1
|
Bali JS, Sambyal V, Mehrotra S, Gupta P, Guleria K, Uppal MS, Sudan M. Association of ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 with esophageal cancer. Mol Biol Rep 2024; 51:231. [PMID: 38281293 DOI: 10.1007/s11033-023-09012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND In India, esophageal cancer (EC) is among the major cause of cancer-related deaths in both sexes. In recent past, autophagy has emerged as one of the crucial process associated with cancer. In the development of EC, the role of autophagy and the precise molecular mechanism involved has yet to be fully understood. Recently, a small number of studies have proposed how variations in autophagy genes affect the growth and development of EC. Micro-RNA's are also known to play a critical role in the development of EC. Here, we examined the relationship between the risk of EC and two single-nucleotide polymorphisms (SNPs) in the key autophagy genes, ATG10 rs1864183 and ATG16L1 rs2241880. We also analyzed the association of miR-107 and miR-126 with EC as these miRNA's are associated with autophagy. METHODS AND RESULTS A total of 230 EC patients and 230 healthy controls from North-west Indian population were enrolled. ATG10 rs1864183 and ATG16L1 rs2241880 polymorphism were analyzed using TaqMan genotyping assay. Expression levels of miR-107 and miR-126 were analyzed through quantitative PCR using SYBR green chemistry. We found significant association of CT + CC genotype (OR 0.64, p = 0.022) in recessive model for ATG10 rs1864183 polymorphism with decreased EC risk. For ATG16L1 rs2241880 polymorphism significant association for AG genotype (OR 1.48, p = 0.05) and G allele (OR 1.43, p = 0.025) was observed for increased EC risk. Expression levels of miR-126 were also found to be significantly up regulated (p = 0.008). CONCLUSION Our results suggest that ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 may be associated with esophageal carcinogenesis and warrant further investigation.
Collapse
Affiliation(s)
- Jagmohan Singh Bali
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vasudha Sambyal
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Sanjana Mehrotra
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Priyanka Gupta
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamlesh Guleria
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjit Singh Uppal
- Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| | - Meena Sudan
- Department of Radiotherapy, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab, India
| |
Collapse
|
2
|
Su H, Chen Y, Lin F, Li W, Gu X, Zeng W, Liu D, Li M, Zhong S, Chen Q, Chen Q. Establishment of a lysosome-related prognostic signature in breast cancer to predict immune infiltration and therapy response. Front Oncol 2023; 13:1325452. [PMID: 38162504 PMCID: PMC10757638 DOI: 10.3389/fonc.2023.1325452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Background Lysosomes are instrumental in intracellular degradation and recycling, with their functional alterations holding significance in tumor growth. Nevertheless, the precise role of lysosome-related genes (LRGs) in breast cancer (BC) remains elucidated. This study aimed to establish a prognostic model for BC based on LRGs. Methods Employing The Cancer Genome Atlas (TCGA) BC cohort as a training dataset, this study identified differentially expressed lysosome-related genes (DLRGs) through intersecting LRGs with differential expression genes (DEGs) between tumor and normal samples. A prognostic model of BC was subsequently developed using Cox regression analysis and validated within two Gene Expression Omnibus (GEO) external validation sets. Further analyses explored functional pathways, the immune microenvironment, immunotherapeutic responses, and sensitivity to chemotherapeutic drugs in different risk groups. Additionally, the mRNA and protein expression levels of genes within the risk model were examined by utilizing the Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases. Clinical tissue specimens obtained from patients were gathered to validate the expression of the model genes via Real-Time Polymerase Chain Reaction (RT-PCR). Results We developed a risk model of BC based on five specific genes (ATP6AP1, SLC7A5, EPDR1, SDC1, and PIGR). The model was validated for overall survival (OS) in two GEO validation sets (p=0.00034 for GSE20685 and p=0.0095 for GSE58812). In addition, the nomogram incorporating clinical factors showed better predictive performance. Compared to the low-risk group, the high-risk group had a higher level of certain immune cell infiltration, including regulatory T cells (Tregs) and type 2 T helper cells (Th2). The high-risk patients appeared to respond less well to general immunotherapy and chemotherapeutic drugs, according to the Tumor Immune Dysfunction and Exclusion (TIDE), Immunophenotype Score (IPS), and drug sensitivity scores. The RT-PCR results validated the expression trends of some prognostic-related genes in agreement with the previous differential expression analysis. Conclusion Our innovative lysosome-associated signature can predict the prognosis for BC patients, offering insights for guiding subsequent immunotherapeutic and chemotherapeutic interventions. Furthermore, it has the potential to provide a scientific foundation for identifying prospective therapeutic targets.
