1
|
Zhang X, Zeng Z, Liu H, Xu L, Sun X, Xu J, Song G. Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma. NANOSCALE 2022; 14:3306-3323. [PMID: 35170601 DOI: 10.1039/d1nr08394e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. Given its inconspicuous and atypical early symptoms and hidden location, most patients have already reached the terminal stage before diagnosis. At present, the diagnosis of PDAC mainly depends on serological and imaging examinations. However, serum tests cannot identify specific tumor locations and each imaging technology has its own defects, bringing great challenges to the early diagnosis of PDAC. Therefore, it is of great significance to find new strategies for the early and accurate diagnosis of PDAC. In recent years, a magneto-optical nanoplatform integrating near infrared fluorescence, photoacoustic, magnetic resonance imaging, etc. has attracted widespread attention, giving full play to the complementary advantages of each imaging modality. Herein, we summarize the recent advances of imaging modalities in the diagnosis of pancreatic cancer, and then discuss in detail the construction and modification of magneto or/and optical probes for multimodal imaging, and advances in early diagnosis using the combination of various imaging modalities, which can provide potential tools for the early diagnosis or even intraoperative navigation and post-treatment follow-up of PDAC patients.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Zhiming Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xin Sun
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Xu
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
2
|
Liu L, Kshirsagar PG, Gautam SK, Gulati M, Wafa EI, Christiansen JC, White BM, Mallapragada SK, Wannemuehler MJ, Kumar S, Solheim JC, Batra SK, Salem AK, Narasimhan B, Jain M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics 2022; 12:1030-1060. [PMID: 35154473 PMCID: PMC8771545 DOI: 10.7150/thno.64805] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/03/2021] [Indexed: 01/28/2023] Open
Abstract
Pancreatic tumors are highly desmoplastic and immunosuppressive. Delivery and distribution of drugs within pancreatic tumors are compromised due to intrinsic physical and biochemical stresses that lead to increased interstitial fluid pressure, vascular compression, and hypoxia. Immunotherapy-based approaches, including therapeutic vaccines, immune checkpoint inhibition, CAR-T cell therapy, and adoptive T cell therapies, are challenged by an immunosuppressive tumor microenvironment. Together, extensive fibrosis and immunosuppression present major challenges to developing treatments for pancreatic cancer. In this context, nanoparticles have been extensively studied as delivery platforms and adjuvants for cancer and other disease therapies. Recent advances in nanotechnology have led to the development of multiple nanocarrier-based formulations that not only improve drug delivery but also enhance immunotherapy-based approaches for pancreatic cancer. This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches. This review also presents important perspectives on future research directions that will guide the rational design of novel and robust nanoscale platforms to treat pancreatic tumors, particularly with respect to targeted therapies and immunotherapies. These insights will inform the next generation of clinical treatments to help patients manage this debilitating disease and enhance survival rates.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - John C. Christiansen
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
| | - Brianna M. White
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Joyce C. Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| |
Collapse
|
3
|
Tarannum M, Hossain MA, Holmes B, Yan S, Mukherjee P, Vivero-Escoto JL. Advanced Nanoengineering Approach for Target-Specific, Spatiotemporal, and Ratiometric Delivery of Gemcitabine-Cisplatin Combination for Improved Therapeutic Outcome in Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104449. [PMID: 34758094 PMCID: PMC8758547 DOI: 10.1002/smll.202104449] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Indexed: 05/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable malignancy with a dismal survival rate. Recent combination therapies have had a major impact on the improvement of PDAC prognosis. Nevertheless, clinically used combination regimens such as FOLFIRINOX and gemcitabine (Gem)/nab-paclitaxel still face major challenges due to lack of the