anti-adipogenic effects of these proteins are discussed. [BMB Reports 2013; 46(12): 582-587]
Collapse
Affiliation(s)
| | | | | | | | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
3
|
Sukata T, Uwagawa S, Ozaki K, Sumida K, Kikuchi K, Kushida M, Saito K, Morimura K, Oeda K, Okuno Y, Mikami N, Fukushima S. alpha(2)-Macroglobulin: a novel cytochemical marker characterizing preneoplastic and neoplastic rat liver lesions negative for hitherto established cytochemical markers. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1479-88. [PMID: 15509519 PMCID: PMC1618685 DOI: 10.1016/s0002-9440(10)63406-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We tried to identify a novel marker characteristic for rat hepatocellular preneoplastic and neoplastic lesions, undetectable by well established cytochemical markers. Glutathione S-transferase placental (GST-P)-negative hepatocellular altered foci (HAF), hepatocellular adenoma (HCA), and hepatocellular carcinoma (HCC) were generated by two initiation-promotion models with N-nitrosodiethylamine (NDEN) and peroxisome proliferators, Wy-14,643 and clofibrate. Total RNAs isolated from laser-microdissected GST-P-negative HAF (amphophilic cell foci) and adjacent normal tissues were applied to microarray analysis. As a result, five up-regulated genes were identified, and further detailed examinations of the gene demonstrating most fluctuation, ie, that for alpha(2)-macroglobulin (alpha(2)M) were performed. In reverse transcriptase-polymerase chain reaction, alpha(2)M mRNA was overexpressed not only in amphophilic GST-P-negative HAF but also in amphophilic GST-P-negative HCA and HCC. In situ hybridization showed accumulation of alpha(2)M mRNA to be evenly distributed within GST-P-negative HAF (predominantly amphophilic cell foci). Distinctive immunohistochemical staining for alpha(2)M could be consistently demonstrated in GST-P-negative HAF, HCA, and HCC induced not only by peroxisome proliferators but also N-nitrosodiethylamine alone. Thus our findings suggest that alpha(2)M is an important novel cytochemical marker to identify hepatocellular preneoplastic and neoplastic lesions, particularly amphophilic cell foci, undetectable by established cytochemical markers and is tightly linked to rat hepatocarcinogenesis.
Collapse
Affiliation(s)
- Tokuo Sukata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-chome, Kasugade-Naka, Konohana-ku, Osaka 554-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Choi KL, Wang Y, Tse CA, Lam KSL, Cooper GJS, Xu A. Proteomic analysis of adipocyte differentiation: Evidence that α2 macroglobulin is involved in the adipose conversion of 3T3 L1 preadipocytes. Proteomics 2004; 4:1840-8. [PMID: 15174150 DOI: 10.1002/pmic.200300697] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adipogenesis is an important aspect of energy homeostasis. Here we have used a differential proteome mapping strategy to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3 L1 preadipocytes. Two-dimensional gel electrophoresis analysis identified 8 proteins that are induced following hormone-evoked differentiation. In addition, we found that a alpha2 macroglobulin fragment was abundantly present in 3T3 L1 preadipocytes, but was virtually undetectable in fully differentiated adipocytes. Metabolic radiolabeling with (35S)methionine and Northern blot analysis indicated that the intracellular alpha2 macroglobulin fragment in preadipocytes was derived from the extracellular culture medium, not de novo synthesis. Incubation of preadipocytes with an antialpha2 macroglobulin polyclonal antibody caused depletion of the intracellular alpha2 macroglobulin fragments, and also enhanced spontaneous adipose conversion. These results suggest that intracellular alpha2 macroglobulin fragment inhibits adipocyte differentiation, and that hormone treatment induces differentiation at least in part by suppression of intracellular alpha2 macroglobulin activity in 3T3 L1 preadipocytes.
Collapse
Affiliation(s)
- Kai-Luk Choi
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
5
|
van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 2001; 276:44512-20. [PMID: 11577099 DOI: 10.1074/jbc.m106888200] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liver regeneration in response to various forms of liver injury is a complex process, which ultimately results in restoration of the original liver mass and function. Because the underlying mechanisms that initiate this response are still incompletely defined, this study was aimed to identify novel factors. Liver genes that were up-regulated 6 h after 70% hepatectomy (PHx) in the rat were selected by cDNA subtractive hybridization. Besides known genes associated with cell proliferation, several novel genes were isolated. The novel gene that was most up-regulated was further studied. Its mRNA showed a liver-specific expression and encoded a protein comprising 367 amino acids. The mouse and human cDNA analogues were also isolated and appeared to be highly homologous. The human gene analogue was located at an apolipoprotein gene cluster on chromosome 11q23. The protein encoded by this gene had appreciable homology with apolipoproteins A-I and A-IV. Maximal expression of the gene in the rat liver and its gene product in rat plasma was observed 6 h after PHx. The protein was present in plasma fractions containing high density lipoprotein particles. Therefore, we have identified a novel apolipoprotein, designated apolipoprotein A-V, that is associated with an early phase of liver regeneration.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/chemistry
- Animals
- Apolipoprotein A-V
- Apolipoproteins
- Apolipoproteins A/biosynthesis
- Apolipoproteins A/blood
- Apolipoproteins A/chemistry
- Apolipoproteins A/genetics
- Apolipoproteins A/metabolism
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Chromatography, Gel
- Chromosomes, Human, Pair 11
- DNA, Complementary/metabolism
- Humans
- Liver/physiology
- Male
- Mice
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Hybridization
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Regeneration
- Sequence Homology, Amino Acid
- Time Factors
- Tissue Distribution
- Up-Regulation
Collapse
Affiliation(s)
- H N van der Vliet
- Department of Experimental Hepatology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
Ramos RA, Meilandt WJ, Wang EC, Firestone GL. Dysfunctional glucocorticoid receptor with a single point mutation ablates the CCAAT/enhancer binding protein-dependent growth suppression response in a steroid-resistant rat hepatoma cell variant. FASEB J 1999; 13:169-80. [PMID: 9872941 DOI: 10.1096/fasebj.13.1.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We used glucocorticoid-resistant and -sensitive hepatoma cell variants to characterize the mechanism of hepatoma cell resistance to the growth inhibitory effects of glucocorticoids. BDS1 hepatoma cells express transcriptionally active glucocorticoid receptors and undergo a stringent G1 cell cycle arrest in response to glucocorticoids that is dependent on the induced expression of the CCAAT/enhancer binding protein alpha (C/EBPalpha) transcription factor. In contrast, EDR1 hepatoma cells, which express normal levels of glucocorticoid receptors, fail to growth arrest or express C/EBPalpha when treated with glucocorticoids. Ectopic expression of wild-type rat glucocorticoid receptors into EDR1 cells restored the growth suppression response, suggesting a defect in the EDR1 receptor. DNA sequence analysis revealed a single point mutation causing a cysteine-to-tyrosine substitution at amino acid position 457 (C457Y-GR) in the zinc finger region of the glucocorticoid receptor that mediates both receptor-DNA and receptor-protein interactions. Glucocorticoid activation of the alpha1-acid glycoprotein (AGP) promoter, a liver acute-phase response gene, requires receptor-DNA binding as well as an interaction with C/EBPalpha. In contrast to the wild-type glucocorticoid receptor, ectopic expression of C/EBPalpha in EDR1 cells, or coexpression of C/EBPalpha along with the C457Y-GR into receptor-deficient EDR3 cells was required to partially restore glucocorticoid responsiveness of the AGP promoter by the EDR1 glucocorticoid receptor. Constitutive expression of the wild-type glucocorticoid receptor, but not the C457Y-GR mutant, was sufficient to restore the glucocorticoid growth suppression response to receptor-deficient EDR3 cells. Thus, we have identified a glucocorticoid-resistant hepatoma cell variant with a single point mutation in the zinc finger region of the glucocorticoid receptor gene that ablates the glucocorticoid growth suppression response and attenuates transcriptional activation of the AGP promoter.
Collapse
Affiliation(s)
- R A Ramos
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
7
|
Kondo T, Sakaguchi M, Yamada H, Namba M. Two-dimensional gel electrophoretic analysis of the changes after immortalization of human cells: decrease of intracellular alpha-2-macroglobulin fragment. Electrophoresis 1998; 19:1836-40. [PMID: 9719567 DOI: 10.1002/elps.1150191048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To study the mechanisms of immortalization of human cells, an early step in cancer development, we compared the cellular proteins of normal and immortalized human fibroblasts. Two-dimensional gel electrophoresis showed that one spot with a molecular mass 20 kDa and an isoelectric point of 6.0, became significantly smaller after immortalization of human cells. Further, the spot was rarely observed in four human liver cancer cell lines. Investigation of the N-terminal amino acids revealed that the spot was a fragment of alpha-2-macroglobulin. Although the 20 kDa fragment contains methionine, the spot was not labeled with [35S]methionine. Thus we concluded that the spot might be derived from the culture medium. These results indicated that intracellular metabolism of a-2-macroglobulin, which is a multifunctional protease inhibitor, changed after the cells were transformed.
Collapse
Affiliation(s)
- T Kondo
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
8
|
Potchinsky M, Nugent P, Lafferty C, Greene RM. Effects of dexamethasone on the expression of transforming growth factor-beta in mouse embryonic palatal mesenchymal cells. J Cell Physiol 1996; 166:380-6. [PMID: 8591998 DOI: 10.1002/(sici)1097-4652(199602)166:2<380::aid-jcp16>3.0.co;2-f] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The central role of TGF-beta in the development of the embryonic palate has been well characterized. TGF-beta inhibits mesenchymal cell proliferation, induces medial edge epithelial cell differentiation, and modulates the expression of extracellular matrix proteins as well as the proteases that act upon them. Mechanisms by which TGF-beta expression itself is regulated are less well understood. Glucocorticoids are recognized in several cellular systems as able to regulate the expression of TGF-beta. This study was therefore designed to examine whether glucocorticoids affect the expression of TGF-beta isoforms in embryonic palatal cells. Based on flow cytometric analysis and viability determination, confluent primary cultures of mouse embryonic palate mesenchymal (MEPM) cells exposed to up to 10(-6) M dexamethasone (dex) exhibited no signs of cytotoxicity after 24 hours of exposure. Northern blot analyses revealed that dexamethasone reduced steady-state mRNA levels of TGF-beta 3 in a dose-dependent manner as early as 4 hours after treatment but had little effect on TGF-beta 1 and TGF-beta 2 expression up to 24 hours of dex exposure. Dex also reduced the synthesis of both latent and mature forms of TGF-beta protein by approximately four-fold as determined by the mink lung epithelial cell growth inhibition bioassay. Assessment of the ratio of mature to latent protein found in conditioned medium of control compared to dex-treated cultures indicated that dexamethasone may reduce the activation of latent TGF-beta to mature biologically active TGF-beta. Dexamethasone inhibited the proliferation of MEPM cells despite the down-regulation of TGF-beta suggesting that dex-induced growth inhibition of MEPM cells is not mediated by TGF-beta. These data suggest that dex modulates TGF-beta signaling pathways directly by down-regulating TGF-beta expression and possibly indirectly by altering the availability of mature TGF-beta necessary to exert its biological effects in the developing palate.
Collapse
Affiliation(s)
- M Potchinsky
- Daniel Baugh Institute, Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
9
|
Thoresen GH, Refsnes M, Dajani OF, Johansen EJ, Christoffersen T. Dexamethasone inversely regulates DNA synthesis and phosphoenolpyruvate carboxykinase mRNA levels in cultured rat hepatocytes: interactions with insulin, glucagon, and transforming growth factor beta 1. PHARMACOLOGY & TOXICOLOGY 1995; 76:163-70. [PMID: 7617540 DOI: 10.1111/j.1600-0773.1995.tb00124.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In hepatocytes, glucocorticoids control the expression of several genes and exert significant, but complex, regulation of the proliferation. To shed more light on the growth responses to glucocorticoids in these cells, we treated adult rat hepatocytes in primary culture with dexamethasone, in various combinations with other hormones (insulin, glucagon, transforming growth factor beta 1 (TGF beta 1)), and examined the relationship between the effects on the DNA synthesis and the mRNA level of phosphoenolpyruvate carboxykinase, a gene typically expressed in differentiated hepatocytes. Insulin exhibited the previously observed suppressing effect on the glucocorticoid-induced phosphoenolpyruvate carboxykinase mRNA level, and also reversed growth-inhibitory effects of the glucocorticoid. Dexamethasone and glucagon (via cAMP) acted strongly synergistically both in enhancing the phosphoenolpyruvate carboxykinase expression and inhibiting the growth, the inhibitory effect of glucagon on DNA synthesis being totally dependent on dexamethasone. The effects of dexamethasone plus glucagon on both the phosphoenolpyruvate carboxykinase mRNA abundance and the DNA synthesis were partially counteracted by insulin. Dexamethasone is permissive for a promoting effect of TGF beta 1 on phosphoenolpyruvate carboxykinase expression, and was found to increase the maximal inhibitory effect of (but reduced the sensitivity to) TGF beta 1 on the DNA synthesis. The results indicate that there is an inverse glucocorticoid-induced regulation of the DNA synthesis and the expression of a liver-typical gene.
Collapse
Affiliation(s)
- G H Thoresen
- Department of Pharmacology, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|