1
|
Liu X, Zhang H, Shi G, Zheng X, Chang J, Lin Q, Tian Z, Yang H. The impact of gut microbial signals on hematopoietic stem cells and the bone marrow microenvironment. Front Immunol 2024; 15:1338178. [PMID: 38415259 PMCID: PMC10896826 DOI: 10.3389/fimmu.2024.1338178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Hematopoietic stem cells (HSCs) undergo self-renewal and differentiation in the bone marrow, which is tightly regulated by cues from the microenvironment. The gut microbiota, a dynamic community residing on the mucosal surface of vertebrates, plays a crucial role in maintaining host health. Recent evidence suggests that the gut microbiota influences HSCs differentiation by modulating the bone marrow microenvironment through microbial products. This paper comprehensively analyzes the impact of the gut microbiota on hematopoiesis and its effect on HSCs fate and differentiation by modifying the bone marrow microenvironment, including mechanical properties, inflammatory signals, bone marrow stromal cells, and metabolites. Furthermore, we discuss the involvement of the gut microbiota in the development of hematologic malignancies, such as leukemia, multiple myeloma, and lymphoma.
Collapse
Affiliation(s)
- Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
2
|
Thurner L, Hartmann S, Bewarder M, Fadle N, Regitz E, Schormann C, Quiroga N, Kemele M, Klapper W, Rosenwald A, Trümper L, Bohle RM, Nimmesgern A, Körbel C, Lascke MW, Menger MD, Barth S, Kubuschok B, Mottok A, Kaddu-Mulindwa D, Hansmann ML, Pöschel V, Held G, Murawski N, Stilgenbauer S, Neumann F, Preuss KD, Pfreundschuh M. Identification of the atypically modified autoantigen Ars2 as the target of B-cell receptors from activated B-cell-type diffuse large B-cell lymphoma. Haematologica 2021; 106:2224-2232. [PMID: 32675228 PMCID: PMC8327713 DOI: 10.3324/haematol.2019.241653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
It has been suggested that stimulation of B-cell receptors (BCR) by specific antigens plays a pathogenic role in diffuse large B-cell lymphoma (DLBCL). Here, it was the aim to screen for specific reactivities of DLBCL-BCR in the spectrum of autoantigens and antigens of infectious origin. Arsenite resistance protein 2 (Ars2) was identified as the BCR target of three of five activated B-cell type DLBCL cell lines and two of 11 primary DLBCL cases. Compared to controls, Ars2 was hypophosphorylated exclusively in cases and cell lines with Ars2-specific BCR. In a validation cohort, hypophosphorylated Ars2 was found in eight of 31 activated B-cell type DLBCL, but in only one of 20 germinal center B-cell like type DLBCL. Incubation with Ars2 induced BCR-pathway activation and increased proliferation, while an Ars2/ETA’ toxin conjugate induced killing of cell lines with Ars2-reactive BCR. Ars2 appears to play a role in a subgroup of activated B-cell-type DLBCL. Moreover, transformed DLBCL lines with Ars2-reactive BCR still showed growth advantage after incubation with Ars2. These results provide knowledge about the pathogenic role of a specific antigen stimulating the BCR pathway in DLCBL.
