1
|
Tsumura R, Anzai T, Koga Y, Takashima H, Matsumura Y, Yasunaga M. Anti-tissue factor antibody conjugated with monomethyl auristatin E or deruxtecan in pancreatic cancer models. Cancer Sci 2024; 115:3986-3996. [PMID: 39322584 PMCID: PMC11611767 DOI: 10.1111/cas.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have been recognized as a promising class of cancer therapeutics. Tissue factor (TF), an initiator of the blood coagulation pathway, has been investigated regarding its relationship with cancer, and several preclinical and clinical studies have presented data on anti-TF ADCs, including tisotumab vedotin, which was approved in 2021. However, the feasibility of other payloads in the design of anti-TF ADCs is still unclear because no reports have compared payloads with different cytotoxic mechanisms. For ADCs targeting other antigens, such as Her2, optimizing the payload is also an important issue in order to improve in vivo efficacy. In this study, we prepared humanized anti-TF Ab (clone.1084) conjugated with monomethyl auristatin E (MMAE) or deruxtecan (DXd), and evaluated the efficacy in several cell line- and patient-derived xenograft models of pancreatic cancer. As a result, optimizing the drug / Ab ratio was necessary for each payload in order to prevent pharmacokinetic deterioration and maximize delivery efficiency. In addition, MMAE-conjugated anti-TF ADC showed higher antitumor effects in tumors with strong and homogeneous TF expression, while DXd-conjugated anti-TF ADC was more effective in tumors with weak and heterogeneous TF expression. Analysis of a pancreatic cancer tissue array showed weak and heterogeneous TF expression in most TF-positive specimens, indicating that the response rate to pancreatic cancer might be higher for DXd- than MMAE-conjugated anti-TF ADC. Nevertheless, our findings indicated that optimizing the ADC payloads individually in each patient could maximize the potential of ADC therapeutics.
Collapse
Affiliation(s)
- Ryo Tsumura
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Takahiro Anzai
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
- Department of Chemistry and Materials ScienceNational Institute of Technology (KOSEN), Gunma CollegeMaebashiJapan
| | - Yoshikatsu Koga
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Hiroki Takashima
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| | - Yasuhiro Matsumura
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Research DivisionRIN Institute Inc.TokyoJapan
| | - Masahiro Yasunaga
- Division of Developmental TherapeuticsEPOC, National Cancer CenterKashiwaJapan
| |
Collapse
|
2
|
Ranganathan S, Reddy A, Russo A, Malepelle U, Desai A. Double agents in immunotherapy: Unmasking the role of antibody drug conjugates in immune checkpoint targeting. Crit Rev Oncol Hematol 2024; 202:104472. [PMID: 39111458 DOI: 10.1016/j.critrevonc.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have high specificity with lesser off-target effects, thus providing improved efficacy over traditional chemotherapies. A total of 14 ADCs have been approved for use against cancer by the US Food and Drug Administration (FDA), with more than 100 ADCs currently in clinical trials. Of particular interest ADCs targeting immune antigens PD-L1, B7-H3, B7-H4 and integrins. Specifically, we describe ADCs in development along with the gene and protein expression of these immune checkpoints across a wide range of cancer types let url = window.clickTag || window.clickTag1 || window.clickTag2 || window.clickTag3 || window.clickTag4 || window.bsClickTAG || window.bsClickTAG1 || window.bsClickTAG2 || window.url || ''; if(typeof url == 'string'){ document.body.dataset['perxceptAdRedirectUrl'] = url;}.
Collapse
Affiliation(s)
| | | | | | - Umberto Malepelle
- Department of Public Health University Federico II of Naples, Naples, Italy
| | - Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama, Birmingham, United States.
| |
Collapse
|
3
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Mackman N, Tawil N, Rak J. Tissue factor at the crossroads of coagulation and radiation response in glioblastoma. J Thromb Haemost 2024; 22:3-6. [PMID: 38173243 DOI: 10.1016/j.jtha.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Nigel Mackman
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, North Carolina, USA; University of North Carolina at Chapel Hill Blood Research Center, The University of North Carolina at Chapel Hill, North Carolina, USA.
| | - Nadim Tawil
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Janusz Rak
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Chang FL, Lee CC, Tsai KC, Lin TY, Chiang CW, Pan SL, Lee YC. An auristatin-based antibody-drug conjugate targeting EphA2 in pancreatic cancer treatment. Biochem Biophys Res Commun 2023; 688:149214. [PMID: 37951154 DOI: 10.1016/j.bbrc.2023.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic adenocarcinoma, a highly aggressive form of cancer with a poor prognosis, necessitates the development of innovative treatment strategies. Our prior research showcased the growth-inhibiting effects of the anti-EphA2 antibody drug hSD5 on pancreatic cancer tumors. This antibody targets and induces the degradation of the EphA2 receptor while also prompting the antibody's internalization. A deeper dive into the hSD5 Fab crystallographic structure and docking studies revealed that hSD5's CDRH3 drives the primary interaction between hSD5 and the EphA2 active site. In this study, we developed a novel antibody-drug conjugate (ADC)-the auristatin-based hSD5-vedotin specifically targeting EphA2 in pancreatic cancer cells. This ADC aims at the tumor-specific antigen EphA2, triggering endocytosis and releasing the conjugated payload molecule Monomethyl auristatin E (MMAE), amplifying the tumor-killing effect. Upon cellular entry, hSD5-vedotin demonstrated an impressive tumor-killing response, inhibiting tumor cell growth and promoting apoptosis even at lower antibody concentrations. In a pancreatic cancer xenograft animal model, hSD5-vedotin showcased the potential to suppress tumor growth entirely. Notably, potential immune resistance responses were also observed in recurrent pancreatic cancer tumors. Our empirical results underscore the possibility of developing hSD5-vedotin further, which we anticipate will have a broader and more potent therapeutic impact on pancreatic cancer and other EphA2-related cancers.
Collapse
Affiliation(s)
- Fu-Ling Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Wei Chiang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan.
| | - Yu-Ching Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Wittwer NL, Brown MP, Liapis V, Staudacher AH. Antibody drug conjugates: hitting the mark in pancreatic cancer? J Exp Clin Cancer Res 2023; 42:280. [PMID: 37880707 PMCID: PMC10598980 DOI: 10.1186/s13046-023-02868-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of cancer-related death, and the 5-year survival rate has only improved marginally over the last decade. Late detection of the disease means that in most cases the disease has advanced locally and/or metastasized, and curative surgery is not possible. Chemotherapy is still the first-line treatment however, this has only had a modest impact in improving survival, with associated toxicities. Therefore, there is an urgent need for targeted approaches to better treat pancreatic cancer, while minimizing treatment-induced side-effects. Antibody drug conjugates (ADCs) are one treatment option that could fill this gap. Here, a monoclonal antibody is used to deliver extremely potent drugs directly to the tumor site to improve on-target killing while reducing off-target toxicity. In this paper, we review the current literature for ADC targets that have been examined in vivo for treating pancreatic cancer, summarize current and on-going clinical trials using ADCs to treat pancreatic cancer and discuss potential strategies to improve their therapeutic window.
Collapse
Affiliation(s)
- Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
8
|
Mungra N, Biteghe FAN, Malindi Z, Huysamen AM, Karaan M, Hardcastle NS, Bunjun R, Chetty S, Naran K, Lang D, Richter W, Hunter R, Barth S. CSPG4 as a target for the specific killing of triple-negative breast cancer cells by a recombinant SNAP-tag-based antibody-auristatin F drug conjugate. J Cancer Res Clin Oncol 2023; 149:12203-12225. [PMID: 37432459 PMCID: PMC10465649 DOI: 10.1007/s00432-023-05031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is phenotypic of breast tumors lacking expression of the estrogen receptor (ER), the progesterone receptor (PgR), and the human epidermal growth factor receptor 2 (HER2). The paucity of well-defined molecular targets in TNBC, coupled with the increasing burden of breast cancer-related mortality, emphasizes the need to develop targeted diagnostics and therapeutics. While antibody-drug conjugates (ADCs) have emerged as revolutionary tools in the selective delivery of drugs to malignant cells, their widespread clinical use has been hampered by traditional strategies which often give rise to heterogeneous mixtures of ADC products. METHODS Utilizing SNAP-tag technology as a cutting-edge site-specific conjugation method, a chondroitin sulfate proteoglycan 4 (CSPG4)-targeting ADC was engineered, encompassing a single-chain antibody fragment (scFv) conjugated to auristatin F (AURIF) via a click chemistry strategy. RESULTS After showcasing the self-labeling potential of the SNAP-tag component, surface binding and internalization of the fluorescently labeled product were demonstrated on CSPG4-positive TNBC cell lines through confocal microscopy and flow cytometry. The cell-killing ability of the novel AURIF-based recombinant ADC was illustrated by the induction of a 50% reduction in cell viability at nanomolar to micromolar concentrations on target cell lines. CONCLUSION This research underscores the applicability of SNAP-tag in the unambiguous generation of homogeneous and pharmaceutically relevant immunoconjugates that could potentially be instrumental in the management of a daunting disease like TNBC.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Centre for Immunity and Immunotherapies, Seattle Children’s Research Institute, Washington, 98101 USA
| | - Fleury A. N. Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, USA
| | - Zaria Malindi
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| | - Allan M. Huysamen
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Maryam Karaan
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Natasha S. Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7700 South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7700 South Africa
| | - Shivan Chetty
- Faculty of Health Sciences, School of Clinical Medicine, University of Witwatersrand, Braamfontein, Johannesburg, 2000 South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, 7700 South Africa
| | | | - Roger Hunter
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town, 7700 South Africa
| |
Collapse
|
9
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Danielewicz N, Rosato F, Tomisch J, Gräber J, Wiltschi B, Striedner G, Römer W, Mairhofer J. Clickable Shiga Toxin B Subunit for Drug Delivery in Cancer Therapy. ACS OMEGA 2023; 8:15406-15421. [PMID: 37151527 PMCID: PMC10157870 DOI: 10.1021/acsomega.3c00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/10/2023] [Indexed: 05/09/2023]
Abstract
In recent years, receptor-mediated drug delivery has gained major attention in the treatment of cancer. The pathogen-derived Shiga Toxin B subunit (STxB) can be used as a carrier that detects the tumor-associated glycosphingolipid globotriaosylceramide (Gb3) receptors. While drug conjugation via lysine or cysteine offers random drug attachment to carriers, click chemistry has the potential to improve the engineering of delivery systems as the site specificity can eliminate interference with the active binding site of tumor ligands. We present the production of recombinant STxB in its wild-type (STxBwt) version or incorporating the noncanonical amino acid azido lysine (STxBAzK). The STxBwt and STxBAzK were manufactured using a growth-decoupled Escherichia coli (E. coli)-based expression strain and analyzed via flow cytometry for Gb3 receptor recognition and specificity on two human colorectal adenocarcinoma cell lines-HT-29 and LS-174-characterized by high and low Gb3 abundance, respectively. Furthermore, STxBAzK was clicked to the antineoplastic agent monomethyl auristatin E (MMAE) and evaluated in cell-killing assays for its ability to deliver the drug to Gb3-expressing tumor cells. The STxBAzK-MMAE conjugate induced uptake and release of the MMAE drug in Gb3-positive tumor cells, reaching 94% of HT-29 cell elimination at 72 h post-treatment and low nanomolar doses while sparing LS-174 cells. STxBAzK is therefore presented as a well-functioning drug carrier, with a possible application in cancer therapy. This research demonstrates the feasibility of lectin carriers used in delivering drugs to tumor cells, with prospects for improved cancer therapy in terms of straightforward drug attachment and effective cancer cell elimination.