safe and ratiometric delivery of multiple drugs. Here, a rationally designed mesoporous silica nanoparticle (MSN)-based platform is reported for the target-specific, spatiotemporal, ratiometric, and safe co-delivery of Gem and cisplatin (cisPt). It is shown that systemic administration of the nanoparticles results in synergistic therapeutic outcome in a syngeneic and clinically relevant genetically engineered PDAC mouse model that has rarely been used for the therapeutic evaluation of nanomedicine. This synergism is associated with a strategic engineering approach, in which nanoparticles provide redox-responsive controlled delivery and in situ differential release of Gem/cisPt drugs with the goal of overcoming resistance to Pt-based drugs. The platform is also rendered with additional tumor-specificity via a novel tumor-associated mucin1 (tMUC1)-specific antibody, TAB004. Overall, the platform suppresses tumor growth and eliminates the off-target toxicities of a highly toxic chemotherapy combination.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Md Akram Hossain
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Bryce Holmes
- Analytical Research Laboratory, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Shan Yan
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
4
|
Hayat H, Hayat H, Dwan BF, Gudi M, Bishop JO, Wang P. A Concise Review: The Role of Stem Cells in Cancer Progression and Therapy. Onco Targets Ther 2021; 14:2761-2772. [PMID: 33907419 PMCID: PMC8068480 DOI: 10.2147/ott.s260391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
The properties of cancer stem cells (CSCs) have recently gained attention as an avenue of intervention for cancer therapy. In this review, we highlight some of the key roles of CSCs in altering the cellular microenvironment in favor of cancer progression. We also report on various studies in this field which focus on transformative properties of CSCs and their influence on surrounding cells or targets through the release of cellular cargo in the form of extracellular vesicles. The findings from these studies encourage the development of novel interventional therapies that can target and prevent cancer through efficient, more effective methods. These methods include targeting immunosuppressive proteins and biomarkers, promoting immunization against tumors, exosome-mediated CSC conversion, and a focus on the quiescent properties of CSCs and their role in cancer progression. The resulting therapeutic benefit and transformative potential of these novel approaches to stem cell-based cancer therapy provide a new direction in cancer treatment, which can focus on nanoscale, molecular properties of the cellular microenvironment and establish a more precision medicine-oriented paradigm of treatment.
Collapse
Affiliation(s)
- Hasaan Hayat
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA
| | - Hanaan Hayat
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Bennett Francis Dwan
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Mithil Gudi
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Jack Owen Bishop
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002545. [PMID: 33854877 PMCID: PMC8025024 DOI: 10.1002/advs.202002545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide due to its aggressiveness and the challenge to early diagnosis and treatment. In recent decades, nanomaterials have received increasing attention for diagnosis and therapy of PDAC. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the crucial nano-bio interactions in the heterogeneous microenvironment of PDAC remain poorly understood. As a result, the majority of potent nanomedicines show limited performance in ameliorating PDAC in clinical translation. Therefore, exploiting the unique nature of the PDAC by detecting potential biomarkers together with a deep understanding of nano-bio interactions that occur in the tumor microenvironment is pivotal to the design of PDAC-tailored effective nanomedicine. This review will introduce tailor-made nanomaterials-enabled laboratory tests and advanced noninvasive imaging technologies for early and accurate diagnosis of PDAC. Moreover, the fabrication of a myriad of tailor-made nanomaterials for various PDAC therapeutic modalities will be reviewed. Furthermore, much preferred theranostic multifunctional nanomaterials for imaging-guided therapies of PDAC will be elaborated. Lastly, the prospects of these nanomaterials in terms of clinical translation and potential breakthroughs will be briefly discussed.
Collapse
Affiliation(s)
- Xi Hu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Fan Xia
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiyoung Lee
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Fangyuan Li
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| | - Xiaoyang Lu
- Department of Clinical PharmacyZhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Researchthe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaozhen Zhuo
- Department of Cardiologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'an710061China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyNo.11 Zhongguancun BeiyitiaoBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700China
| | - Daishun Ling
- Institute of PharmaceuticsZhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Biomedical Engineering of the Ministry of EducationCollege of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
6
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
7
|
Zhao H, Hayat H, Ma X, Fan D, Wang P, Moore A. Molecular imaging and deep learning analysis of uMUC1 expression in response to chemotherapy in an orthotopic model of ovarian cancer. Sci Rep 2020; 10:14942. [PMID: 32913224 PMCID: PMC7484755 DOI: 10.1038/s41598-020-71890-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Artificial Intelligence (AI) algorithms including deep learning have recently demonstrated remarkable progress in image-recognition tasks. Here, we utilized AI for monitoring the expression of underglycosylated mucin 1 (uMUC1) tumor antigen, a biomarker for ovarian cancer progression and response to therapy, using contrast-enhanced in vivo imaging. This was done using a dual-modal (magnetic resonance and near infrared optical imaging) uMUC1-specific probe (termed MN-EPPT) consisted of iron-oxide magnetic nanoparticles (MN) conjugated to a uMUC1-specific peptide (EPPT) and labeled with a near-infrared fluorescent dye, Cy5.5. In vitro studies performed in uMUC1-expressing human ovarian cancer cell line SKOV3/Luc and control uMUC1low ES-2 cells showed preferential uptake on the probe by the high expressor (n = 3, p < .05). A decrease in MN-EPPT uptake by SKOV3/Luc cells in vitro due to uMUC1 downregulation after docetaxel therapy was paralleled by in vivo imaging studies that showed a reduction in probe accumulation in the docetaxel treated group (n = 5, p < .05). The imaging data were analyzed using deep learning-enabled segmentation and quantification of the tumor region of interest (ROI) from raw input MRI sequences by applying AI algorithms including a blend of Convolutional Neural Networks (CNN) and Fully Connected Neural Networks. We believe that the algorithms used in this study have the potential to improve studying and monitoring cancer progression, amongst other diseases.
Collapse
Affiliation(s)
- Hongwei Zhao
- Precision Health Program, Michigan State University, East Lansing, MI, 48823, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, Rm. 2022, East Lansing, MI, 48823, USA
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Gynecologic Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
| | - Hasaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI, 48823, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, Rm. 2022, East Lansing, MI, 48823, USA
- Lyman Briggs College, Michigan State University, East Lansing, MI, 48823, USA
| | - Xiaohong Ma
- Precision Health Program, Michigan State University, East Lansing, MI, 48823, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, Rm. 2022, East Lansing, MI, 48823, USA
- Department of Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Daguang Fan
- Precision Health Program, Michigan State University, East Lansing, MI, 48823, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, Rm. 2022, East Lansing, MI, 48823, USA
- Department of General Surgery, Shanxi People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, 48823, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, Rm. 2022, East Lansing, MI, 48823, USA.
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, 48823, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, Rm. 2022, East Lansing, MI, 48823, USA.
| |
Collapse
|
8
|
Zhao H, Richardson R, Talebloo N, Mukherjee P, Wang P, Moore A. uMUC1-Targeting Magnetic Resonance Imaging of Therapeutic Response in an Orthotropic Mouse Model of Colon Cancer. Mol Imaging Biol 2020; 21:852-860. [PMID: 30793239 DOI: 10.1007/s11307-019-01326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Noninvasive assessment of chemotherapeutic response in colon cancer would tremendously aid in therapeutic intervention of cancer patients and improve outcomes. The aim of the study was to evaluate the feasibility of a noninvasive assessment of chemotherapeutic response by magnetic resonance imaging utilizing underglycosylated mucin 1 (uMUC1) tumor antigen as a biomarker of therapeutic response in a colon cancer mouse model. PROCEDURES The study was performed by applying molecular imaging approach based on targeting uMUC1 with specific dual-modality imaging probe (MN-EPPT). The probe consisted of dextran-coated iron oxide nanoparticles conjugated to the near infrared fluorescent dye Cy5.5 and to a uMUC1-specific peptide (EPPT) and was used for magnetic resonance imaging (MRI) and fluorescence optical imaging. An orthotopic murine model of colon cancer expressing human uMUC1 peptide (MC38 MUC1) was created along with the control model devoid of the antigen (MC38 neo). Animals received chemotherapy with 5-fluorouracil (5-FU) followed by MN-EPPT-enhanced MR and optical imaging. RESULTS In vivo imaging of animals with uMUC1 expressing tumors after 5-FU therapy showed that the average deltaT2 was reduced by 7.27 ms (p = 0.045) compared with animals in control groups indicating lower accumulation of MN-EPPT caused by uMUC1 downregulation. In vivo optical imaging, biodistribution, and fluorescence microscopy confirmed the MRI findings. Interestingly, we found that the group of animals that did not respond to chemotherapy ("progressive disease" per RECIST) showed higher accumulation of MN-EPPT compared to the group of responders ("stable disease") consistent with proliferating tumor cells and increased antigen availability. CONCLUSIONS We believe that in application to over 50 % of human cancers expressing uMUC1, our results could provide insight into overall assessment of therapeutic response based on its expression as defined by non-invasive MN-EPPT-enhanced MRI.
Collapse
Affiliation(s)
- Hongwei Zhao
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.,Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Gynecologic Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, 030013, Shanxi, China
| | - Romani Richardson
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.,Hofstra University, Hempstead, NY, 11549, USA
| | - Nazanin Talebloo
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.,Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA
| | - Anna Moore
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, 775 Woodlot Dr., Rm. 3.111, East Lansing, MI, 48823, USA.
| |
Collapse
|
9
|
Deng Y, Xu A, Yu Y, Fu C, Liang G. Biomedical Applications of Fluorescent and Magnetic Resonance Imaging Dual‐Modality Probes. Chembiochem 2018; 20:499-510. [DOI: 10.1002/cbic.201800450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yun Deng
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Aifei Xu
- School of Tobacco Science and EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Yanhua Yu
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Cheng Fu
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter ChemistryDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
10
|
Grudzinski W, Piet M, Luchowski R, Reszczynska E, Welc R, Paduch R, Gruszecki WI. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:57-63. [PMID: 28689079 DOI: 10.1016/j.saa.2017.06.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/12/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.
Collapse
Affiliation(s)
- Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | - Mateusz Piet
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Emilia Reszczynska
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; Department of General Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| |
Collapse
|
11
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
12
|
Lo ST, Pantazopouos P, Medarova Z, Moore A. Presentation of underglycosylated mucin 1 in pancreatic adenocarcinoma (PDAC) at early stages. Am J Cancer Res 2016; 6:1986-1995. [PMID: 27725904 PMCID: PMC5043108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023] Open
Abstract
Underglycosylated mucin 1 antigen (uMUC1) is a proven biomarker of cancer progression relevant to many malignancies including pancreatic ductal adenocarcinoma (PDAC). However, while ample evidence exists of the expression of total MUC1, little is known about the abundance of the underglycolsylated form of the antigen and its significance in disease progression. Such knowledge is important because the underglycosylated form of MUC1 is intimately linked to metastatic potential. Here, we investigated the expression uMUC1 at various stages of PDAC including pancreatic intraepithelial neoplasia (PanIN). Immunohistochemical analysis was performed on human tissue microarrays (TMAs) containing PDAC and PanIN using monoclonal antibody specific to uMUC1. uMUC1 expression was analyzed by a traditional pathological scoring system and using automatic imaging analysis software. Our results demonstrated low uMUC1 abundance in PanIN lesions and a transient increase in antigen availability in stage I PDAC, followed by decreased expression in later stages of the disease. An additional finding was that there was intermediate expression of uMUC1 in adjacent normal tissues from PDAC irrespective of the stage. These studies suggest the intriguing possibility that a pro-metastatic uMUC1 expression signature may appear at early stages of PDAC, providing an additional clue about the aggressive nature of pancreatic cancer.
Collapse
Affiliation(s)
- Su-Tang Lo
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA 02129, USA
- Current address: Advanced Imaging Research Center, UT Southwestern Medical CenterDallas, TX 75390, USA
| | - Pamela Pantazopouos
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA 02129, USA
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA 02129, USA
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA 02129, USA
| |
Collapse
|