Collapse
Affiliation(s)
- Lorenz Thurner
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Moritz Bewarder
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Natalie Fadle
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Evi Regitz
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Natalia Quiroga
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Maria Kemele
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and CCC Mainfranken, Würzburg, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Hospital Göttingen, Germany
| | - Rainer Maria Bohle
- Saarland University Medical School, Institute of Pathology, Homburg/Saar, Germany
| | - Anna Nimmesgern
- Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Matthias W Lascke
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Stefan Barth
- Institute for Infectious disease and Molecular Medicine, University of Cape Town, South Africa
| | - Boris Kubuschok
- Department of Internal Medicine II, Augsburg University Medical Center, Augsburg, Germany
| | - Anja Mottok
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Germany
| | | | | | - Viola Pöschel
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | - Gerhard Held
- Department of Hematology/Oncology, Westpfalzklinikum Kaiserslautern, Germany
| | - Niels Murawski
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | - Frank Neumann
- Saarland Medical School, Internal Medicine I, Homburg/Saar, Germany
| | | | | |
Collapse
|
3
|
Thurner L, Hartmann S, Neumann F, Hoth M, Stilgenbauer S, Küppers R, Preuss KD, Bewarder M. Role of Specific B-Cell Receptor Antigens in Lymphomagenesis. Front Oncol 2020; 10:604685. [PMID: 33363034 PMCID: PMC7756126 DOI: 10.3389/fonc.2020.604685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
The B-cell receptor (BCR) signaling pathway is a crucial pathway of B cells, both for their survival and for antigen-mediated activation, proliferation and differentiation. Its activation is also critical for the genesis of many lymphoma types. BCR-mediated lymphoma proliferation may be caused by activating BCR-pathway mutations and/or by active or tonic stimulation of the BCR. BCRs of lymphomas have frequently been described as polyreactive. In this review, the role of specific target antigens of the BCRs of lymphomas is highlighted. These antigens have been found to be restricted to specific lymphoma entities. The antigens can be of infectious origin, such as H. pylori in gastric MALT lymphoma or RpoC of M. catarrhalis in nodular lymphocyte predominant Hodgkin lymphoma, or they are autoantigens. Examples of such autoantigens are the BCR itself in chronic lymphocytic leukemia, LRPAP1 in mantle cell lymphoma, hyper-N-glycosylated SAMD14/neurabin-I in primary central nervous system lymphoma, hypo-phosphorylated ARS2 in diffuse large B-cell lymphoma, and hyper-phosphorylated SLP2, sumoylated HSP90 or saposin C in plasma cell dyscrasia. Notably, atypical posttranslational modifications are often responsible for the immunogenicity of many autoantigens. Possible therapeutic approaches evolving from these specific antigens are discussed.
Collapse
Affiliation(s)
- Lorenz Thurner
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt a. Main, Germany
| | - Frank Neumann
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Ralf Küppers
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.,Deutsches Konsortium für translationale Krebsforschung (DKTK), Partner Site Essen, Essen, Germany
| | - Klaus-Dieter Preuss
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| | - Moritz Bewarder
- Department of Internal Medicine I, José Carreras Center for Immuno- and Gene Therapy, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
4
|
Jeong S, Kong SG, Kim DJ, Lee S, Lee HS. Incidence, prevalence, mortality, and causes of death in Waldenström macroglobulinemia: a nationwide, population-based cohort study. BMC Cancer 2020; 20:623. [PMID: 32620091 PMCID: PMC7333304 DOI: 10.1186/s12885-020-07120-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/28/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The epidemiological features of Waldenström macroglobulinemia (WM) have seldom been investigated at a national level, particularly in East Asia. The goal of our study is to present the incidence, prevalence, mortality, survival with competing risks, and causes of death of patients with WM. METHODS We used a national population-based database, operated by the Health Insurance Review and Assessment Service of the Korean government. This data includes information on all WM patients diagnosed according to uniform criteria, between 2003 and 2016. RESULTS The total number of patients newly diagnosed with WM during the study period was 427, with a male-to-female ratio of 3.2:1. The incidence increased from 0.03 to 0.10 per 105 between 2003 and 2016, and the prevalence was 0.42 per 105 in 2016. A total of 217 patients with WM died during the study period (standardized mortality ratio = 7.57), and the overall survival (OS) of WM patients was 47.5%. On multivariate analysis, older age was associated with worse OS (P < 0.0001). WM was the most common cause of death (n = 102, 48.6%), followed by other malignant neoplasms (n = 82, 39.0%). CONCLUSIONS The national incidence of WM in Korea, a racially homogeneous country in Asia, was lower than that in previous reports from other countries, reflecting ethnic disparities. However, the incidence increased, and mortality was the highest ever reported. The main cause of death was WM in itself. This study reflects the need for greater awareness of WM, particularly in Asian countries.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Hallym University College of Medicine, 1, Singil-ro, Yeongdeungpo-gu, Seoul, 07441 South Korea
| | - Seom Gim Kong
- Department of Pediatrics, Kosin University College of Medicine, 262, Gamcheon-ro, Seo-gu, Busan, 49267 South Korea
| | - Da Jung Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Kosin University College of Medicine, 262, Gamcheon-ro, Seo-gu, Busan, 49267 South Korea
| | - Sangjin Lee
- Department of Statistics, Graduate School, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241 South Korea
| | - Ho Sup Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Kosin University College of Medicine, 262, Gamcheon-ro, Seo-gu, Busan, 49267 South Korea
| |
Collapse
|
5
|
Ahmed N, Ghannoum M, Gallogly M, de Lima M, Malek E. Influence of gut microbiome on multiple myeloma: friend or foe? J Immunother Cancer 2020; 8:jitc-2020-000576. [PMID: 32581045 PMCID: PMC7312329 DOI: 10.1136/jitc-2020-000576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells, which typically evolves over time from its precursor, monoclonal gammopathy of undetermined significance. While the underlying mechanisms of this evolution remain elusive, immunomodulatory factors affecting the bone marrow (BM) microenvironment are suspected to play a role. There is an increasing evidence that the gut microbiome exerts an influence on its host’s adaptive and innate immune systems, inflammatory pathways and the BM microenvironment. Dysbiosis, therefore, may impact tumorigenesis in MM. This article gives an overview of potential mechanisms by which the microbiome may influence the pathogenesis of MM, MM patients’ responses to treatment and toxicities experienced by MM patients undergoing autologous transplant. It also discusses the potential role of the mycobiome in MM, a less studied component of the microbiome.
Collapse
Affiliation(s)
- Nausheen Ahmed
- Adult Hematopoietic Stem Cell Transplant Program, UH Seidman Cancer Center, Cleveland, Ohio, USA
| | - Mahmoud Ghannoum
- Center For Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Molly Gallogly
- Adult Hematopoietic Stem Cell Transplant Program, UH Seidman Cancer Center, Cleveland, Ohio, USA
| | - Marcos de Lima
- Adult Hematopoietic Stem Cell Transplant Program, UH Seidman Cancer Center, Cleveland, Ohio, USA
| | - Ehsan Malek
- Adult Hematopoietic Stem Cell Transplant Program, UH Seidman Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Lymphocyte predominant cells detect Moraxella catarrhalis-derived antigens in nodular lymphocyte-predominant Hodgkin lymphoma. Nat Commun 2020; 11:2465. [PMID: 32424289 PMCID: PMC7235000 DOI: 10.1038/s41467-020-16375-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare lymphoma of B-cell origin with frequent expression of functional B-cell receptors (BCRs). Here we report that expression cloning followed by antigen screening identifies DNA-directed RNA polymerase beta’ (RpoC) from Moraxella catarrhalis as frequent antigen of BCRs of IgD+ LP cells. Patients show predominance of HLA-DRB1*04/07 and the IgVH genes encode extraordinarily long CDR3s. High-titer, light-chain-restricted anti-RpoC IgG1/κ-type serum-antibodies are additionally found in these patients. RpoC and MID/hag, a superantigen co-expressed by Moraxella catarrhalis that is known to activate IgD+ B cells by binding to the Fc domain of IgD, have additive activation effects on the BCR, the NF-κB pathway and the proliferation of IgD+ DEV cells expressing RpoC-specific BCRs. This suggests an additive antigenic and superantigenic stimulation of B cells with RpoC-specific IgD+ BCRs under conditions of a permissive MHC-II haplotype as a model of NLPHL lymphomagenesis, implying future treatment strategies. Nodular lymphocyte-predominant Hodgkin lymphoma with IgD+ lymphocyte-predominant (LP) cells is a rare clinical distinct lymphoma subset of B-cell origin. Here the authors show that antigens expressed by Moraxella catarrhalis are recognized by B cell receptors of IgD+ LP cells, suggesting the contribution of chronic antigen stimulation to lymphomagenesis.
Collapse
|
7
|
Hyper- N-glycosylated SAMD14 and neurabin-I as driver autoantigens of primary central nervous system lymphoma. Blood 2018; 132:2744-2753. [PMID: 30249786 DOI: 10.1182/blood-2018-03-836932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023] Open
Abstract
To address the role of chronic antigenic stimulation in primary central nervous system lymphoma (PCNSL), we searched for autoantigens and identified sterile α-motif domain containing protein 14 (SAMD14) and neural tissue-specific F-actin binding protein I (neurabin-I) as autoantigenic targets of the B-cell receptors (BCRs) from 8/12 PCNSLs. In the respective cases, SAMD14 and neurabin-I were atypically hyper-N-glycosylated (SAMD14 at ASN339 and neurabin-I at ASN1277), explaining their autoimmunogenicity. SAMD14 and neurabin-I induced BCR pathway activation and proliferation of aggressive lymphoma cell lines transfected with SAMD14- and neurabin-I-reactive BCRs. Moreover, the BCR binding epitope of neurabin-I conjugated to truncated Pseudomonas exotoxin-killed lymphoma cells expressing the respective BCRs. These results support the role of chronic antigenic stimulation by posttranslationally modified central nervous system (CNS) driver autoantigens in the pathogenesis of PCNSL, serve as an explanation for their CNS tropism, and provide the basis for a novel specific treatment approach.
Collapse
|
8
|
|