1
|
Peptide-Based Vaccines in Clinical Phases and New Potential Therapeutic Targets as a New Approach for Breast Cancer: A Review. Vaccines (Basel) 2022; 10:vaccines10081249. [PMID: 36016136 PMCID: PMC9416350 DOI: 10.3390/vaccines10081249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is the leading cause of death in women from 20 to 59 years old. The conventional treatment includes surgery, chemotherapy, hormonal therapy, and immunotherapy. This immunotherapy is based on administering monoclonal therapeutic antibodies (passive) or vaccines (active) with therapeutic purposes. Several types of vaccines could be used as potential treatments for cancer, including whole-cell, DNA, RNA, and peptide-based vaccines. Peptides used to develop vaccines are derived from tumor-associated antigens or tumor-specific antigens, such as HER-2, MUC1, ErbB2, CEA, FRα, MAGE A1, A3, and A10, NY-ESO-1, among others. Peptide-based vaccines provide some advantages, such as low cost, purity of the antigen, and the induction of humoral and cellular immune response. In this review, we explore the different types of vaccines against breast cancer with a specific focus on the description of peptide-based vaccines, their composition, immune response induction, and the description of new potential therapeutic targets.
Collapse
|
2
|
Das K, Eisel D, Vormehr M, Müller-Decker K, Hommertgen A, Jäger D, Zörnig I, Feuerer M, Kopp-Schneider A, Osen W, Eichmüller SB. A transplantable tumor model allowing investigation of NY-BR-1-specific T cell responses in HLA-DRB1*0401 transgenic mice. BMC Cancer 2019; 19:914. [PMID: 31519152 PMCID: PMC6743128 DOI: 10.1186/s12885-019-6102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NY-BR-1 has been described as a breast cancer associated differentiation antigen with intrinsic immunogenicity giving rise to endogenous T and B cell responses. The current study presents the first murine tumor model allowing functional investigation of NY-BR-1-specific immune responses in vivo. METHODS A NY-BR-1 expressing tumor model was established in DR4tg mice based on heterotopic transplantation of stable transfectant clones derived from the murine H2 compatible breast cancer cell line EO771. Composition and phenotype of tumor infiltrating immune cells were analyzed by qPCR and FACS. MHC I binding affinity of candidate CTL epitopes predicted in silico was determined by FACS using the mutant cell line RMA-S. Frequencies of NY-BR-1 specific CTLs among splenocytes of immunized mice were quantified by FACS with an epitope loaded Db-dextramer. Functional CTL activity was determined by IFNγ catch or IFNγ ELISpot assays and statistical analysis was done applying the Mann Whitney test. Tumor protection experiments were performed by immunization of DR4tg mice with replication deficient recombinant adenovirus followed by s.c. challenge with NY-BR-1 expressing breast cancer cells. RESULTS Our results show spontaneous accumulation of CD8+ T cells and F4/80+ myeloid cells preferentially in NY-BR-1 expressing tumors. Upon NY-BR-1-specific immunization experiments combined with in silico prediction and in vitro binding assays, the first NY-BR-1-specific H2-Db-restricted T cell epitope could be identified. Consequently, flow cytometric analysis with fluorochrome conjugated multimers showed enhanced frequencies of CD8+ T cells specific for the newly identified epitope in spleens of immunized mice. Moreover, immunization with Ad.NY-BR-1 resulted in partial protection against outgrowth of NY-BR-1 expressing tumors and promoted intratumoral accumulation of macrophages. CONCLUSION This study introduces the first H2-Db-resctricted CD8+ T cell epitope-specific for the human breast cancer associated tumor antigen NY-BR-1. Our novel, partially humanized tumor model enables investigation of the interplay between HLA-DR4-restricted T cell responses and CTLs within their joint attack of NY-BR-1 expressing tumors.
Collapse
Affiliation(s)
- Krishna Das
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Virology, Innsbruck Medical University, Innsbruck, Austria.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Mathias Vormehr
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adriane Hommertgen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- CCU Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Feuerer
- Institute of Immunology, Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Regensburg, Germany
| | | | - Wolfram Osen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Das K, Eisel D, Lenkl C, Goyal A, Diederichs S, Dickes E, Osen W, Eichmüller SB. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system. PLoS One 2017; 12:e0174077. [PMID: 28301575 PMCID: PMC5354463 DOI: 10.1371/journal.pone.0174077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023] Open
Abstract
In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.
Collapse
Affiliation(s)
- Krishna Das
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Eisel
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Lenkl
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashish Goyal
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Elke Dickes
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|