Collapse
Affiliation(s)
- Natalia Danielewicz
- enGenes
Biotech GmbH, Muthgasse
11, 1190 Vienna, Austria
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Francesca Rosato
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Jana Tomisch
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Jonas Gräber
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Birgit Wiltschi
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Gerald Striedner
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Winfried Römer
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
- Freiburg
Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
11
|
Pistono P, Huang P, Brauer DD, Francis MB. Fitness Landscape-Guided Engineering of Locally Supercharged Virus-like Particles with Enhanced Cell Uptake Properties. ACS Chem Biol 2022; 17:3367-3378. [PMID: 36378277 PMCID: PMC9764284 DOI: 10.1021/acschembio.2c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Protein-based nanoparticles are useful models for the study of self-assembly and attractive candidates for drug delivery. Virus-like particles (VLPs) are especially promising platforms for expanding the repertoire of therapeutics that can be delivered effectively as they can deliver many copies of a molecule per particle for each delivery event. However, their use is often limited due to poor uptake of VLPs into mammalian cells. In this study, we use the fitness landscape of the bacteriophage MS2 VLP as a guide to engineer capsid variants with positively charged surface residues to enhance their uptake into mammalian cells. By combining mutations with positive fitness scores that were likely to produce assembled capsids, we identified two key double mutants with internalization efficiencies as much as 67-fold higher than that of wtMS2. Internalization of these variants with positively charged surface residues depends on interactions with cell surface sulfated proteoglycans, and yet, they are biophysically similar to wtMS2 with low cytotoxicity and an overall negative charge. Additionally, the best-performing engineered MS2 capsids can deliver a potent anticancer small-molecule therapeutic with efficacy levels similar to antibody-drug conjugates. Through this work, we were able to establish fitness landscape-based engineering as a successful method for designing VLPs with improved cell penetration. These findings suggest that VLPs with positive surface charge could be useful in improving the delivery of small-molecule- and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Paige
E. Pistono
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Paul Huang
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Daniel D. Brauer
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| |
Collapse
|
12
|
Identification of CD73 as the Antigen of an Antigen-Unknown Monoclonal Antibody Established by Exosome Immunization, and Its Antibody-Drug Conjugate Exerts an Antitumor Effect on Glioblastoma Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15070837. [PMID: 35890137 PMCID: PMC9322095 DOI: 10.3390/ph15070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Development of antibodies against the native structure of membrane proteins with multiple transmembrane domains is challenging because it is difficult to prepare antigens with native structures. Previously, we successfully developed a monoclonal antibody against multi-pass membrane protein TMEM180 by exosome immunization in rats. This approach yielded antibodies that recognized cancer-specific antigens on the exosome. In this study, we performed immunoprecipitation using magnetic beads to identify the antigen of one of the rat antibody clones, 0614, as CD73. We then converted antibody 0614 to human chimeric antibody 0614-5. Glioblastoma (GB) was the cancer type with the highest expression of CD73 in the tumor relative to healthy tissue. An antibody-drug conjugate (ADC) of 0614-5 exerted an antitumor effect on GB cell lines according to expression of CD73. The 0614-5-ADC has potential to be used to treat cancers with high CD73 expression. In addition, our strategy could be used to determine the antigen of any antibody produced by exosome immunization, which may allow the antibody to advance to new antibody therapies.
Collapse
|
13
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
14
|
Yao B, Gao X, Dan M, Yuan C, Hu X, Sun Z, Hui X, Liu B, Ouyang P, Chen G. Selection of Payloads for Antibody-Drug Conjugates Targeting Ubiquitously Expressed Tumor-Associated Antigens: a Case Study. AAPS J 2022; 24:70. [PMID: 35624189 DOI: 10.1208/s12248-022-00720-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The main objective of this work was to demonstrate which kind of payload is the suitable choice for antibody-drug conjugates directed to widely expressed tumor-associated antigen. Trop-2 is overexpressed in various solid tumors, but it is also present on the epithelium of several normal tissues. A well-designed anti-Trop-2 ADC demands a good balance of efficacy and toxicity. In this research, MMAE, SN-38, and DXd were selected as candidates for payloads of the anti-Trop-2 mAb SY02. The antitumor activities and safety profiles of these ADCs were investigated to compare the therapeutic windows. Robust in vitro cytotoxicity was observed on human pancreatic cancer cell CFPAC-1 and breast cancer cell MDA-MB-468 with IC50 generally in the subnanomolar range. Consistent with in vitro assay, SY02-DXd and SY02-SN-38 demonstrated superior efficacy in CFPAC-1 xenograft models with TGI rates of 98.2% and 87.3%, respectively. However, SY02-MMAE could hardly inhibit the tumor growth. Subsequently, antitumor activities of these ADCs were further compared in MDA-MB-468 xenograft model. Complete tumor regression was observed in SY02-DXd and SY02-MMAE groups, indicating their potent antitumor activities. In an exploratory safety and pharmacokinetic study, SY02-DXd demonstrated the best safety profile with minimal adverse events in cynomolgus monkeys, while SY02-MMAE exhibited severe on-target skin toxicity which caused death. In conclusion, SY02-DXd demonstrated superior efficacy and safety with the widest therapeutic window. Based on the efficacy and safety results, moderate cytotoxic payloads would be ideal choices for ADCs targeting ubiquitously expressed antigens.
Collapse
Affiliation(s)
- Bing Yao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No.30 Puzhu Road, Nanjing, China.,CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China
| | - Xiao Gao
- CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China
| | - Mo Dan
- CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China
| | - Can Yuan
- CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China
| | - Xixin Hu
- CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China
| | - Zhaopeng Sun
- CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China
| | - Xiwu Hui
- CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China
| | - Boning Liu
- CSPC Megalith Biopharmaceutical Co., Ltd, No.226 Huanghe Street, Shijiazhuang, Hebei, China.
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No.30 Puzhu Road, Nanjing, China.
| | - Guoguang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No.30 Puzhu Road, Nanjing, China.
| |
Collapse
|
15
|
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther 2022; 7:93. [PMID: 35318309 PMCID: PMC8941077 DOI: 10.1038/s41392-022-00947-7] [Citation(s) in RCA: 716] [Impact Index Per Article: 238.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Antibody-drug conjugate (ADC) is typically composed of a monoclonal antibody (mAbs) covalently attached to a cytotoxic drug via a chemical linker. It combines both the advantages of highly specific targeting ability and highly potent killing effect to achieve accurate and efficient elimination of cancer cells, which has become one of the hotspots for the research and development of anticancer drugs. Since the first ADC, Mylotarg® (gemtuzumab ozogamicin), was approved in 2000 by the US Food and Drug Administration (FDA), there have been 14 ADCs received market approval so far worldwide. Moreover, over 100 ADC candidates have been investigated in clinical stages at present. This kind of new anti-cancer drugs, known as "biological missiles", is leading a new era of targeted cancer therapy. Herein, we conducted a review of the history and general mechanism of action of ADCs, and then briefly discussed the molecular aspects of key components of ADCs and the mechanisms by which these key factors influence the activities of ADCs. Moreover, we also reviewed the approved ADCs and other promising candidates in phase-3 clinical trials and discuss the current challenges and future perspectives for the development of next generations, which provide insights for the research and development of novel cancer therapeutics using ADCs.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, (Parkville Campus) 381 Royal Parade,, Parkville, VIC, 3052, Australia
- Faculty of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
16
|
Dong S, Nessler I, Kopp A, Rubahamya B, Thurber GM. Predictive Simulations in Preclinical Oncology to Guide the Translation of Biologics. Front Pharmacol 2022; 13:836925. [PMID: 35308243 PMCID: PMC8927291 DOI: 10.3389/fphar.2022.836925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Preclinical in vivo studies form the cornerstone of drug development and translation, bridging in vitro experiments with first-in-human trials. However, despite the utility of animal models, translation from the bench to bedside remains difficult, particularly for biologics and agents with unique mechanisms of action. The limitations of these animal models may advance agents that are ineffective in the clinic, or worse, screen out compounds that would be successful drugs. One reason for such failure is that animal models often allow clinically intolerable doses, which can undermine translation from otherwise promising efficacy studies. Other times, tolerability makes it challenging to identify the necessary dose range for clinical testing. With the ability to predict pharmacokinetic and pharmacodynamic responses, mechanistic simulations can help advance candidates from in vitro to in vivo and clinical studies. Here, we use basic insights into drug disposition to analyze the dosing of antibody drug conjugates (ADC) and checkpoint inhibitor dosing (PD-1 and PD-L1) in the clinic. The results demonstrate how simulations can identify the most promising clinical compounds rather than the most effective in vitro and preclinical in vivo agents. Likewise, the importance of quantifying absolute target expression and antibody internalization is critical to accurately scale dosing. These predictive models are capable of simulating clinical scenarios and providing results that can be validated and updated along the entire development pipeline starting in drug discovery. Combined with experimental approaches, simulations can guide the selection of compounds at early stages that are predicted to have the highest efficacy in the clinic.
Collapse
Affiliation(s)
- Shujun Dong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Baron Rubahamya
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Greg M. Thurber,
| |
Collapse
|
17
|
Functional Characteristics and Regulated Expression of Alternatively Spliced Tissue Factor: An Update. Cancers (Basel) 2021; 13:cancers13184652. [PMID: 34572880 PMCID: PMC8471299 DOI: 10.3390/cancers13184652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.
Collapse
|
18
|
Matsumura Y. Barriers to antibody therapy in solid tumors, and their solutions. Cancer Sci 2021; 112:2939-2947. [PMID: 34032331 PMCID: PMC8353947 DOI: 10.1111/cas.14983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Antibody drugs have become the mainstream of cancer treatment due to advances in cancer biology and Ab engineering. However, several barriers to Ab therapy have also been identified. These include various mechanisms for Ab drug resistance, such as heterogeneity of antigen expression in tumor cells and reduction in antitumor immunity due to expression diversity, polymorphism of Fc receptors (FcR) in effector cells, and reduced function of effector cells. Countermeasures to each resistance mechanism are being investigated. This review focuses on barriers that impede the delivery of Ab drugs due to features of the solid tumor microenvironment. Unlike hematological malignancies, in which the target tumor cells are in blood vessels, clinical solid tumors contain cancer stroma, which interferes with the delivery of Ab drugs. In addition, the cancer mass itself interferes with the penetration of Ab drugs. In this article, I will consider the etiology of cancer stroma and propose a new Ab drug development strategy for solid cancer treatment centering on cancer stromal targeting (CAST) therapy using anti-insoluble fibrin Ab-drug conjugate (ADC), which can overcome the cancer stroma barrier. The recent success of ADCs, chimeric antigen receptor T cells (CAR-Ts), and Bi-specific Abs is changing the category of Ab drugs from molecular-targeted drugs based on growth signal inhibition to cancer-specific targeted therapies. Therefore, at the end of this review, I argue that it is time to reorient the concept of Ab drug development.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Matsumura LabInnovation Center of NanoMedicineKawasakiJapan
- Tsukiji LabRINInstitute Inc.TokyoJapan
| |
Collapse
|
19
|
Hisada Y, Mackman N. Tissue Factor and Extracellular Vesicles: Activation of Coagulation and Impact on Survival in Cancer. Cancers (Basel) 2021; 13:cancers13153839. [PMID: 34359742 PMCID: PMC8345123 DOI: 10.3390/cancers13153839] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The tissue factor (TF)-factor VIIa complex is the major physiological initiator of blood coagulation. Tumors express TF and release TF-positive extracellular vesicles (EVs) into the circulation, and this is associated with the activation of coagulation. Circulating levels of EVTF activity may be a useful biomarker to identify patients at risk for thrombosis. Tumor TF and TF-positive EVs are also associated with reduced survival. Abstract Tissue factor (TF) is a transmembrane glycoprotein that functions as a receptor for FVII/FVIIa and initiates the extrinsic coagulation pathway. Tumors and cancer cells express TF that can be released in the form of TF positive (TF+) extracellular vesicles (EVs). In this review, we summarize the studies of tumor TF and TF + EVs, and their association with activation of coagulation and survival in cancer patients. We also summarize the role of tumor-derived TF + EVs in venous thrombosis in mouse models. Levels of tumor TF and TF + EVs are associated with venous thromboembolism in pancreatic cancer patients. In addition, levels of EVTF activity are associated with disseminated intravascular coagulation in cancer patients. Furthermore, tumor-derived TF + EVs enhance venous thrombosis in mice. Tumor TF and TF + EVs are also associated with worse survival in cancer patients, particularly in pancreatic cancer patients. These studies indicate that EVTF activity could be used as a biomarker to identify pancreatic cancer patients at risk for venous thrombosis and cancer patients at risk for disseminated intravascular coagulation. EVTF activity may also be a useful prognostic biomarker in cancer patients.
Collapse
|
20
|
Zhang Y, Liu X, Wang X, He P, Xiao C, Yu H, Chen X. Nanoparticles Composed of PEGylated Alternating Copolymer-Combretastatin A4 Conjugate for Cancer Therapy. Macromol Biosci 2021; 21:e2100077. [PMID: 34031970 DOI: 10.1002/mabi.202100077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Chemotherapy using vascular targeting agents is an emerging new approach for cancer therapy. Combretastatin A4 (CA4) is a leading vascular-disrupting agent that targets the tumor blood vasculature for clinical tumor elimination. However, the extremely poor water solubility of CA4 hinders its biomedical applications. In this study, nanoparticles composed of novel PEGylated alternating copolymer-CA4 conjugates are designed to improve the therapeutic efficiency of CA4. First, an alternating copolymer with an alkene-pendant is synthesized by mPEG-OH-initiated ring-opening copolymerization. Then, side carboxyl groups are introduced by a thio-ene "click" chemical reaction, followed with CA4 conjugation through the Yamaguchi-reaction, resulting in the target copolymer, mPEG-b-P(PA-alt-GCA4). Interestingly, the polymer-drug conjugates can self-assemble into nanoparticles with an average diameter of 55.6 nm. The in vitro drug release and cytotoxicity of the obtained CA4-NPs toward 4T1 cells are investigated. Finally, the antitumor efficiency is evaluated in a 4T1-tumor bearing murine model. The in vivo test results demonstrate that CA4-NPs inhibited tumor growth much more efficiently at doses of 30 and 60 mg kg-1 , compared with the control group.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xueping Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
21
|
Takashima H, Koga Y, Manabe S, Ohnuki K, Tsumura R, Anzai T, Iwata N, Wang Y, Yokokita T, Komori Y, Mori D, Usuda S, Haba H, Fujii H, Matsumura Y, Yasunaga M. Radioimmunotherapy with an 211 At-labeled anti-tissue factor antibody protected by sodium ascorbate. Cancer Sci 2021; 112:1975-1986. [PMID: 33606344 PMCID: PMC8088967 DOI: 10.1111/cas.14857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue factor (TF), the trigger protein of the extrinsic blood coagulation cascade, is abundantly expressed in various cancers including gastric cancer. Anti-TF monoclonal antibodies (mAbs) capable of targeting cancers have been successfully applied to armed antibodies such as antibody-drug conjugates (ADCs) and molecular imaging probes. We prepared an anti-TF mAb, clone 1084, labeled with astatine-211 (211 At), as a promising alpha emitter for cancer treatment. Alpha particles are characterized by high linear energy transfer and a range of 50-100 µm in tissue. Therefore, selective and efficient tumor accumulation of alpha emitters results in potent antitumor activities against cancer cells with minor effects on normal cells adjacent to the tumor. Although the 211 At-conjugated clone 1084 (211 At-anti-TF mAb) was disrupted by an 211 At-induced radiochemical reaction, we demonstrated that astatinated anti-TF mAbs eluted in 0.6% or 1.2% sodium ascorbate (SA) solution were protected from antibody denaturation, which contributed to the maintenance of cellular binding activities and cytocidal effects of this immunoconjugate. Although body weight loss was observed in mice administered a 1.2% SA solution, the loss was transient and the radioprotectant seemed to be tolerable in vivo. In a high TF-expressing gastric cancer xenograft model, 211 At-anti-TF mAb in 1.2% SA exerted a significantly greater antitumor effect than nonprotected 211 At-anti-TF mAb. Moreover, the antitumor activities of the protected immunoconjugate in gastric cancer xenograft models were dependent on the level of TF in cancer cells. These findings suggest the clinical availability of the radioprotectant and applicability of clone 1084 to 211 At-radioimmunotherapy.
Collapse
Affiliation(s)
- Hiroki Takashima
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Strategic Programs, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shino Manabe
- Laboratory of Functional Molecule Chemistry, Pharmaceutical Department and Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan.,Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Glycometabolic Biochemistry Laboratory, RIKEN, Wako, Japan
| | - Kazunobu Ohnuki
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ryo Tsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Takahiro Anzai
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Nozomi Iwata
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yang Wang
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Takuya Yokokita
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Yukiko Komori
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Daiki Mori
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Sachiko Usuda
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Hiromitsu Haba
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yasuhiro Matsumura
- Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center, Chuo-ku, Tokyo, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
22
|
Biteghe FAN, Mungra N, Chalomie NET, Ndong JDLC, Engohang-Ndong J, Vignaux G, Padayachee E, Naran K, Barth S. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget 2020; 11:3531-3557. [PMID: 33014289 PMCID: PMC7517958 DOI: 10.18632/oncotarget.27730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.
Collapse
Affiliation(s)
- Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | | | - Jean De La Croix Ndong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA
| | | | - Eden Padayachee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| |
Collapse
|
23
|
Development and biological assessment of MMAE-trastuzumab antibody-drug conjugates (ADCs). Breast Cancer 2020; 28:216-225. [PMID: 32889587 DOI: 10.1007/s12282-020-01153-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Trastuzumab, a humanized monoclonal antibody targeting Human Epidermal growth factor Receptor 2 (HER2), is a therapeutic option used for the treatment of patients with HER2-overexpressing breast cancers. The primary purpose of the present study was to establish a trastuzumab-based antibody drug conjugate (ADC) to enhance the biopharmaceutical profile of trastuzumab. METHODS In this study, trastuzumab was linked to the microtubule-disrupting agent monomethyl auristatin E (MMAE) through a peptide linker. Following conjugation, MMAE-trastuzumab ADCs were characterized using SDS-PAGE, UV/VIS, and cell-based ELISA. The inhibitory effects of the ADCs were measured on MDA-MB-453 (HER2-positive cells) and HEK-293 (HER2-negative cells) using in vitro cell cytotoxicity and colony formation assays. RESULTS Our findings showed that approximately 3.4 MMAE payloads were conjugated to trastuzumab. MMAE-trastuzumab ADCs produced six bands, including H2L2, H2L, HL, H2, H, and L in non-reducing SDS-PAGE. The conjugates exhibited the same binding ability to MDA-MB-453 as unconjugated trastuzumab. The MTT assay showed a significant improvement in the trastuzumab activity following MMAE conjugation, representing a higher antitumor activity as compared with unconjugated trastuzumab. Furthermore, ADCs were capable of potentially inhibiting colony formation in HER2-positive cells, as compared with trastuzumab. CONCLUSION MMAE-trastuzumab ADCs represent a promising therapeutic strategy to treat HER2-positive breast cancer.
Collapse
|
24
|
Shimizu K, Takeuchi Y, Otsuka K, Mori T, Narita Y, Takasugi S, Magata Y, Matsumura Y, Oku N. Development of tissue factor-targeted liposomes for effective drug delivery to stroma-rich tumors. J Control Release 2020; 323:519-529. [DOI: 10.1016/j.jconrel.2020.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
|
25
|
Bennett G, Brown A, Mudd G, Huxley P, Van Rietschoten K, Pavan S, Chen L, Watcham S, Lahdenranta J, Keen N. MMAE Delivery Using the Bicycle Toxin Conjugate BT5528. Mol Cancer Ther 2020; 19:1385-1394. [PMID: 32398269 DOI: 10.1158/1535-7163.mct-19-1092] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
The EphA2 receptor is found at high levels in tumors and low levels in normal tissue and high EphA2 expression in biopsies is a predictor of poor outcome in patients. Drug discovery groups have therefore sought to develop EphA2-based therapies using small molecule, peptide, and nanoparticle-based approaches (1-3). However, until now only EphA2-targeting antibody-drug conjugates (ADC) have entered clinical development. For example, MEDI-547 is an EphA2-targeting ADC that displayed encouraging antitumor activity in preclinical models and progressed to phase I clinical testing in man. Here we describe the development of BT5528, a bicyclic peptide ("Bicycle") conjugated to the auristatin derivative maleimidocaproyl-monomethyl auristatin E to generate the Bicycle toxin conjugate BT5528. The report compares and contrasts the Pharmacokinetics (PK) characteristics of antibody and Bicycle-based targeting systems and discusses how the PK and payload characteristics of different delivery systems impact the efficacy-toxicity trade off which is key to the development of successful cancer therapies. We show that BT5528 gives rise to rapid update into tumors and fast renal elimination followed by persistent toxin levels in tumors without prolonged exposure of parent drug in the vasculature. This fast in, fast out kinetics gave rise to more favorable toxicology findings in rats and monkeys than were observed with MEDI-547 in preclinical and clinical studies.Graphical Abstract: http://mct.aacrjournals.org/content/molcanther/19/7/1385/F1.large.jpg.
Collapse
Affiliation(s)
| | - Amy Brown
- Bicycle Therapeutics, Cambridge, United Kingdom
| | - Gemma Mudd
- Bicycle Therapeutics, Cambridge, United Kingdom
| | | | | | - Silvia Pavan
- Fabbrica Italiana Sintetici S.p.A., Vicenza, Italy
| | | | | | | | | |
Collapse
|
26
|
Takashima H, Koga Y, Tsumura R, Yasunaga M, Tsuchiya M, Inoue T, Negishi E, Harada M, Yoshida S, Matsumura Y. Reinforcement of antitumor effect of micelles containing anticancer drugs by binding of an anti-tissue factor antibody without direct cytocidal effects. J Control Release 2020; 323:138-150. [PMID: 32259544 DOI: 10.1016/j.jconrel.2020.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022]
Abstract
It has been preclinically and clinically proven that anticancer agent-incorporating (ACA-incorporating) polymeric micelles selectively accumulate in tumor via the enhanced permeability and retention (EPR) effect, yielding a wider therapeutic window and greater safety than conventional low-molecular weight ACAs. To increase the antitumor effect of these safer micelle formulations, epirubicin-incorporating polymer micelles (NC-6300) conjugated with monoclonal antibodies (mAbs) have been prepared. In this study, we used two types of mAb: an anti-tissue factor (TF) mAb that does not exert a direct cytocidal effect, and an anti-HER2 mAb that has a direct cytocidal effect. We compared the antitumor effects and pharmacological properties of the two types of antibody conjugated to NC-6300. Immunomicelles conjugated to anti-TF mAb exerted greater antitumor activity toward TF-positive stomach cancer than the combination of anti-TF mAb and NC-6300, and were distributed more uniformly throughout TF-positive tumor tissue than NC-6300. On the other hand, immunomicelles conjugated to anti-HER2 mAb did not exert significant antitumor activity toward HER2-positive stomach cancer relative to the combined use of anti-HER2 mAb and NC-6300. Thus, this immunomicelle-based strategy may be useful for antibodies that target cancer as pilot molecules even when the antibodies themselves do not have an antitumor effect.
Collapse
Affiliation(s)
- Hiroki Takashima
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ryo Tsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masami Tsuchiya
- Research Division, NanoCarrier Co., Ltd., 144-15 Chuo, 226-39 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Tadashi Inoue
- Research Division, NanoCarrier Co., Ltd., 144-15 Chuo, 226-39 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Eriko Negishi
- Research Division, NanoCarrier Co., Ltd., 144-15 Chuo, 226-39 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Mitsunori Harada
- Research Division, NanoCarrier Co., Ltd., 144-15 Chuo, 226-39 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Sei Yoshida
- Research Division, NanoCarrier Co., Ltd., 144-15 Chuo, 226-39 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
27
|
Zhang B, Pang Z, Hu Y. Targeting hemostasis-related moieties for tumor treatment. Thromb Res 2020; 187:186-196. [PMID: 32032807 DOI: 10.1016/j.thromres.2020.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Under normal conditions, the hemostatic system, that includes the involvement of the coagulation response and platelets, is anatomically and functionally inseparable from the vasculature. However, the hemostatic response always occurs in a wide range of tumors because of the high expression of coagulation initiator tissue factor (TF) in many tumor tissues, and due to the leakage of coagulation factors and platelets from the circulation system into the tumor interstitium through abnormal tumor vessels. Therefore, in addition to TF, these coagulation factors, platelets, the central moiety thrombin, the final product fibrin, and fibronectin, which is capable of stabilizing coagulation clots, are also abundant in tumors. These hemostasis-related moieties (HRMs), including TF, thrombin, fibrin, fibronectin, and platelets, are also closely associated with tumor progression, e.g., primary tumor growth and distal metastasis. The hemostatic response only occurs under pathological conditions, such as tumors, thrombosis, and atherosclerosis other than in normal tissues. The HRMs within tumors are also highly specific, establishing functional and therapeutic targets for tumor treatment. Therefore, strategies including active targeting to these moieties, modulation of HRMs deposited in the tumor microenvironment to improve tumor drug delivery, activation of prodrug by the coagulation complex formed during coagulation response, and direct inhibition of the tumor-promoting activity of HRMs could be designed for tumor therapy. In this review, we summarize various strategies that target HRMs for tumor treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
28
|
Development of a Novel EGFR-Targeting Antibody-Drug Conjugate for Pancreatic Cancer Therapy. Target Oncol 2020; 14:93-105. [PMID: 30635821 DOI: 10.1007/s11523-018-0616-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Overexpression of epidermal growth factor receptor (EGFR) is common in pancreatic cancer and associated with the poor prognosis of this malignancy. OBJECTIVE To develop anti-EGFR antibody-drug conjugates (ADCs) for use in a novel EGFR-targeting approach to treat pancreatic cancer. METHODS A humanized anti-EGFR monoclonal antibody (RC68) was generated by mouse immunization and complementary-determining region grafting technology. Two RC68-based ADCs, RC68-MC-VC-PAB-MMAE and RC68-PY-VC-PAB-MMAE, were synthesized by conjugating monomethyl auristatin E (MMAE), a small-molecule cytotoxin, to RC68 through two distinct linkers (MC and PY). Internalization of the RC68-based ADCs was examined by flow cytometry. The in vitro and in vivo antitumor activities of RC68-based ADCs were evaluated in human pancreatic cancer cells and in a BXPC-3 xenograft nude mouse model, respectively. RESULTS The RC68-based ADCs bound to EGFR on the surface of tumor cells and were effectively internalized, resulting in the death of EGFR-positive cancer cell lines. The RC68-based ADCs (at 5 or 10 mg/kg) were more potent than gemcitabine hydrochloride (60 mg/kg) at inhibiting the growth of BXPC-3 xenografts. Moreover, RC68-PY-VC-PAB-MMAE was found to have superior stability in human plasma compared with RC68-MC-VC-PAB-MMAE. CONCLUSION A novel EGFR-targeting ADC, RC68-PY-VC-PAB-MMAE, shows promise as an effective, selective, and safe therapeutic agent for EGFR-positive pancreatic cancer.