Collapse
Affiliation(s)
- Hairong Su
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengye Lin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangyu Gu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Zeng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dan Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Man Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowen Zhong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qubo Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Liu Y, Li S, Wang S, Yang Q, Wu Z, Zhang M, Chen L, Sun Z. LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma. Int J Oral Sci 2023; 15:24. [PMID: 37291150 DOI: 10.1038/s41368-023-00229-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Cancer stem cell-like cells (CSCs) play an integral role in the heterogeneity, metastasis, and treatment resistance of head and neck squamous cell carcinoma (HNSCC) due to their high tumor initiation capacity and plasticity. Here, we identified a candidate gene named LIMP-2 as a novel therapeutic target regulating HNSCC progression and CSC properties. The high expression of LIMP-2 in HNSCC patients suggested a poor prognosis and potential immunotherapy resistance. Functionally, LIMP-2 can facilitate autolysosome formation to promote autophagic flux. LIMP-2 knockdown inhibits autophagic flux and reduces the tumorigenic ability of HNSCC. Further mechanistic studies suggest that enhanced autophagy helps HNSCC maintain stemness and promotes degradation of GSK3β, which in turn facilitates nuclear translocation of β-catenin and transcription of downstream target genes. In conclusion, this study reveals LIMP-2 as a novel prospective therapeutic target for HNSCC and provides evidence for a link between autophagy, CSC, and immunotherapy resistance.
Collapse
Affiliation(s)
- Yuantong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shujin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qichao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhizhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengjie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Tang T, Jian B, Liu Z. Transmembrane Protein 175, a Lysosomal Ion Channel Related to Parkinson's Disease. Biomolecules 2023; 13:biom13050802. [PMID: 37238672 DOI: 10.3390/biom13050802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Lysosomes are membrane-bound organelles with an acidic lumen and are traditionally characterized as a recycling center in cells. Lysosomal ion channels are integral membrane proteins that form pores in lysosomal membranes and allow the influx and efflux of essential ions. Transmembrane protein 175 (TMEM175) is a unique lysosomal potassium channel that shares little sequence similarity with other potassium channels. It is found in bacteria, archaea, and animals. The prokaryotic TMEM175 consists of one six-transmembrane domain that adopts a tetrameric architecture, while the mammalian TMEM175 is comprised of two six-transmembrane domains that function as a dimer in lysosomal membranes. Previous studies have demonstrated that the lysosomal K+ conductance mediated by TMEM175 is critical for setting membrane potential, maintaining pH stability, and regulating lysosome-autophagosome fusion. AKT and B-cell lymphoma 2 regulate TMEM175's channel activity through direct binding. Two recent studies reported that the human TMEM175 is also a proton-selective channel under normal lysosomal pH (4.5-5.5) as the K+ permeation dramatically decreased at low pH while the H+ current through TMEM175 greatly increased. Genome-wide association studies and functional studies in mouse models have established that TMEM175 is implicated in the pathogenesis of Parkinson's disease, which sparks more research interests in this lysosomal channel.
Collapse
Affiliation(s)
- Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Wang Q, Liu Y, Li Z, Tang Y, Long W, Xin H, Huang X, Zhou S, Wang L, Liang B, Li Z, Xu M. Establishment of a novel lysosomal signature for the diagnosis of gastric cancer with in-vitro and in-situ validation. Front Immunol 2023; 14:1182277. [PMID: 37215115 PMCID: PMC10196375 DOI: 10.3389/fimmu.2023.1182277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Background Gastric cancer (GC) represents a malignancy with a multi-factorial combination of genetic, environmental, and microbial factors. Targeting lysosomes presents significant potential in the treatment of numerous diseases, while lysosome-related genetic markers for early GC detection have not yet been established, despite implementing this process by assembling artificial intelligence algorithms would greatly break through its value in translational medicine, particularly for immunotherapy. Methods To this end, this study, by utilizing the transcriptomic as well as single cell data and integrating 20 mainstream machine-learning (ML) algorithms. We optimized an AI-based predictor for GC diagnosis. Then, the reliability of the model was initially confirmed by the results of enrichment analyses currently in use. And the immunological implications of the genes comprising the predictor was explored and response of GC patients were evaluated to immunotherapy and chemotherapy. Further, we performed systematic laboratory work to evaluate the build-up of the central genes, both at the expression stage and at the functional aspect, by which we could also demonstrate the reliability of the model to guide cancer immunotherapy. Results Eight lysosomal-related genes were selected for predictive model construction based on the inclusion of RMSE as a reference standard and RF algorithm for ranking, namely ADRB2, KCNE2, MYO7A, IFI30, LAMP3, TPP1, HPS4, and NEU4. Taking into account accuracy, precision, recall, and F1 measurements, a preliminary determination of our study was carried out by means of applying the extra tree and random forest algorithms, incorporating the ROC-AUC value as a consideration, the Extra Tree model seems to be the optimal option with the AUC value of 0.92. The superiority of diagnostic signature is also reflected in the analysis of immune features. Conclusion In summary, this study is the first to integrate around 20 mainstream ML algorithms to construct an AI-based diagnostic predictor for gastric cancer based on lysosomal-related genes. This model will facilitate the accurate prediction of early gastric cancer incidence and the subsequent risk assessment or precise individualized immunotherapy, thus improving the survival prognosis of GC patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Zhangzuo Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Weiguo Long
- Department of Pathology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Huaiyu Xin
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Longbin Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bochuan Liang
- Faculty of Chinese Medicine, Nanchang Medical College, Nanchang, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai JiaoTong University, Shanghai, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Mommersteeg M, Simovic I, Yu B, van Nieuwenburg S, Bruno IM, Doukas M, Kuipers E, Spaander M, Peppelenbosch M, Castaño-Rodríguez N, Fuhler G. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022; 14:2015238. [PMID: 34965181 PMCID: PMC8726742 DOI: 10.1080/19490976.2021.2015238] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a cellular degradation mechanism, which is triggered by the bacterium Helicobacter pylori. A single nucleotide polymorphism (SNP) in the autophagy gene ATG16L1 (rs2241880, G-allele) has been shown to dysregulate autophagy and increase intestinal endoplasmic reticulum (ER) stress. Here, we investigate the role of this SNP in H.pylori-mediated gastric carcinogenesis and its molecular pathways. ATG16L1 rs2241880 was genotyped in subjects from different ethnic cohorts (Dutch and Australian) presenting with gastric (pre)malignant lesions of various severity. Expression of GRP78 (a marker for ER stress) was assessed in gastric tissues. The effect of ATG16L1 rs2241880 on H.pylori-mediated ER stress and pro-inflammatory cytokine induction was investigated in organoids and CRISPR/Cas9 modified cell lines. Development of gastric cancer was associated with the ATG16L1 rs2241880 G-allele. Intestinal metaplastic cells in gastric tissue of patients showed increased levels of ER-stress. In vitro models showed that H.pylori increases autophagy while reducing ER stress, which appeared partly mediated by the ATG16L1 rs2241880 genotype. H.pylori-induced IL-8 production was increased while TNF-α production was decreased, in cells homozygous for the G-allele. The ATG16L1 rs2241880 G-allele is associated with progression of gastric premalignant lesions and cancer. Modulation of H.pylori-induced ER stress pathways and pro-inflammatory mediators by ATG16L1 rs2441880 may underlie this increased risk.
Collapse
Affiliation(s)
- M.C. Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I. Simovic
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia
| | - B. Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S.A.V. van Nieuwenburg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I, M.J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - E.J. Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia,CONTACT N. Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - G.M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands,G.M. Fuhler PhD Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Unsw, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Zhu Q, Meng Y, Li S, Xin J, Du M, Wang M, Cheng G. Association of genetic variants in autophagy-lysosome pathway genes with susceptibility and survival to prostate cancer. Gene 2022; 808:145953. [PMID: 34500048 DOI: 10.1016/j.gene.2021.145953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous studies have indicated the connections between autophagy-lysosome pathway genes dysfunction and prostate cancer, but few studies have investigated whether single nucleotide polymorphisms (SNPs) in autophagy-lysosome pathway genes are implicated in prostate cancer risk and survival. MATERIALS AND METHODS Logistic regression analysis and stepwise Cox regression analysis were conducted in 4,662 cases and 3,114 controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. The false positive rate probability (FPRP) method was applied to correct for multiple comparisons. Gene-based analysis was calculated by versatile gene-based association study approach. RESULTS We found that SLC11A1 rs7573065 significantly increased the risk of prostate cancer [adjusted odds ratio (OR) = 1.24, 95% confidence interval (CI) = 1.06-1.46, P = 7.02 × 10-3, FPRP = 0.082]. