1
|
Wang X, Song X, Ma Y, Yang J, Gao J, Wang T, Xu G, Chang X, Shi S, Sun R, Song G. miR-504 knockout regulates tumor cell proliferation and immune cell infiltration to accelerate oral cancer development. J Genet Genomics 2024; 51:1040-1054. [PMID: 38871233 DOI: 10.1016/j.jgg.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
miR-504 plays a pivotal role in the progression of oral cancer. However, the underlying mechanism remains elusive in vivo. Here, we find that miR-504 is significantly down-regulated in oral cancer patients. We generate miR-504 knockout mice (miR-504-/-) using CRISPR/Cas9 technology to investigate its impact on the malignant progression of oral cancer under exposure to 4-Nitroquinoline N-oxide (4NQO). We show that the deletion of miR-504 does not affect phenotypic characteristics, body weight, reproductive performance, and survival in mice, but results in changes in the blood physiological and biochemical indexes of the mice. Moreover, with 4NQO treatment, miR-504-/- mice exhibit more pronounced pathological changes characteristic of oral cancer. RNA sequencing shows that the differentially expressed genes observed in samples from miR-504-/- mice with oral cancer are involved in regulating cell metabolism, cytokine activation, and lipid metabolism-related pathways. Additionally, these differentially expressed genes are significantly enriched in lipid metabolism pathways that influence immune cell infiltration within the tumor microenvironment, thereby accelerating tumor development progression. Collectively, our results suggest that knockout of miR-504 accelerates malignant progression in 4NQO-induced oral cancer by regulating tumor cell proliferation and lipid metabolism, affecting immune cell infiltration.
Collapse
Affiliation(s)
- Xiaotang Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaona Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yunhui Ma
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Junting Yang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tian Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Guoqiang Xu
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqi Chang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Shuxuan Shi
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rui Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
2
|
Mahmoudian RA, Farshchian M, Golyan FF, Mahmoudian P, Alasti A, Moghimi V, Maftooh M, Khazaei M, Hassanian SM, Ferns GA, Mahaki H, Shahidsales S, Avan A. Preclinical tumor mouse models for studying esophageal cancer. Crit Rev Oncol Hematol 2023; 189:104068. [PMID: 37468084 DOI: 10.1016/j.critrevonc.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Alasti
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
4
|
Kavitha M, Jayachandran D, Aishwarya SY, Md. Younus P, Venugopal A, Suresh Babu HW, Ajay E, Sanjana M, Arul N, Balachandar V. A new insight into the diverse facets of microRNA-31 in oral squamous cell carcinoma. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Background
Micro-RNAs (miRNAs) have been reported as an emerging biomarker in many cancer types. They are used as diagnostic and prognostic biomarkers and could be considered therapeutic targets in treating the same.
Main body
Studies have proven that miRNAs play an essential role in molecular cancer pathophysiology, including oral squamous cell carcinoma. Distinct expression profiles of different miRNAs have been demonstrated in oral squamous cell carcinoma. Among the miRNAs, the miR-31 has strong potential as a unique biomarker in head and neck squamous cell carcinoma, and the increased expression was correlated to a poor clinical outcome with a likely contribution to oral carcinogenesis.
Short conclusion
The recent research on different aspects of miR-31 as a biomarker and also its potential application in the development of therapy for oral squamous cell carcinoma has been focused in this review.
Graphical abstract
Collapse
|
5
|
Association of Polymorphisms in NHEJ Pathway Genes with HIV-1 Infection and AIDS Progression in a Northern Chinese MSM Population. DISEASE MARKERS 2022; 2022:5126867. [PMID: 36312587 PMCID: PMC9605847 DOI: 10.1155/2022/5126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims Men who have sex with men (MSM) are at high risk of HIV infection. The nonhomologous end joining (NHEJ) pathway is the main way of double-stranded DNA break (DSB) repair in the higher eukaryotes and can repair the DSB timely at any time in cell cycle. It is also indicated that the NHEJ pathway is associated with HIV-1 infection since the DSB in host genome DNA occurs in the process of HIV-1 integration. The aim of the present investigation was to evaluate associations of single-nucleotide polymorphisms (SNPs) in NHEJ pathway genes with susceptibility to HIV-1 infection and AIDS progression among MSM residing in northern China. Methods A total of 481 HIV-1 seropositive men and 493 HIV-1 seronegative men were included in this case-control study. Genotyping of 22 SNPs in NHEJ pathway genes was performed using the SNPscan™ Kit. Results Positive associations were observed between XRCC6 rs132770 and XRCC4 rs1056503 genotypes and the susceptibility to HIV-1 infection. In gene-gene interaction analysis, significant SNP-SNP interactions of XRCC6 and XRCC4 genetic variations were found to play a potential role in the risk of HIV-1 infection. In stratified analysis, XRCC5 rs16855458 was significantly associated with CD4+ T cell counts in AIDS patients, whereas LIG4 rs1805388 was linked to the clinical phases of AIDS patients. Conclusions NHEJ gene polymorphisms can be considered to be risk factors of HIV-1 infection and AIDS progression in the northern Chinese MSM population.
Collapse
|
6
|
Gu Y, Tang S, Wang Z, Cai L, Shen Y, Zhou Y. Identification of key miRNAs and targeted genes involved in the progression of oral squamous cell carcinoma. J Dent Sci 2022; 17:666-676. [PMID: 35756810 PMCID: PMC9201551 DOI: 10.1016/j.jds.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
Background/purpose Oral squamous cell carcinoma (OSCC) is one of the most common types of head and neck squamous cell carcinoma. Accurate biomarkers are needed for early diagnosis and prognosis of OSCC. MicroRNAs (miRNAs) have shown great values in different types of cancers including OSCC. However, most of the miRNAs involved in the development of OSCC remain uncovered. This study aimed to identify hub miRNAs and mRNAs in OSCC. Materials and methods We explored the roles of key miRNAs, target genes and their relationships in OSCC using an integrated bioinformatics approach. Initially, Two OSCC microarray datasets from the Gene Expression Omnibus database were obtained to analyze miRNA expression. MiRNA-targeted mRNAs were acquired, and gene ontology/kyoto encyclopedia of genes and genomes analyses were performed. Thereafter, we constructed a protein–protein interaction (PPI) network to identify hub genes and a miRNA-mRNA interaction network was used to identify key miRNAs. Furthermore, differential gene expression and Kaplan–Meier Plotter survival analysis was performed to evaluate their potential clinical application values. Results Four upregulated, two downregulated miRNAs and 608 target genes of the differentially expressed miRNAs were identified. The PPI and miRNA-mRNA interaction networks highlighted 10 hub genes and two key miRNAs, and pathway analyses showed their correlative involvement in tumorigenesis-related processes. Of these miRNAs and genes, miR-125b, β-actin, vinculin and histone deacetylase 1 were correlated with overall survival (P < 0.05). Conclusion These findings indicate that miR-21 and miR-125b, associated with the 10 hub genes, jointly participate in OSCC tumorigenesis, offering insight into the molecular mechanisms underlying OSCC as potential targets for early diagnosis, treatment and prognosis.
Collapse
|
7
|
Interactions between miRNAs and Double-Strand Breaks DNA Repair Genes, Pursuing a Fine-Tuning of Repair. Int J Mol Sci 2022; 23:ijms23063231. [PMID: 35328651 PMCID: PMC8954595 DOI: 10.3390/ijms23063231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of DNA damage is a crucial process for the correct maintenance of genetic information, thus, allowing the proper functioning of cells. Among the different types of lesions occurring in DNA, double-strand breaks (DSBs) are considered the most harmful type of lesion, which can result in significant loss of genetic information, leading to diseases, such as cancer. DSB repair occurs through two main mechanisms, called non-homologous end joining (NHEJ) and homologous recombination repair (HRR). There is evidence showing that miRNAs play an important role in the regulation of genes acting in NHEJ and HRR mechanisms, either through direct complementary binding to mRNA targets, thus, repressing translation, or by targeting other genes involved in the transcription and activity of DSB repair genes. Therefore, alteration of miRNA expression has an impact on the ability of cells to repair DSBs, which, in turn, affects cancer therapy sensitivity. This latter gives account of the importance of miRNAs as regulators of NHEJ and HRR and places them as a promising target to improve cancer therapy. Here, we review recent reports demonstrating an association between miRNAs and genes involved in NHEJ and HRR. We employed the Web of Science search query TS (“gene official symbol/gene aliases*” AND “miRNA/microRNA/miR-”) and focused on articles published in the last decade, between 2010 and 2021. We also performed a data analysis to represent miRNA–mRNA validated interactions from TarBase v.8, in order to offer an updated overview about the role of miRNAs as regulators of DSB repair.
Collapse
|
8
|
He X, Chen S, Tang Y, Zhao X, Yan L, Wu L, Wu Z, Liu W, Chen X, Wang X. Hepatocyte Growth Factor Overexpression Slows the Progression of 4NQO-Induced Oral Tumorigenesis. Front Oncol 2022; 11:756479. [PMID: 34970484 PMCID: PMC8712676 DOI: 10.3389/fonc.2021.756479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives To investigate the role of hepatocyte growth factor (HGF)/c-Met signaling in oral malignant transformation. Methods We used immunohistochemistry to investigate HGF and c-Met expression in 53 oral squamous cell carcinoma (OSCC) specimens and 21 adjacent nontumor specimens and evaluated the associations between HGF and c-Met expression and clinicopathological parameters. Additionally, HGF-overexpression transgenic (HGF-Tg) and wild-type (Wt) mice were treated with 4-nitroquinoline-1-oxide (4NQO) to induce oral carcinogenesis for 16 weeks. At 16, 20, and 24 weeks, tongue lesions were collected for clinical observation; estimation of HGF, c-Met, and PCNA expression; apoptosis (TUNEL) assays; and RNA sequencing (RNA-seq). Results HGF and c-Met were positively expressed in 92.5% and 64% of OSCC samples, respectively. High HGF expression was significantly associated with smaller tumor size (p = 0.006) and inferior TNM stage (p = 0.032). No correlation between HGF and c-Met levels and other clinical parameters or prognosis was noted. In addition, HGF and c-Met expression was elevated in 4NQO-induced lesions of Wt mice. Compared with Wt mice, HGF-Tg mice have lower tumor incidence, number, volume, and lesion grade. In addition, the percentage of PCNA-positive cells in Wt mice was significantly higher than that in HGF-Tg mice at different time points. At 16 weeks, HGF-Tg mice exhibited less apoptotic cells compared with Wt mice (p < 0.000), and these levels gradually increased until the levels were greater than that of Wt mice at 24 weeks (p < 0.000). RNA-seq data revealed that 140 genes were upregulated and 137 genes were downregulated in HGF-Tg mice. KEGG enrichment analysis showed that upregulated differentially expressed genes (DEGs) are highly correlated with oxidative and metabolic signaling and that downregulated DEGs are related to MAPK and PI3K-AKT signaling. Conclusions HGF and c-Met expression is upregulated in OSCC tissues and is associated with the occurrence and development of OSCC. HGF overexpression in normal oral epithelial tissue can inhibit 4NQO-induced tumorigenesis potentially through inhibiting proliferation and accelerating apoptosis via MAPK and PI3K-AKT signaling.
Collapse
Affiliation(s)
- Xiaoxi He
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Si Chen
- Key Laboratory for Oral Biomedical Engineering of the Ministry of Education, Department of Oral Implantology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Yinghua Tang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiaomin Zhao
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liting Yan
- Department of Periodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Lihong Wu
- Department of Basic Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhicong Wu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Weijia Liu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinming Chen
- Department of Pathology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Xinhong Wang
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
9
|
Osan C, Chira S, Nutu AM, Braicu C, Baciut M, Korban SS, Berindan-Neagoe I. The Connection between MicroRNAs and Oral Cancer Pathogenesis: Emerging Biomarkers in Oral Cancer Management. Genes (Basel) 2021; 12:genes12121989. [PMID: 34946938 PMCID: PMC8700798 DOI: 10.3390/genes12121989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is a common human malignancy that still maintains an elevated mortality rate despite scientific progress. Tumorigenesis is driven by altered gene expression patterns of proto-oncogenes and tumor-suppressor genes. MicroRNAs, a class of short non-coding RNAs involved in gene regulation, seem to play important roles in oral cancer development, progression, and tumor microenvironment modulation. As properties of microRNAs render them stable in diverse liquid biopsies, together with their differential expression signature in cancer cells, these features place microRNAs at the top of promising biomarkers for diagnostic and prognostic values. In this review, we highlight eight expression levels and functions of the most relevant microRNAs involved in oral cancer development, progression, and microenvironment sustainability. Furthermore, we emphasize the potential of using these small RNA species as non-invasive biomarkers for the early detection of oral cancerous lesions. Conclusively, we highlight the perspectives and limitations of microRNAs as novel diagnostic tools, as well as therapeutic models.
Collapse
Affiliation(s)
- Ciprian Osan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Andreea Mihaela Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400033 Cluj-Napoca, Romania;
| | - Schuyler S. Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.O.); (S.C.); (A.M.N.); (C.B.)
- Correspondence:
| |
Collapse
|
10
|
Chou CH, Chiang CYF, Yang CC, Liu YC, Chang SR, Chang KW, Lin SC. miR-31- NUMB Cascade Modulates Monocarboxylate Transporters to Increase Oncogenicity and Lactate Production of Oral Carcinoma Cells. Int J Mol Sci 2021; 22:11731. [PMID: 34769160 PMCID: PMC8584161 DOI: 10.3390/ijms222111731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is among the leading causes of cancer-associated death worldwide. miR-31 is an oncogenic miRNA in OSCC. NUMB is an adaptor protein capable of suppressing malignant transformation. Disruption of the miR-31-NUMB regulatory axis has been demonstrated in malignancies. Mitochondrial dysfunction and adaptation to glycolytic respiration are frequent events in malignancies. Monocarboxylate transporters (MCTs) function to facilitate lactate flux in highly glycolytic cells. Upregulation of MCT1 and MCT4 has been shown to be a prognostic factor of OSCC. Here, we reported that miR-31-NUMB can modulate glycolysis in OSCC. Using the CRISPR/Cas9 gene editing strategy, we identified increases in oncogenic phenotypes, MCT1 and MCT4 expression, lactate production, and glycolytic respiration in NUMB-deleted OSCC subclones. Transfection of the Numb1 or Numb4 isoform reversed the oncogenic induction elicited by NUMB deletion. This study also showed, for the first time, that NUMB4 binds MCT1 and MCT4 and that this binding increases their ubiquitination, which may decrease their abundance in cell lysates. The disruptions in oncogenicity and metabolism associated with miR-31 deletion and NUMB deletion were partially rescued by MCT1/MCT4 expression or knockdown. This study demonstrated that NUMB is a novel binding partner of MCT1 and MCT4 and that the miR-31-NUMB-MCT1/MCT4 regulatory cascade is present in oral carcinoma.
Collapse
Affiliation(s)
- Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Chun-Yu Fan Chiang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Cheng-Chieh Yang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Sih-Rou Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
11
|
Chang KW, Hung WW, Chou CH, Tu HF, Chang SR, Liu YC, Liu CJ, Lin SC. LncRNA MIR31HG Drives Oncogenicity by Inhibiting the Limb-Bud and Heart Development Gene ( LBH) during Oral Carcinoma. Int J Mol Sci 2021; 22:ijms22168383. [PMID: 34445087 PMCID: PMC8395036 DOI: 10.3390/ijms22168383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
The miR-31 host gene (MIR31HG) encodes a long non-coding RNA (LncRNA) that harbors miR-31 in its intron 2; miR-31 promotes malignant neoplastic progression. Overexpression of MIR31HG and of miR-31 occurs during oral squamous cell carcinoma (OSCC). However, the downstream effectors modulated by MIR31HG during OSCC pathogenesis remain unclear. The present study identifies up-regulation of MIR31HG expression during the potentially premalignant disorder stage of oral carcinogenesis. The potential of MIR31HG to enhance oncogenicity and to activate Wnt and FAK was identified when there was exogenous MIR31HG expression in OSCC cells. Furthermore, OSCC cell subclones with MIR31HG deleted were established using a Crispr/Cas9 strategy. RNA sequencing data obtained from cells expressing MIR31HG, cells with MIR31HG deleted and cells with miR-31 deleted identified 17 candidate genes that seem to be modulated by MIR31HG in OSCC cells. A TCGA database algorithm pinpointed MMP1, BMP2 and Limb-Bud and Heart development (LBH) as effector genes controlled by MIR31HG during OSCC. Exogenous LBH expression decreases tumor cell invasiveness, while knockdown of LBH reverses the oncogenic suppression present in MIR31HG deletion subclones. The study provides novel insights demonstrating the contribution of the MIR31HG-LBH cascade to oral carcinogenesis.
Collapse
Affiliation(s)
- Kuo-Wei Chang
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wan-Wen Hung
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Hsi-Feng Tu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
- Department of Dentistry, National Yang Ming Chiao Tung Hospital, Yilan 260, Taiwan
| | - Shi-Rou Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
| | - Chung-Ji Liu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Department of Dentistry, Taipei MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (K.-W.C.); (H.-F.T.); (C.-J.L.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-W.H.); (C.-H.C.); (S.-R.C.); (Y.-C.L.)
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: ; Fax: +886-2-2826-4053
| |
Collapse
|
12
|
Zhang W, Zhu Y, Zhou Y, Wang J, Jiang P, Xue L. miRNA-31 increases radiosensitivity through targeting STK40 in colorectal cancer cells. Asia Pac J Clin Oncol 2021; 18:267-278. [PMID: 34170070 PMCID: PMC9291185 DOI: 10.1111/ajco.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Objective To propose and verify that miRNA‐31 increases the radiosensitivity of colorectal cancer and explore its potential mechanism. Method A bioinformatics analysis was performed to confirm that the expression of miRNA‐31 was higher in colorectal cancer than in normal colorectal tissue. The expression of miRNA‐31 was detected to verify the change in its expression in a radiotherapy‐resistant cell line. Methylation was detected to explore the cause of the decrease in miRNA‐31 expression. Overexpression or inhibition of miRNA‐31 further confirmed the change in its expression in colorectal cancer cell lines. Bioinformatics methods were used to screen the downstream target genes and for experimental verification. A luciferase assay was performed to determine the miRNA‐31 binding site in STK40. Overexpression or inhibition of STK40 in colorectal cancer cell lines further confirmed the change in STK40 expression in vitro. Results The bioinformatics results showed higher expression of miRNA‐31 in tumors than in normal tissue, and miRNA‐31 mainly participated in the pathway related to cell replication. Next, we observed the same phenomenon: miRNA‐31 was expressed at higher levels in colorectal tumors than in normal colorectal tissue and its expression decreased in radiation‐resistant cell lines after radiation, implying that miRNA‐31 increased the radiosensitivity of colorectal cancer cell lines. No significant change in upstream methylation was observed. miRNA‐31 regulated the radiosensitivity of colorectal cancer cell lines by inhibiting STK40. Notably, miRNA‐31 played a role by binding to the 3′ untranslated region of SK40. STK40 negatively regulated the radiosensitivity of colorectal cancer cells. Conclusions miRNA‐31 increases the radiosensitivity of colorectal cancer cells by targeting STK40; miRNA‐31 and STK40 are expected to become potential biomarkers for increasing the sensitivity of tumor radiotherapy in clinical treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Peking University Third Hospital, Beijing, China
| | - Yuequan Zhu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junjie Wang
- Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Wu X, Gong Z, Ma L, Wang Q. lncRNA RPSAP52 induced the development of tongue squamous cell carcinomas via miR-423-5p/MYBL2. J Cell Mol Med 2021; 25:4744-4752. [PMID: 33787061 PMCID: PMC8107108 DOI: 10.1111/jcmm.16442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Growing lncRNAs have been noted to involve in the initiation and development of several tumours including tongue squamous cell carcinomas (TSCCs). However, the biological role and mechanism of lncRNA RPSAP52 were not well‐explained. We indicated that RPSAP52 was higher in TSCC samples compared with that in control samples. The higher expression of RPSAP52 was positively correlated with higher T stage and TNM stage. Ectopic expression of RPSAP52 induced TSCC cell growth and cycle and induced cytokine secretion including IFN‐γ, IL‐1β and IL‐6, IL‐8, IL‐10 and TGF‐β. We found that the overexpression of RPSAP52 suppressed miR‐423‐5p expression in SCC‐4 cell. miR‐423‐5p was lower in TSCC samples compared with that in control samples, and miR‐423‐5p level was negatively correlated with higher T stage and TNM stage. Pearson's correlation indicated that miR‐423‐5p was negatively associated with that of RPSAP52 in TSCC tissues. Furthermore, MYBL2 was one direct gene of miR‐423‐5p and elevated expression of miR‐423‐5p suppressed MYBL2 expression and ectopic expression of RPSAP52 increased MYBL2 expression in SCC‐4 cell. Finally, we illustrated that RPSAP52 overexpression promoted TSCC cell growth and cycle and induced cytokine secretion including IFN‐γ, IL‐1β and IL‐6, IL‐8, IL‐10 and TGF‐β via modulating MYBL2. These data provided new insight into RPSAP52, which may be one potential treatment target for TSCC.
Collapse
Affiliation(s)
- Xiaozhen Wu
- Department of stomatology, Aerospace Center Hospital, Beijing, China
| | - Zuode Gong
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Long Ma
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Qibao Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| |
Collapse
|
14
|
Single-Cell Analysis of Different Stages of Oral Cancer Carcinogenesis in a Mouse Model. Int J Mol Sci 2020; 21:ijms21218171. [PMID: 33142921 PMCID: PMC7662772 DOI: 10.3390/ijms21218171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Oral carcinogenesis involves the progression of the normal mucosa into potentially malignant disorders and finally into cancer. Tumors are heterogeneous, with different clusters of cells expressing different genes and exhibiting different behaviors. 4-nitroquinoline 1-oxide (4-NQO) and arecoline were used to induce oral cancer in mice, and the main factors for gene expression influencing carcinogenesis were identified through single-cell RNA sequencing analysis. Male C57BL/6J mice were divided into two groups: a control group (receiving normal drinking water) and treatment group (receiving drinking water containing 4-NQO (200 mg/L) and arecoline (500 mg/L)) to induce the malignant development of oral cancer. Mice were sacrificed at 8, 16, 20, and 29 weeks. Except for mice sacrificed at 8 weeks, all mice were treated for 16 weeks and then either sacrificed or given normal drinking water for the remaining weeks. Tongue lesions were excised, and all cells obtained from mice in the 29- and 16-week treatment groups were clustered into 17 groups by using the Louvain algorithm. Cells in subtypes 7 (stem cells) and 9 (keratinocytes) were analyzed through gene set enrichment analysis. Results indicated that their genes were associated with the MYC_targets_v1 pathway, and this finding was confirmed by the presence of cisplatin-resistant nasopharyngeal carcinoma cell lines. These cell subtype biomarkers can be applied for the detection of patients with precancerous lesions, the identification of high-risk populations, and as a treatment target.
Collapse
|
15
|
Fu Y, Tian G, Li J, Zhang Z, Xu K. An HNSCC syngeneic mouse model for tumor immunology research and preclinical evaluation. Int J Mol Med 2020; 46:1501-1513. [PMID: 32700748 PMCID: PMC7447356 DOI: 10.3892/ijmm.2020.4680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The lack of reliable animal models to assess the safety and efficacy of drugs and to explore the underlying molecular mechanisms is one of the most severe impediments in head and neck squamous cell carcinoma (HNSCC) tumor immunology research. The majority of xenograft tumor models established using immunodeficient mice neglect the effects of T cells. To date, to the best of our knowledge, there is no syngeneic tumor model available that reflects the immune microenvironmental features of HNSCC tumors. To solve this issue, the present study used 4‑nitroquinoline‑1‑oxide (4‑NQO) to induce squamous cell carcinoma in C57BL/6 mice. Three HNSCC cell lines were then established, and one of these, termed JC1, was selected for further analysis due to its enhanced proliferative ability and tumorigenicity in immunodeficient nude mice. However, none of the 3 cell lines could form tumors in immunocompetent mice. Due to the different tumorigenicities in nude and C57BL/6 mice, the immune system may play an important role in inoculated JC1 tumor progression. Chemical induction was used to establish the tumorigenicity‑enhanced cell line, JC1‑2, which can form syngeneic tumors in immunocompetent C57BL/6 mice. Next‑generation sequencing (NGS) was used to perform the immunogenomic and transcriptomic characterization of the JC1‑2 cells. Splenocytes were isolated from C57BL/6 mice and co‑cultured with JC1‑2 cells to verify the responsiveness of the interferon (IFN)‑γ pathway in the JC1‑2 cell line. Unlike the majority of syngeneic mouse tumors, the JC1‑2‑formed tumors resembled 'inflamed tumors' due to the abundancy of immune cells in the tumor microenvironment. Moreover, more intense immune responses were observed in the orthotopic mouse model than in the heterotopic model. Thus, this model could be used to delineate the interactions between HNSCC and lymphocytes, and to validate novel immunotherapy targets.
Collapse
Affiliation(s)
- You Fu
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| | - Guocai Tian
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| | - Jiang Li
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhiyuan Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| | - Ke Xu
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine
- Department of Oral and Maxillofacial-Head Neck Oncology
| |
Collapse
|
16
|
Preclinical models of head and neck squamous cell carcinoma for a basic understanding of cancer biology and its translation into efficient therapies. CANCERS OF THE HEAD & NECK 2020; 5:9. [PMID: 32714605 PMCID: PMC7376675 DOI: 10.1186/s41199-020-00056-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Comprehensive molecular characterization of head and neck squamous cell carcinoma (HNSCC) has led to the identification of distinct molecular subgroups with fundamental differences in biological properties and clinical behavior. Despite improvements in tumor classification and increased understanding about the signaling pathways involved in neoplastic transformation and disease progression, current standard-of-care treatment for HNSCC mostly remains to be based on a stage-dependent strategy whereby all patients at the same stage receive the same treatment. Preclinical models that closely resemble molecular HNSCC subgroups that can be exploited for dissecting the biological function of genetic variants and/or altered gene expression will be highly valuable for translating molecular findings into improved clinical care. In the present review, we merge and discuss existing and new information on established cell lines, primary two- and three-dimensional ex vivo tumor cultures from HNSCC patients, and animal models. We review their value in elucidating the basic biology of HNSCC, molecular mechanisms of treatment resistance and their potential for the development of novel molecularly stratified treatment.
Collapse
|
17
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
18
|
Wu L, Jiang Y, Zheng Z, Li H, Cai M, Pathak JL, Li Z, Huang L, Zeng M, Zheng H, Ouyang K, Gao J. mRNA and P-element-induced wimpy testis-interacting RNA profile in chemical-induced oral squamous cell carcinoma mice model. Exp Anim 2019; 69:168-177. [PMID: 31748426 PMCID: PMC7220707 DOI: 10.1538/expanim.19-0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs), a novel class of noncoding RNAs, are involved in the carcinogenesis. However, the functional significance of piRNAs in oral squamous cell carcinoma (OSCC) remains unknown. In the present study, we used chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) induced OSCC mouse model. piRNAs and mRNAs were profiled using next-generation sequencing in the tongue tumor tissues from 4NQO induction and healthy tongue tissues from control mice. Furthermore, we analyzed the differential gene expression of human OSCC in Gene Expression Omnibus (GEO) database. According to the common differentially expressed genes in the 4NQO model and human OSCC tissues, piRNAs and mRNAs network were established based on informatics method. A total of 14 known piRNAs and 435 novel predicted piRNAs were differently expressed in tumor tissue compared to healthy tissue. Among differently expressed piRNAs 260 were downregulated, and 189 were upregulated. The mRNA targets for the differentially expressed piRNAs were identified using RNAhybrid software. Primary immunodeficiency and herpes simplex infection were the most enriched pathways. A total of 22 mRNAs overlapped in human and mice OSCC. Moreover, we established the regulatory network of 11 mRNAs, including Tmc5, Galnt6, Spedf, Mybl2, Muc5b, Six31, Pigr, Lamc2, Mmp13, Mal, and Mamdc2, and 11 novel piRNAs. Our data showed the interaction between piRNAs and mRNAs in OSCC, which might provide new insights in the development of diagnostic biomarkers and therapeutic targets of OSCC.
Collapse
Affiliation(s)
- Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Yingtong Jiang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Hongtao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, Guangdong 510230, China
| | - Meijuan Cai
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Zhicong Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Lihuan Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Mingtao Zeng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China.,Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Huade Zheng
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510006, China
| | - Kexiong Ouyang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| | - Jie Gao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 31 Huangsha Road, Guangzhou, Guangdong 510140, China
| |
Collapse
|
19
|
Chen YF, Chang KW, Yang IT, Tu HF, Lin SC. Establishment of syngeneic murine model for oral cancer therapy. Oral Oncol 2019; 95:194-201. [DOI: 10.1016/j.oraloncology.2019.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
|
20
|
Chen YF, Liu CJ, Lin LH, Chou CH, Yeh LY, Lin SC, Chang KW. Establishing of mouse oral carcinoma cell lines derived from transgenic mice and their use as syngeneic tumorigenesis models. BMC Cancer 2019; 19:281. [PMID: 30922255 PMCID: PMC6440159 DOI: 10.1186/s12885-019-5486-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background The survival of OSCC patient needs to be further improved. miR-211 is oncogenic in OSCC and its upregulation is associated with tumor progression and poor patient survival. K14-EGFP-miR-211 transgenic mice also exhibit augmented potential for OSCC induction. Methods Four murine OSCC cell lines, designated MOC-L1 to MOC-L4, are established from tongue tumors induced by 4-nitroquinoline 1-oxide using the K14-EGFP-miR-211 transgenic mouse model. The genetic disruption, in vitro oncogenicity, and the eligibilities of tumorigenesis and metastasis of the cell lines are analyzed. Results All cell lines show green fluorescence and express a range of epithelial markers. The MOC-L1, MOC-L2 and MOC-L3 cells carry missense mutations in the DNA binding domain of the p53 gene. MOC-L1 exhibits a high level of epithelial-mesenchymal transition and has the aggressive characteristics associated with this. MOC-L1 and MOC-L2 are clonogenic in vitro as well as being tumorigenic when implanted into the dermis or tongue of syngeneic recipients. Nonetheless, only MOC-L1 exhibits immense potential for local regional and distal metastasis. Since the expression of miR-196b in MOC-L1 xenografts is drastically decreased on cisplatin treatment, it would seem that targeting of miR-196b might facilitate tumor abrogation. Conclusions As cell lines established in this study originated from the C57BL/6 mouse, the strain most suitable for transgenic engineering, exploring the interplay of these OSCC cells with other genetically modified cells in immune-competent mice would provide important insights into OSCC pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-019-5486-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Fen Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 251, Taiwan
| | - Li-Han Lin
- Department of Dentistry, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 251, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan
| | - Li-Yin Yeh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan. .,Department of Dentistry, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan. .,Department of Stomatology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, 112, Taiwan.
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan. .,Department of Dentistry, School of Dentistry, National Yang-Ming University, No. 155, Li-Nong St., Section 2, Beitou District, Taipei, 112, Taiwan. .,Department of Stomatology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, 112, Taiwan.
| |
Collapse
|
21
|
miR-125b suppresses oral oncogenicity by targeting the anti-oxidative gene PRXL2A. Redox Biol 2019; 22:101140. [PMID: 30785086 PMCID: PMC6383183 DOI: 10.1016/j.redox.2019.101140] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/22/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a globally prevalent malignancy. The molecular mechanisms of this cancer are not well understood and acquire elucidation. Peroxiredoxin like 2A (PRXL2A) has been reported to be an antioxidant protein that protects cells from oxidative stress. Our previous study identified an association between PRXL2A upregulation in OSCC and a worse patient prognosis. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in the modulation of biological/pathological properties. The miR-125 family of genes drive pluripotent regulation across a wide variety of cancers. In this study, we identify the oncogenic eligibility of PRXL2A and clarify miR-125b as its upstream regulator. Downregulation of miR-125b can be observed in OSCC tumors. Lower miR-125b expression in tumors results in a worse patient prognosis at the relatively early stage. Reporter assays are able to validate that PRXL2A is a direct target of miR-125b. Exogenous miR-125b expression in OSCC cells results in increased oxidative stress, increased drug sensitivity, and suppressor activity that is paralleled by the knockout of PRXL2A gene. The suppressor activity of miR-125b is able to be rescued by PRXL2A, which suggests the existence of a miR-125b-PRXL2A regulatory axis that is part of OSCC pathogenesis. Nuclear factor-erythroid 2-related factor 2 (NRF2) was found to be a downstream effector of the miR-125b-PRXL2A cascade. As a whole, this study has pinpointed novel clues demonstrating that downregulation of miR-125b suppressor underlies upregulation of PRXL2A in OSCC, and this then protects the affected tumor cells from oxidative stress.
Collapse
|
22
|
Chou CH, Tu HF, Kao SY, Chiang CYF, Liu CJ, Chang KW, Lin SC. Targeting of miR-31/96/182 to the Numb gene during head and neck oncogenesis. Head Neck 2018; 40:808-817. [PMID: 29356167 DOI: 10.1002/hed.25063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/07/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in head and neck squamous cell carcinoma (HNSCC). This study investigates whether miR-31, miR-96, and miR-182 are involved in targeting Numb during HNSCC. METHODS The expression of miR-31/96/182 in tumor tissues was analyzed. Reporter assay, knockdown, expression, and oncogenic analysis were carried out in cell lines. RESULTS Upregulation of miR-31/96/182 was detected in tumor tissues. In addition, advanced tumors showed higher expression levels of these miRNAs. The expression of these miRNAs was upregulated after treatment with areca ingredients (P < .01 or P < .001). These miRNAs directly targeted the 3' untranslated region (UTR) sequence of the Numb gene. An increased migration and invasion of HNSCC cells was associated with the exogenous expression of miR-31/96/182 (P < .01 or P < .001), and this was reverted by expression of Numb. CONCLUSION This study provides new evidence demonstrating that there is frequent and concordant upregulation of miR-31, miR-96, and miR-182 during HNSCC and these miRNAs co-target Numb.
Collapse
Affiliation(s)
- Chung-Hsien Chou
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Yu Fan Chiang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
Lu WC, Liu CJ, Tu HF, Chung YT, Yang CC, Kao SY, Chang KW, Lin SC. miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget 2018; 7:57254-57267. [PMID: 27528032 PMCID: PMC5302987 DOI: 10.18632/oncotarget.11138] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
miR-31 is oncogenic for head and neck squamous cell carcinoma (HNSCC). Proteins containing the AT-rich interacting domain (ARID) modulate the accessibility of chromatin to the transcription machinery needed for gene expression. In this study, we showed that miR-31 was able to target ARID1A in HNSCC. HNSCC tumors had an inverse miR-31 and ARID1A expression. miR-31 associated oncogenicities were rescued by ARID1A expression in HNSCC cells. Furthermore, ARID1A repressed the stemness properties and transcriptional activity of Nanog/OCT4/Sox2/EpCAM via the protein's affinity for AT-rich sites within promoters. HNSCC patients with tumors having high level of miR-31 expression and high levels of Nanog/OCT4/Sox2/EpCAM expression, together with low level of ARID1A expression, were found to have the worst survival. This study provides novel mechanistic clues demonstrating that miR-31 inhibits ARID1A and that this enriches the oncogenicity and stemness of HNSCC.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Tung Chung
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor. Oncotarget 2018; 7:61355-61365. [PMID: 27542258 PMCID: PMC5308656 DOI: 10.18632/oncotarget.11349] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Aberrations in miRNA regulation are known to play important roles in OSCC pathogenesis. miR-187 was shown to be up-regulated in head and neck malignancies in our previous screening. This study further investigated the oncogenic potential, clinical implications, and targets of miR-187 in OSCC. We observed that miR-187 increased oncogenicity, particularly migration, of OSCC cells. miR-187 expression increased the xenografic tumorigenicity and metastasis in mice. In addition, metastatic human OSCC had higher miR-187 expression than did non-metastatic tumors. Through vigorous screening, we confirmed BarH-like Homeobox 2 (BARX2) gene as an miR-187 target. BARX2 expression suppressed the migration, invasion, anchorage-independent colony formation, and orthotopic tumorigenesis of OSCC cells. The migratory phenotype and neck metastasis induced by miR-187 was rescued by BARX2 expression. BARX2 expression was down-regulated in the vast majority of OSCC, and this down-regulation was particularly conspicuous in tumors with advanced nodal metastasis. In addition, plasma miR-187 was significantly higher in OSCC patients than in normal individuals. This study highlights the roles of miR-187-BARX2 in driving the carcinogenesis of OSCC. The results suggest that miR-187 is a potential serological marker for OSCC and that targeting of miR-187 might prove effective in attenuating nodal metastasis.
Collapse
|
25
|
Föll MC, Fahrner M, Gretzmeier C, Thoma K, Biniossek ML, Kiritsi D, Meiss F, Schilling O, Nyström A, Kern JS. Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas. Matrix Biol 2017; 66:1-21. [PMID: 29158163 DOI: 10.1016/j.matbio.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
In this study we used a genetic extracellular matrix (ECM) disease to identify mechanisms associated with aggressive behavior of cutaneous squamous cell carcinoma (cSCC). cSCC is one of the most common malignancies and usually has a good prognosis. However, some cSCCs recur or metastasize and cause significant morbidity and mortality. Known factors that are associated with aggressiveness of cSCCs include tumor grading, size, localization and microinvasive behavior. To investigate molecular mechanisms that influence biologic behavior we used global proteomic and histologic analyses of formalin-fixed paraffin-embedded tissue of primary human cSCCs. We compared three groups: non-recurring, non-metastasizing low-risk sporadic cSCCs; metastasizing sporadic cSCCs; and cSCCs from patients with recessive dystrophic epidermolysis bullosa (RDEB). RDEB is a genetic skin blistering and ECM disease caused by collagen VII deficiency. Patients commonly suffer from high-risk early onset cSCCs that frequently metastasize. The results indicate that different processes are associated with formation of RDEB cSCCs compared to sporadic cSCCs. Sporadic cSCCs show signs of UV damage, whereas RDEB cSCCs have higher mutational rates and display tissue damage, inflammation and subsequent remodeling of the dermal ECM as tumor initiating factors. Interestingly the two high-risk groups - high-risk metastasizing sporadic cSCCs and RDEB cSCCs - are both associated with tissue damage and ECM remodeling in gene-ontology enrichment and Search Tool for the Retrieval of Interacting Genes/Proteins analyses. In situ histologic analyses validate these results. The high-risk cSCCs also show signatures of enhanced bacterial challenge. Histologic analyses confirm correlation of bacterial colonization with worse prognosis. Collectively, this unbiased study - performed directly on human patient material - reveals that common microenvironmental alterations linked to ECM remodeling and increased bacterial challenges are denominators of high-risk cSCCs. The proteins identified here could serve as potential diagnostic markers and therapeutic targets in high-risk cSCCs.
Collapse
Affiliation(s)
- Melanie C Föll
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany
| | - Matthias Fahrner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Käthe Thoma
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Germany.
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany.
| | - Johannes S Kern
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany; Department of Dermatology, Royal Melbourne Hospital, Parkville and Box Hill Hospital - Monash University, Eastern Health Clinical School, Box Hill, Victoria, Australia
| |
Collapse
|
26
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|
27
|
Wu X, Gong Z, Sun L, Ma L, Wang Q. MicroRNA-802 plays a tumour suppressive role in tongue squamous cell carcinoma through directly targeting MAP2K4. Cell Prolif 2017; 50. [PMID: 28319306 DOI: 10.1111/cpr.12336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/03/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Tongue squamous cell carcinoma (TSCC) is the most common oral tumours. MicroRNAs play crucial roles in many cell processes including cell viability, development, apoptosis, migration and invasion. The role of miR-802 in the TSCC is still unknown. MATERIALS AND METHODS The miR-802 expression in TSCC tissues and cell lines was determined by quantitative real-time polymerase chain reaction. CCK-8 assay was performed to measure the cell viability, while the cell invasion assay was used to determine the cell invasion. Dual-luciferase reporter and western blot were used to confirm the potential target gene of miR-802. RESULTS In our study, we demonstrated that miR-802 expression was downregulated in TSCC tissues and cell lines. Elevated expression of miR-802 suppressed the TSCC cell viability and invasion. Moreover, enforced expression of miR-802 increased the expression of E-cadherin, while suppressed the expression of N-cadherin, Snail and Vimentin in the TSCC cell. In addition, we identified the mitogen-activated protein kinase 4 (MAP2K4) as a direct target gene of miR-802 in the TSCC cell. We also demonstrated that the expression of MAP2K4 was higher in the TSCC tissues than that in the adjacent normal tissues. Furthermore, the expression level of MAP2K4 was inversely associated with the expression of miR-802 in TSCC tissues. We also demonstrated that the MAP2K4 expression was upregulated in TSCC cell lines. Elevated expression of miR-802 inhibited TSCC cell viability and invasion through inhibiting MAP2K4 expression. CONCLUSIONS Our data revealed that miR-802 played as a tumour suppressor gene and might act as a therapeutic target in TSCC patients.
Collapse
Affiliation(s)
- Xiaozhen Wu
- Department of Stomatology, Aerospace Center Hospital, Haidian District, Beijing, China
| | - Zuode Gong
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Lanying Sun
- Dental Implant Center, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Long Ma
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Qibao Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| |
Collapse
|
28
|
Chen X, Wang W, Man H, Li P, Shan B. Increased B7-H4 expression during esophageal squamous cell carcinogenesis is associated with IL-6/STAT3 signaling pathway activation in mice. Oncol Lett 2017; 13:2207-2215. [PMID: 28454382 PMCID: PMC5403357 DOI: 10.3892/ol.2017.5688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/11/2016] [Indexed: 01/22/2023] Open
Abstract
B7-homolog 4 (B7-H4), one of the costimulatory molecules of the B7 family, has been reported to be widely expressed in multiple types of cancer tissues, and to be important in tumor progression and poor prognosis. However, the role of B7-H4 in esophageal precancerous lesions has not been elucidated yet. In the present study, a model of esophageal squamous cell carcinogenesis was established in 208 C57BL/6 mice by 4-nitroquinoline-1-oxide (4NQO) drinking water of mice, and the changes in the expression of B7-H4 during the whole pathological process were investigated. Hematoxylin and eosin staining results demonstrated that the pathological stage was exacerbated with the increase in time of 4NQO-mediated carcinogenesis induction, and the pathological features were similar to those observed in humans. Immunohistochemistry results revealed that B7-H4 expression was upregulated and positively correlated with pathological stage (P<0.0001) as well as with infiltration of cluster of differentiation (CD) 11b+ macrophage cells (P=0.0002). In addition, B7-H4 messenger RNA expression increased in the esophagi of model mice compared with that of control mice, which was positively associated with the gene expression of interleukin (IL)-6 and signal transducer and activator of transcription 3 (STAT3), according to the results of reverse transcription-quantitative polymerase chain reaction analysis. Similarly, B7-H4 protein expression was upregulated in the esophageal tissues of model mice in comparison with that of control mice, and was positively associated with IL-6 expression and STAT3 phosphorylation. In conclusion, the present data suggested that B7-H4 expression increased during esophageal squamous cell carcinogenesis in mice in association with IL-6/STAT3 signaling pathway activation.
Collapse
Affiliation(s)
- Xinran Chen
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China.,Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Wang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China.,Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongwei Man
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Pengfei Li
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Baoen Shan
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
29
|
Tian C, Yao S, Liu L, Ding Y, Ye Q, Dong X, Gao Y, Yang N, Li Q. Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma. Int J Mol Med 2016; 39:47-56. [PMID: 27909734 PMCID: PMC5179175 DOI: 10.3892/ijmm.2016.2812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are short, endogenous non-coding RNA molecules, demonstrating abnormal expression in cancer initiation and progression. In this study, we profiled 18 differentially regulated miRNAs, including miRNA-31, using miRNA array. Kruppel (or Krüppel)-like factor 4 (Klf4) is a transcription factor and putative tumor suppressor. Both were found to be significantly downregulated in liver cancer tissues and cells. However, little is known about the correlation between Klf4 and miRNA-31 in hepatocellular carcinoma (HCC). The mRNA expression of Klf4 was decreased and inversely associated with the clinical stage, T classification and hepatitis B in patients with HCC, while the expression of miR-31 was lower (r=0.326, P=0.018). Using cell counting kit 8 (CCK8) and Transwell migration assays, we found that Klf4 and miR-31 inhibited the proliferation and metastasis of liver cancer cells. Moreover, we demonstrated that Klf4 directly binds to the promoter of miR-31 and activates its transcription. In vitro experiments confirmed that Klf4 regulated miR-31 and thereby inhibited HCC cell growth and metastasis. Taken together, our findings indicate that Klf4 directly regulates miR-31 in HCC. Thus, miR-31 may serve as a potential diagnostic marker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Shanshan Yao
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Li Liu
- Department of Pharmacy, Guiyang Hospital of Guizhou Aviation Industry Group, Guiyang, Guizhou, P.R. China
| | - Youcheng Ding
- Department of General Surgery, Shanghai East Hospital, Tongji University, Shanghai, P.R. China
| | - Qingwang Ye
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Xiao Dong
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, P.R. China
| | - Ning Yang
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Qi Li
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
30
|
Nair DV, Reddy AG. Laboratory animal models for esophageal cancer. Vet World 2016; 9:1229-1232. [PMID: 27956773 PMCID: PMC5146302 DOI: 10.14202/vetworld.2016.1229-1232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022] Open
Abstract
The incidence of esophageal cancer is rapidly increasing especially in developing countries. The major risk factors include unhealthy lifestyle practices such as alcohol consumption, smoking, and chewing tobacco to name a few. Diagnosis at an advanced stage and poor prognosis make esophageal cancer one of the most lethal diseases. These factors have urged further research in understanding the pathophysiology of the disease. Animal models not only aid in understanding the molecular pathogenesis of esophageal cancer but also help in developing therapeutic interventions for the disease. This review throws light on the various recent laboratory animal models for esophageal cancer.
Collapse
Affiliation(s)
- Dhanya Venugopalan Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana, India
| | - A Gopala Reddy
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Chen YF, Yang CC, Kao SY, Liu CJ, Lin SC, Chang KW. MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity. Cancer Res 2016; 76:4872-86. [PMID: 27221705 DOI: 10.1158/0008-5472.can-15-1664] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/09/2016] [Indexed: 11/16/2022]
Abstract
miR-211 expression in human oral squamous cell carcinoma (OSCC) has been implicated in poor patient survival. To investigate the oncogenic roles of miR-211, we generated K14-EGFP-miR-211 transgenic mice tagged with GFP. Induction of oral carcinogenesis in transgenic mice using 4-nitroquinoline 1-oxide (4NQO) resulted in more extensive and severe tongue tumorigenesis compared with control animals. We found that 4NQO and arecoline upregulated miR-211 expression in OSCC cells. In silico and experimental evidence further revealed that miR-211 directly targeted transcription factor 12 (TCF12), which mediated suppressor activities in OSCC cells and was drastically downregulated in tumor tissues. We used GeneChip analysis and bioinformatic algorithms to identify transcriptional targets of TCF12 and confirmed through reporter and ChIP assays that family with sequence similarity 213, member A (FAM213A), a peroxiredoxin-like antioxidative protein, was repressed transcriptionally by TCF12. FAM213A silencing in OSCC cells diminished oncogenic activity, reduced the ALDH1-positive cell population, and increased reactive oxygen species. TCF12 and FAM213A expression was correlated inversely in head and neck carcinoma samples according to The Cancer Genome Atlas. OSCC patients bearing tumors with high FAM213A expression tended to have worse survival. Furthermore, 4NQO treatment downregulated TCF12 and upregulated FAM213A by modulating miR-211 both in vitro and in vivo Overall, our findings develop a mouse model that recapitulates the molecular and histopathologic alterations of human OSCC pathogenesis and highlight a new miRNA-mediated oncogenic mechanism. Cancer Res; 76(16); 4872-86. ©2016 AACR.
Collapse
Affiliation(s)
- Yi-Fen Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan. Department of Dentistry, National Yang-Ming University, Taipei, Taiwan. Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
32
|
Kao YY, Tu HF, Kao SY, Chang KW, Lin SC. The increase of oncogenic miRNA expression in tongue carcinogenesis of a mouse model. Oral Oncol 2015; 51:1103-12. [PMID: 26525105 DOI: 10.1016/j.oraloncology.2015.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/15/2015] [Accepted: 10/10/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study investigated the oncogenic miRNA level in the tissue and biofluids in the Nitroquinoline 1-Oxide (4NQO)-induced mouse tongue carcinogenesis model for potential diagnostic or therapeutic application. MATERIALS AND METHODS The histological examination, immunohistochemistry, in situ hybridization, quantitative PCR analysis and bioinformatic algorithms were performed to unravel the signaling activation and miRNA expression in female murine samples. RESULTS The increase of miR-21 and miR-31 staining, and EGFR activation paralleled the severity of 4NQO-induced epithelial pathogenesis in tongue epithelium. A progressive increase of miR-21, miR-31 and miR-146a in both saliva and plasma samples was also noted. miR-31 was the earliest emerging miRNA in the saliva. The increase of plasma miR-146a, miR-184 and miR-372 was detectable early in the induction, and it was particularly eminent at the most advanced lesion state. The combined analysis of the multiple oncogenic miRNAs in the plasma signified a potent discriminative capacity between normal and pathological states. As the blockage of EGFR or AKT activation drastically reverted the miR-21, miR-31 and miR-146a expression induced by 4NQO in human oral carcinoma cell lines, the results implicated a mechanistic linkage of the oncogenic miRNAs' induction through EGFR/AKT activation. CONCLUSIONS In this study, we show the dysregulation of oncogenic miRNAs in murine tongue tumorigenesis, which simulates human counterparts. Increased multiple miRNAs in the biofluids may be valuable non-invasive markers in detecting oral carcinogenesis at an early stage. This animal model may also be useful for developing liquid biopsies and prevention strategies against oral carcinoma by abrogating EGFR or oncogenic miRNAs.
Collapse
Affiliation(s)
- Yu-Yu Kao
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
33
|
Wang L, Cao NN, Wang S, Man HW, Li PF, Shan BE. Roles of coinhibitory molecules B7-H3 and B7-H4 in esophageal squamous cell carcinoma. Tumour Biol 2015; 37:2961-71. [DOI: 10.1007/s13277-015-4132-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
|
34
|
Tétreault MP. Esophageal Cancer: Insights From Mouse Models. CANCER GROWTH AND METASTASIS 2015; 8:37-46. [PMID: 26380556 PMCID: PMC4558891 DOI: 10.4137/cgm.s21218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/30/2022]
Abstract
Esophageal cancer is the eighth leading cause of cancer and the sixth most common cause of cancer-related death worldwide. Despite recent advances in the development of surgical techniques in combination with the use of radiotherapy and chemotherapy, the prognosis for esophageal cancer remains poor. The cellular and molecular mechanisms that drive the pathogenesis of esophageal cancer are still poorly understood. Hence, understanding these mechanisms is crucial to improving outcomes for patients with esophageal cancer. Mouse models constitute valuable tools for modeling human cancers and for the preclinical testing of therapeutic strategies in a manner not possible in human subjects. Mice are excellent models for studying human cancers because they are similar to humans at the physiological and molecular levels and because they have a shorter gestation time and life cycle. Moreover, a wide range of well-developed technologies for introducing genetic modifications into mice are currently available. In this review, we describe how different mouse models are used to study esophageal cancer.
Collapse
Affiliation(s)
- Marie-Pier Tétreault
- Department of Medicine, Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|