Collapse
|
29
|
Responsive Antibody Conjugates Enable Quantitative Determination of Intracellular Bond Degradation Rate. Cell Chem Biol 2019; 26:1643-1651.e4. [PMID: 31604616 DOI: 10.1016/j.chembiol.2019.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 01/24/2023]
Abstract
Degradable crosslinkers that respond to intracellular biological stimuli are a critical component of many drug delivery systems. With numerous stimuli-responsive drug delivery systems in development, it is important to quantitatively study their intracellular processing. Herein we report a framework for quantifying the rate of intracellular bond degradation in the endocytic pathway. Toward this end, we devised and synthesized a reduction-sensitive FRET-based crosslinker that can be readily conjugated to a variety of targeting ligands. This crosslinker was conjugated to trastuzumab, a humanized monoclonal antibody against the HER2 receptor. We developed a model based on mass-action kinetics to describe the intracellular processing of this conjugate. The kinetic model was developed in conjunction with live-cell experiments to extract the rate constant for intracellular disulfide bond degradation. This framework may be applied to other endocytosis pathways, bond types, and cell types to quantify this fundamental degradation rate parameter.
Collapse
|
30
|
Tsumura R, Manabe S, Takashima H, Koga Y, Yasunaga M, Matsumura Y. Evaluation of the antitumor mechanism of antibody-drug conjugates against tissue factor in stroma-rich allograft models. Cancer Sci 2019; 110:3296-3305. [PMID: 31348600 PMCID: PMC6778651 DOI: 10.1111/cas.14146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Tissue factor (TF) is known to be overexpressed in various cancers including pancreatic cancer. The upregulation of TF expression has been observed not only in tumor cells, but also in tumor stromal cells. Because of the potential of TF as a delivery target, several studies investigated the effectiveness of Ab-drug conjugates (ADCs) against TF for cancer therapy. However, it is still unclear whether anti-TF ADC can exert toxicity against both tumor cells and tumor stromal cells. Here, we prepared ADC using a rat anti-mouse TF mAb (clone.1157) and 2 types of in vivo murine pancreatic cancer models, one s.c. and other orthotopic with an abundant tumor stroma. We also compared the feasibility of bis-alkylating conjugation (bisAlk) with that of conventional maleimide-based conjugation (MC). In the s.c. models, anti-TF ADC showed greater antitumor effects than control ADC. The results also indicated that the bisAlk linker might be more suitable than the MC linker for cancer treatments. In the orthotopic model, anti-TF ADC showed greater in vivo efficacy and more extended survival time control ADC. Treatment with anti-TF ADC (20 mg/kg, three times a week) did not affect mouse body weight changes in any in vivo experiment. Furthermore, immunofluorescence staining indicated that anti-TF ADC delivered agents not only to TF-positive tumor cells, but also to TF-positive tumor vascular endothelial cells and other tumor stromal cells. We conclude that anti-TF ADC should be a selective and potent drug for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ryo Tsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Wako, Japan
| | - Hiroki Takashima
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
31
|
Matsuoka A, Mizumoto Y, Ono M, Kagami K, Obata T, Terakawa J, Maida Y, Nakamura M, Daikoku T, Fujiwara H. Novel strategy of ovarian cancer implantation: Pre-invasive growth of fibrin-anchored cells with neovascularization. Cancer Sci 2019; 110:2658-2666. [PMID: 31199029 PMCID: PMC6676109 DOI: 10.1111/cas.14098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/23/2023] Open
Abstract
Although direct adhesion of cancer cells to the mesothelial cell layer is considered to be a key step for peritoneal invasion of ovarian cancer cell masses (OCM), we recently identified a different strategy for the peritoneal invasion of OCM. In 6 out of 20 cases of ovarian carcinoma, extraperitoneal growth of the OCM was observed along with the neovascularization of feeding vessels, which connect the intraperitoneal host stroma and extraperitoneal lesions through the intact mesothelial cell layer. As an early step, the OCMs anchor in the extraperitoneal fibrin networks and then induce the migration of CD34-positive and vascular endothelial growth factor A (VEGF-A)-positive endothelial cells, constructing extraperitoneal vascular networks around the OCM. During the extraperitoneal growth of OCM, podoplanin-positive and α smooth muscle actin (αSMA)-positive cancer-associated fibroblasts (CAF) appears. In more advanced lesions, the boundary line of mesothelial cells disappears around the insertion areas of feeding vessels and then extraperitoneal and intraperitoneal stroma are integrated, enabling the OCM to invade the host stroma, being associated with CAF. In addition, tissue factors (TF) are strongly detected around these peritoneal implantation sites and their levels in ascites were higher than that in blood. These findings demonstrate the presence of neovascularization around fibrin net-anchored OCMs on the outer side of the intact peritoneal surface, suggesting a novel strategy for peritoneal invasion of ovarian cancer and TF-targeted intraperitoneal anti-cancer treatment. We observed and propose a novel strategy for peritoneal implantation of ovarian cancer. The strategy includes the preinvasive growth of fibrin-anchored cancer cells along with neovascularization on the outer side of the intact peritoneal surface.
Collapse
Affiliation(s)
- Ayumi Matsuoka
- Department of Obstetrics and GynecologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Yasunari Mizumoto
- Department of Obstetrics and GynecologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Masanori Ono
- Department of Obstetrics and GynecologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Kyosuke Kagami
- Department of Obstetrics and GynecologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Takeshi Obata
- Department of Obstetrics and GynecologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Junpei Terakawa
- Institute for Experimental AnimalsAdvanced Science Research CenterKanazawa UniversityKanazawaJapan
| | - Yoshiko Maida
- Department of NursingCollege of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and GynecologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Takiko Daikoku
- Institute for Experimental AnimalsAdvanced Science Research CenterKanazawa UniversityKanazawaJapan
| | - Hiroshi Fujiwara
- Department of Obstetrics and GynecologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| |
Collapse
|
32
|
Hisada Y, Mackman N. Tissue Factor and Cancer: Regulation, Tumor Growth, and Metastasis. Semin Thromb Hemost 2019; 45:385-395. [PMID: 31096306 DOI: 10.1055/s-0039-1687894] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a strong relationship between tissue factor (TF) and cancer. Many cancer cells express high levels of both full-length TF and alternatively spliced (as) TF. TF expression in cancer is associated with poor prognosis. In this review, the authors summarize the regulation of TF expression in cancer cells and the roles of TF and asTF in tumor growth and metastasis. A variety of different signaling pathways, transcription factors and micro ribonucleic acids regulate TF gene expression in cancer cells. The TF/factor VIIa complex enhances tumor growth by activating protease-activated receptor 2 signaling and by increasing the expression of angiogenic factors, such as vascular endothelial growth factor. AsTF increases tumor growth by enhancing integrin β1 signaling. TF and asTF also contribute to metastasis via multiple thrombin-dependent and independent mechanisms that include protecting tumor cells from natural killer cells. Finally, a novel anticancer therapy is using tumor TF as a target to deliver cytotoxic drugs to the tumor. TF may be useful in diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Yohei Hisada
- Division of Hematology and Oncology, Department of Medicine, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
33
|
Manabe S, Yamaguchi Y, Matsumoto K, Fuchigami H, Kawase T, Hirose K, Mitani A, Sumiyoshi W, Kinoshita T, Abe J, Yasunaga M, Matsumura Y, Ito Y. Characterization of Antibody Products Obtained through Enzymatic and Nonenzymatic Glycosylation Reactions with a Glycan Oxazoline and Preparation of a Homogeneous Antibody-Drug Conjugate via Fc N-Glycan. Bioconjug Chem 2019; 30:1343-1355. [PMID: 30938513 DOI: 10.1021/acs.bioconjchem.9b00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycan engineering of antibodies has received considerable attention. Although various endo-β- N-acetylglucosaminidase mutants have been developed for glycan remodeling, a side reaction has been reported between glycan oxazoline and amino groups. In this study, we performed a detailed characterization for antibody products obtained through enzymatic and nonenzymatic reactions with the aim of maximizing the efficiency of the glycosylation reaction with fewer side products. The reactions were monitored by an ultraperformance liquid chromatography system using an amide-based wide-pore column. The products were characterized by liquid chromatography coupled with tandem mass spectrometry. The side reactions were suppressed by adding glycan oxazoline in a stepwise manner under slightly acidic conditions. Through a combination of an azide-carrying glycan transfer reaction under optimized conditions and a bio-orthogonal reaction, a potent cytotoxic agent monomethyl auristatin E was site-specifically conjugated at N-glycosylated Asn297 with a drug-to-antibody ratio of 4. The prepared antibody-drug conjugate exhibited cytotoxicity against HER2-expressing cells.
Collapse
Affiliation(s)
- Shino Manabe
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Yoshiki Yamaguchi
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan.,Structural Glycobiology Team , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Kana Matsumoto
- Structural Glycobiology Team , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Hirobumi Fuchigami
- Exploratory Oncology Research & Clinical Trial Center , National Cancer Center , Kashiwanoha, Kashiwa , Chiba 277-8577 Japan
| | - Taiji Kawase
- Nihon Waters KK, Kitashinagawa, Shinagawa, Tokyo , 140-0001 Japan
| | - Kenji Hirose
- Nihon Waters KK, Kitashinagawa, Shinagawa, Tokyo , 140-0001 Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Nakatsu, Marugame , Kagawa , 763-8605 Japan
| | - Wataru Sumiyoshi
- Fushimi Pharmaceutical Co. Ltd., Nakatsu, Marugame , Kagawa , 763-8605 Japan
| | - Takashi Kinoshita
- Fushimi Pharmaceutical Co. Ltd., Nakatsu, Marugame , Kagawa , 763-8605 Japan
| | - Junpei Abe
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| | - Masahiro Yasunaga
- Exploratory Oncology Research & Clinical Trial Center , National Cancer Center , Kashiwanoha, Kashiwa , Chiba 277-8577 Japan
| | - Yasuhiro Matsumura
- Exploratory Oncology Research & Clinical Trial Center , National Cancer Center , Kashiwanoha, Kashiwa , Chiba 277-8577 Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory , RIKEN , Hirosawa, Wako , Saitama , 351-0198 Japan
| |
Collapse
|
34
|
Bourillon L, Bourgier C, Gaborit N, Garambois V, Llès E, Zampieri A, Ogier C, Jarlier M, Radosevic-Robin N, Orsetti B, Delpech H, Theillet C, Colombo PE, Azria D, Pèlegrin A, Larbouret C, Chardès T. An auristatin-based antibody-drug conjugate targeting HER3 enhances the radiation response in pancreatic cancer. Int J Cancer 2019; 145:1838-1851. [PMID: 30882895 DOI: 10.1002/ijc.32273] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by poor response to chemotherapy and radiotherapy due to the lack of efficient therapeutic tools and early diagnostic markers. We previously generated the nonligand competing anti-HER3 antibody 9F7-F11 that binds to pancreatic tumor cells and induces tumor regression in vivo in experimental models. Here, we asked whether coupling 9F7-F11 with a radiosensitizer, such as monomethylauristatin E (MMAE), by using the antibody-drug conjugate (ADC) technology could improve radiation therapy efficacy in PDAC. We found that the MMAE-based HER3 antibody-drug conjugate (HER3-ADC) was efficiently internalized in tumor cells, increased the fraction of cells arrested in G2/M, which is the most radiosensitive phase of the cell cycle, and promoted programmed cell death of irradiated HER3-positive pancreatic cancer cells (BxPC3 and HPAC cell lines). HER3-ADC decreased the clonogenic survival of irradiated cells by increasing DNA double-strand break formation (based on γH2AX level), and by modulating DNA damage repair. Tumor radiosensitization with HER3-ADC favored the inhibition of the AKT-induced survival pathway, together with more efficient caspase 3/PARP-mediated apoptosis. Incubation with HER3-ADC before irradiation synergistically reduced the phosphorylation of STAT3, which is involved in chemoradiation resistance. In vivo, the combination of HER3-ADC with radiation therapy increased the overall survival of mice harboring BxPC3, HPAC cell xenografts or patient-derived xenografts, and reduced proliferation (KI67-positive cells). Combining auristatin radiosensitizer delivery via an HER3-ADC with radiotherapy is a new promising therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Laura Bourillon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Céline Bourgier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Nadège Gaborit
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Véronique Garambois
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Eva Llès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Alexandre Zampieri
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Charline Ogier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Nina Radosevic-Robin
- Department of Biopathology, Jean Perrin Comprehensive Cancer Center and INSERM/UCA UMR 1240, 63011, Clermont-Ferrand, France
| | - Béatrice Orsetti
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Pierre-Emmanuel Colombo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - David Azria
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
35
|
Jeppesen TE, Kristensen LK, Nielsen CH, Petersen LC, Kristensen JB, Behrens C, Madsen J, Kjaer A. Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde. Bioconjug Chem 2019; 30:775-784. [PMID: 30676028 DOI: 10.1021/acs.bioconjchem.8b00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A nonvolatile fluorine-18 aldehyde prosthetic group was developed from [18F]SFB, and used for site-specific labeling of active site inhibited factor VII (FVIIai). FVIIai has a high affinity for tissue factor (TF), a transmembrane protein involved in angiogenesis, proliferation, cell migration, and survival of cancer cells. A hydroxylamine N-glycan modified FVIIai (FVIIai-ONH2) was used for oxime coupling with the aldehyde [18F]2 under mild and optimized conditions in an isolated RCY of 4.7 ± 0.9%, and a synthesis time of 267 ± 5 min (from EOB). Retained binding and specificity of the resulting [18F]FVIIai to TF was shown in vitro. TF-expression imaging capability was evaluated by in vivo PET/CT imaging in a pancreatic human xenograft cancer mouse model. The conjugate showed exceptional stability in plasma (>95% at 4 h) and a binding fraction of 90%. In vivo PET/CT imaging showed a mean tumor uptake of 3.8 ± 0.2% ID/g at 4 h post-injection, a comparable uptake in liver and kidneys, and low uptake in normal tissues. In conclusion, FVIIai was labeled with fluorine-18 at the N-glycan chain without affecting TF binding. In vitro specificity and a good in vivo imaging contrast at 4 h postinjection was demonstrated.
Collapse
Affiliation(s)
- Troels E Jeppesen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark
| | - Lotte K Kristensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark.,Minerva Imaging ApS , Copenhagen , DK-2200 , Denmark
| | - Carsten H Nielsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark.,Minerva Imaging ApS , Copenhagen , DK-2200 , Denmark
| | | | | | | | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark
| |
Collapse
|
36
|
Aung W, Tsuji AB, Sugyo A, Takashima H, Yasunaga M, Matsumura Y, Higashi T. Near-infrared photoimmunotherapy of pancreatic cancer using an indocyanine green-labeled anti-tissue factor antibody. World J Gastroenterol 2018; 24:5491-5504. [PMID: 30622378 PMCID: PMC6319132 DOI: 10.3748/wjg.v24.i48.5491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate near-infrared photoimmunotherapeutic effect mediated by an anti-tissue factor (TF) antibody conjugated to indocyanine green (ICG) in a pancreatic cancer model. METHODS Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that utilizes an antibody-photosensitizer conjugate administration, followed by NIR light exposure. Anti-TF antibody 1849-ICG conjugate was synthesized by labeling of rat IgG2b anti-TF monoclonal antibody 1849 (anti-TF 1849) to a NIR photosensitizer, ICG. The expression levels of TF in two human pancreatic cancer cell lines were examined by western blotting. Specific binding of the 1849-ICG to TF-expressing BxPC-3 cells was examined by fluorescence microscopy. NIR-PIT-induced cell death was determined by cell viability imaging assay. In vivo longitudinal fluorescence imaging was used to explore the accumulation of 1849-ICG conjugate in xenograft tumors. To examine the effect of NIR-PIT, tumor-bearing mice were separated into 5 groups: (1) 100 μg of 1849-ICG i.v. administration followed by NIR light exposure (50 J/cm2) on two consecutive days (Days 1 and 2); (2) NIR light exposure (50 J/cm2) only on two consecutive days (Days 1 and 2); (3) 100 μg of 1849-ICG i.v. administration; (4) 100 μg of unlabeled anti-TF 1849 i.v. administration; and (5) the untreated control. Semiweekly tumor volume measurements, accompanied with histological and immunohistochemical (IHC) analyses of tumors, were performed 3 d after the 2nd irradiation with NIR light to monitor the effect of treatments. RESULTS High TF expression in BxPC-3 cells was observed via western blot analysis, concordant with the observed preferential binding with intracellular localization of 1849-ICG via fluorescence microscopy. NIR-PIT-induced cell death was observed by performing cell viability imaging assay. In contrast to the other test groups, tumor growth was significantly inhibited by NIR-PIT with a statistically significant difference in relative tumor volumes for 27 d after the treatment start date [2.83 ± 0.38 (NIR-PIT) vs 5.42 ± 1.61 (Untreated), vs 4.90 ± 0.87 (NIR), vs 4.28 ± 1.87 (1849-ICG), vs 4.35 ± 1.42 (anti-TF 1849), at Day 27, P < 0.05]. Tumors that received NIR-PIT showed evidence of necrotic cell death-associated features upon hematoxylin-eosin staining accompanied by a decrease in Ki-67-positive cells (a cell proliferation marker) by IHC examination. CONCLUSION The TF-targeted NIR-PIT with the 1849-ICG conjugate can potentially open a new platform for treatment of TF-expressing pancreatic cancer.
Collapse
Affiliation(s)
- Winn Aung
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| | - Hiroki Takashima
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Chiba 263-8555, Japan
| |
Collapse
|
37
|
Theunissen JW, Cai AG, Bhatti MM, Cooper AB, Avery AD, Dorfman R, Guelman S, Levashova Z, Migone TS. Treating Tissue Factor-Positive Cancers with Antibody-Drug Conjugates That Do Not Affect Blood Clotting. Mol Cancer Ther 2018; 17:2412-2426. [PMID: 30126944 DOI: 10.1158/1535-7163.mct-18-0471] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
The primary function of tissue factor (TF) resides in the vasculature as a cofactor of blood clotting; however, multiple solid tumors aberrantly express this transmembrane receptor on the cell surface. Here, we developed anti-TF antibody-drug conjugates (ADC) that did not interfere with the coagulation cascade and benchmarked them against previously developed anti-TF ADCs. After screening an affinity-matured antibody panel of diverse paratopes and affinities, we identified one primary paratope family that did not inhibit conversion of Factor X (FX) to activated Factor X (FXa) and did not affect conversion of prothrombin to thrombin. The rest of the antibody panel and previously developed anti-TF antibodies were found to perturb coagulation to varying degrees. To compare the anticancer activity of coagulation-inert and -inhibitory antibodies as ADCs, a selection of antibodies was conjugated to the prototypic cytotoxic agent monomethyl auristatin E (MMAE) through a protease-cleavable linker. The coagulation-inert and -inhibitory anti-TF ADCs both killed cancer cells effectively. Importantly, the coagulation-inert ADCs were as efficacious as tisotumab vedotin, a clinical stage ADC that affected blood clotting, including in patient-derived xenografts from three solid tumor indications with a need for new therapeutic treatments-squamous cell carcinoma of the head and neck (SCCHN), ovarian, and gastric adenocarcinoma. Furthermore, a subset of the anti-TF antibodies could also be considered for the treatment of other diseases associated with upregulation of membranous TF expression, such as macular degeneration. Mol Cancer Ther; 17(11); 2412-26. ©2018 AACR.
Collapse
Affiliation(s)
| | - Allen G Cai
- Iconic Therapeutics, South San Francisco, California
| | | | | | | | - Ryan Dorfman
- Haematologic Technologies, Essex Junction, Vermont
| | | | | | | |
Collapse
|
38
|
Tsumura R, Manabe S, Takashima H, Koga Y, Yasunaga M, Matsumura Y. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. J Control Release 2018; 284:49-56. [PMID: 29906553 DOI: 10.1016/j.jconrel.2018.06.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
Abstract
Antibody-drug conjugates (ADCs) are currently considered to be promising agents for cancer therapy. However, especially in solid tumors, the uneven distribution of ADCs would decrease their efficacy in clinical studies. We suggest that in addition to optimizing ADC components, such as the linker structure and anticancer agent, it is necessary to consider the distribution of the ADC within tumor tissue. In this study, we established three kinds of anti-tissue factor (TF) ADCs: 1849ADC with a low kd, 444ADC with an intermediate kd, and 1084ADC with a high kd. All three of the anti-TF ADCs exhibited almost the same in vitro cytotoxicity and pharmacological and biochemical characteristics, although the binding kinetics parameters differed. In vivo, all ADCs exerted equivalent antitumor effects against small BxPC3 tumors. However, on larger BxPC3 tumors, 1084ADC (higher kd) exerted higher antitumor activity than 1849ADC (lower kd). Furthermore, immunofluorescence staining indicated that 1084ADC was distributed throughout the whole tumor, whereas 1849ADC was mainly localized close to tumor vessels. We conclude that the ADC with a higher kd increased the antitumor effect of because it penetrated and distributed evenly throughout the entire solid tumor. These findings highlight the importance of the kd of a mAb in ADC design.
Collapse
Affiliation(s)
- Ryo Tsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan.
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Wako, Japan.
| | - Hiroki Takashima
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan.
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan.
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan.
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan.
| |
Collapse
|
39
|
Nielsen CF, van Putten SM, Lund IK, Melander MC, Nørregaard KS, Jürgensen HJ, Reckzeh K, Christensen KR, Ingvarsen SZ, Gårdsvoll H, Jensen KE, Hamerlik P, Engelholm LH, Behrendt N. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers. Oncotarget 2018; 8:44605-44624. [PMID: 28574834 PMCID: PMC5546505 DOI: 10.18632/oncotarget.17883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/24/2017] [Indexed: 11/29/2022] Open
Abstract
A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.
Collapse
Affiliation(s)
- Christoffer Fagernæs Nielsen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sander Maarten van Putten
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ida Katrine Lund
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Maria Carlsén Melander
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kirstine Sandal Nørregaard
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Henrik Jessen Jürgensen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kristine Rothaus Christensen
- Experimental Animal Models Section, Department of Veterinary Disease Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Signe Ziir Ingvarsen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Petra Hamerlik
- Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Lars Henning Engelholm
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
40
|
Matsumura Y. Development of CAST therapy based on the EPR effect: lesson from clinical trials. ACTA ACUST UNITED AC 2018. [DOI: 10.2745/dds.33.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center
| |
Collapse
|
41
|
Yasunaga M, Manabe S, Furuta M, Ogata K, Koga Y, Takashima H, Nishida T, Matsumura Y. Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.2.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Kratschmer C, Levy M. Targeted Delivery of Auristatin-Modified Toxins to Pancreatic Cancer Using Aptamers. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:227-236. [PMID: 29499935 PMCID: PMC5862029 DOI: 10.1016/j.omtn.2017.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/26/2017] [Accepted: 11/26/2017] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies. Treatment with the first-line agent, gemcitabine, is often unsuccessful because it, like other traditional chemotherapeutic agents, is non-specific, resulting in off-target effects that necessitate administration of subcurative doses. Alternatively, monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) are highly toxic small molecules that require ligand-targeted delivery. MMAE has already received FDA approval as a component of an anti-CD30 antibody-drug conjugate, brentuximab vedotin. However, in contrast to antibodies, aptamers have distinct advantages. They are chemicals, which allows them to be produced synthetically and facilitates the rapid development of diagnostics and therapeutics with clinical applicability. In addition, their small size allows for enhanced tissue distribution and rapid systemic clearance. Here, we assayed the toxicity of MMAE and MMAF conjugated to an anti-transferrin receptor aptamer, Waz, and an anti-epidermal growth factor receptor aptamer, E07, on the pancreatic cancer cell lines Panc-1, MIA PaCa-2, and BxPC3. In vitro, our results indicate that these aptamers are a viable option for the targeted delivery of toxic payloads to pancreatic cancer cells.
Collapse
Affiliation(s)
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
43
|
Takashima H, Tsuji AB, Saga T, Yasunaga M, Koga Y, Kuroda JI, Yano S, Kuratsu JI, Matsumura Y. Molecular imaging using an anti-human tissue factor monoclonal antibody in an orthotopic glioma xenograft model. Sci Rep 2017; 7:12341. [PMID: 28951589 PMCID: PMC5615035 DOI: 10.1038/s41598-017-12563-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/11/2017] [Indexed: 01/18/2023] Open
Abstract
Nuclear medicine examinations for imaging gliomas have been introduced into clinical practice to evaluate the grade of malignancy and determine sampling locations for biopsies. However, these modalities have some limitations. Tissue factor (TF) is overexpressed in various types of cancers, including gliomas. We thus generated an anti-human TF monoclonal antibody (mAb) clone 1849. In the present study, immunohistochemistry performed on glioma specimens using anti-TF 1849 mAb showed that TF expression in gliomas increased in proportion to the grade of malignancy based on the World Health Organization (WHO) classification, and TF was remarkably expressed in necrosis and pseudopalisading cells, the histopathological hallmarks of glioblastoma multiforme (GBM). Furthermore, in both fluorescence and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging studies, anti-TF 1849 IgG efficiently accumulated in TF-overexpressing intracranial tumours in mice. Although further investigation is required for a future clinical use of immuno-SPECT with 111In-labelled anti-TF 1849 IgG, the immuno-SPECT may represent a unique imaging modality that can visualize the biological characteristics of gliomas differently from those obtained using the existing imaging modalities and may be useful to evaluate the grade of malignancy and determine sampling locations for biopsies in patients with glioma, particularly GBM.
Collapse
Affiliation(s)
- Hiroki Takashima
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.,Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Tsuneo Saga
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Jun-Ichiro Kuroda
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Shigetoshi Yano
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Jun-Ichi Kuratsu
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW We will describe recently discovered smart aptamers with tumor specificity, with an emphasis on targeted delivery of novel therapeutic molecules, cancer-specific biomarkers, and immunotherapy. RECENT FINDINGS The development of cancer-specific aptamers has facilitated targeted delivery of potent therapeutic molecules to cancer cells without harming nontumoral cells. This specificity also makes it possible to discover novel cancer biomarkers. Furthermore, alternative immune-checkpoint blockade aptamers have been developed for combinational immunotherapy. SUMMARY Aptamers selected against cancer cells show cancer specificity, which has great potential for targeting. First, functionalizing targeted aptamers with therapeutic molecule payloads (e.g., small activating RNAs, antimitotic drugs, therapeutic antibodies, and peptides) facilitates successful delivery into cancer cells. This approach greatly improves the therapeutic index by minimizing side-effects in nontumoral cells. Second, cancer-specific proteins have been identified as cancer biomarkers through in-vitro and in-vivo selection, aptamer pull-down assays, and mass spectrometry. These newly discovered biomarkers improve therapeutic intervention and diagnostic specificity. In addition, the development of alternative immune-checkpoint blockade aptamers is suggested for use in combinational immunotherapeutic with current immune blockade regimens, to reduce the resistance and exhaustion of T cells in clinical trials. VIDEO ABSTRACT: http://links.lww.com/COON/A21.
Collapse
|
45
|
Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Saga T, Matsumura Y. Development of Antibody-Drug Conjugates Using DDS and Molecular Imaging. Bioengineering (Basel) 2017; 4:bioengineering4030078. [PMID: 28952557 PMCID: PMC5615324 DOI: 10.3390/bioengineering4030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/04/2022] Open
Abstract
Antibody-drug conjugate (ADC), as a next generation of antibody therapeutics, is a combination of an antibody and a drug connected via a specialized linker. ADC has four action steps: systemic circulation, the enhanced permeability and retention (EPR) effect, penetration within the tumor tissue, and action on cells, such as through drug delivery system (DDS) drugs. An antibody with a size of about 10 nm has the same capacity for passive targeting as some DDS carriers, depending on the EPR effect. In addition, some antibodies are capable of active targeting. A linker is stable in the bloodstream but should release drugs efficiently in the tumor cells or their microenvironment. Thus, the linker technology is actually a typical controlled release technology in DDS. Here, we focused on molecular imaging. Fluorescent and positron emission tomography (PET) imaging is useful for the visualization and evaluation of antibody delivery in terms of passive and active targeting in the systemic circulation and in tumors. To evaluate the controlled release of the ADC in the targeted area, a mass spectrometry imaging (MSI) with a mass microscope, to visualize the drug released from ADC, was used. As a result, we succeeded in confirming the significant anti-tumor activity of anti-fibrin, or anti-tissue factor-ADC, in preclinical settings by using DDS and molecular imaging.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Wako 351-0198, Japan.
| | - Atsushi Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, Chiba 263-8555, Japan; .
| | | | | | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Tsuneo Saga
- Department of Diagnostic Radiology, Kyoto University Hospital; Kyoto 606-8501, Japan.
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| |
Collapse
|
46
|
Immunoregulation by IL-7R-targeting antibody-drug conjugates: overcoming steroid-resistance in cancer and autoimmune disease. Sci Rep 2017; 7:10735. [PMID: 28878234 PMCID: PMC5587554 DOI: 10.1038/s41598-017-11255-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Steroid-resistance is a common complication in the treatment of malignancies and autoimmune diseases. IL-7/IL-7R signaling, which regulates lymphocyte growth and survival, has been implicated in the development of malignancies and autoimmune diseases. However, the biological significance of IL-7/IL-7R signaling in steroid treatment is poorly understood. Here, we identified a novel relationship between IL-7R signaling and steroid-resistance, and showed that an anti-IL-7R antibody conjugated with SN-38 (A7R-ADC-SN-38) has strong anti-tumor effects against both parental and steroid-resistant malignant cells. Furthermore, inflammation in the mouse autoimmune arthritis model was suppressed to greater extent by A7R-ADC conjugated to MMAE than by A7R-ADC-SN-38. Given that an increased proportion of IL-7R-positive cells is a common mechanism underlying the pathogenesis of autoimmunity, we found that specific depletion of this cell population abrogated the progression of disease. This suggests that the cytotoxicity and immunosuppressive capacity of A7R-ADC could be modulated to treat specific malignancies or autoimmune diseases through the introduction of different payloads, and represents a novel alternative to steroid therapy.
Collapse
|
47
|
Zhang X, Li Q, Zhao H, Ma L, Meng T, Qian J, Jin R, Shen J, Yu K. Pathological expression of tissue factor confers promising antitumor response to a novel therapeutic antibody SC1 in triple negative breast cancer and pancreatic adenocarcinoma. Oncotarget 2017; 8:59086-59102. [PMID: 28938620 PMCID: PMC5601716 DOI: 10.18632/oncotarget.19175] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
The pathological presence of tissue factor (TF) in cancer cells promotes tumor-initiated thrombosis and cancer metastasis. We found that TF is aberrantly present in large percentage of aggressive triple negative breast cancer (TNBC) and pancreatic adenocarcinoma (PaC), two most lethal forms of malignancy that urgently need effective treatment. TF expression in TNBC clustered with higher levels of vimentin, basal-type keratins KRT5/14 and caveolin-1 but lower levels of luminal-type biomarkers. We developed a novel and specific anti-TF therapeutic antibody SC1, which displayed an exceedingly high potency against TF extracellular domain (EC50: 0.019 nM), TF-positive TNBC- or PaC cells (EC50: 2.5 nM), intracellular protease activated receptor 2 (PAR2) signaling (IC50: 2-3 nM) and tumor-initiated coagulation (IC50: <10 nM). Depletion of TF or SC1-treatment in TNBC or PaC cells inhibited TF-induced cell migration, lung metastasis and tumor growth in vivo, accompanied by diminished levels of tumor angiogenesis and stromal fibrosis. We further propose TF as a promising target for antibody-drug conjugate (ADC) development based on its rapid and efficient internalization of SC1-drug conjugate. Both SC1-DM1 and SC1-MMAE elicited exquisite cytotoxicity in TF-positive TNBC and PaC cells (IC50: 0.02-0.1 nM) but not in TF-negative cells (>100 nM) achieving >5000 fold target selectivity. Following a weekly intravenous administration, SC1-MMAE and its humanized hSC1-MMAE inhibited TNBC- and PaC tumor growth achieving MED of 0.3-1 mg/kg and were both well tolerated. Thus, the prevalent TF expression in TNBC and PaC renders these challenging tumors highly susceptible to TF-targeted treatment and may offer new opportunity in cancer patients.
Collapse
Affiliation(s)
- Xuesai Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Qingrou Li
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Hui Zhao
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Lanping Ma
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Meng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianchang Qian
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Rui Jin
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
48
|
Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov Today 2017. [PMID: 28627385 DOI: 10.1016/j.drudis.2017.05.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antibody-drug conjugates (ADCs), a potent class of anticancer therapeutics, comprise a high-affinity antibody (Ab) and cytotoxic payload coupled via a suitable linker for selective tumor cell killing. In the initial phase of their development, two ADCs, Mylotarg®, and Adcetris® were approved by the US Food and Drug Administration (FDA) for treating hematological cancer, but the real breakthrough came with the discovery of the breast cancer-targeting ADC, Kadcyla®. With advances in bioengineering, linker chemistry, and potent cytotoxic payload, ADC technology has become a more powerful tool for targeted cancer therapy. In addition, ADCs with improved safety using humanized Abs with a unified 'drug:antibody ratio' (DAR) have been achieved. Concomitantly, there has been a significant increase in the number of clinical trials with anticancer ADCs with high translation potential.
Collapse
Affiliation(s)
- Samaresh Sau
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O Alsaab
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 26571, Saudi Arabia
| | - Sushil Kumar Kashaw
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
49
|
Abstract
Recent advances in antibody-drug conjugate (ADC) technology have shown considerable promise in targeted cancer therapy. The ADC strategy should be confined to highly toxic anticancer agents and not to ordinary anti-cancer agents (ACAs) because the affinity of monoclonal antibodies (mAbs) diminishes if more than three ACA molecules are conjugated. According to this principle, higher amounts of ADC should be administered so that each of the ACAs is conjugated to the mAbs. Therefore for an ordinary ACA, nanoparticles should be the preferred drug delivery system (DDS). A large body of clinical evidence indicates that abnormal coagulation occurs in a variety of cancer patients, especially in invasive cancers. Tissue factor (TF), expressed on the surface of various cancer cells and tumor vascular endothelial cells, is the trigger protein of extrinsic coagulation resulting in insoluble fibrin formation. We have developed mAbs against TF and human fibrin that reacted only with human fibrin and not with human fibrinogen. We now propose cancer stromal targeting (CAST) therapy and diagnosis, using a cytotoxic agent or radioisotope conjugated to a monoclonal Ab directed at a specific inert constituent of the tumor stroma, as a new modality especially for invasive cancer.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center National Cancer Center
| |
Collapse
|
50
|
Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Fujiwara Y, Saga T, Matsumura Y. Development of ADCs Using Molecular Imaging. YAKUGAKU ZASSHI 2017; 137:535-544. [PMID: 28458285 DOI: 10.1248/yakushi.16-00255-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, a linker, and a drug or payload. The selection of a tumor-specific antibody and development of a linker having an efficient controlled drug release (CDR) are critical steps in developing a fully functional and effective ADC. In our research strategy, molecular imaging technologies have been employed to evaluate the efficiency of antibody delivery and CDR of the linker. In preclinical setting, antibody delivery into the tumor area or antibody penetration through the tumor stroma in malignant lymphoma or pancreatic tumor was evaluated by in vivo fluorescence imaging technique. Positron emission tomography (PET) imaging studies were conducted using 89Zr-labeled antibody to evaluate tumor targeting in a spontaneous carcinogenesis model. The model had dense stroma and was pathophysiologically very similar to human cancer. The drug imaging system, using microscopic mass spectroscopy (MMS) with enhanced resolution and sensitivity, was used for the evaluation of CDR. Paclitaxel (PTX)-incorporated micelle, a high-molecular-weight (HMW) carrier with CDR, showing similar properties as those of ADC, was analyzed. In contrast to free PTX, micelle selectively increased drug accumulation into the tumor and reduced toxicity in normal tissues by the enhanced permeability and retention (EPR) effect. Our drug imaging system has been used recently to evaluate the CDR of the ADC-linker. We present our work on the development of ADC using a molecular imaging technique.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center
| | | | - Atsushi Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences
| | | | | | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center
| | - Yuki Fujiwara
- Division of Developmental Therapeutics, EPOC, National Cancer Center
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences
| | | |
Collapse
|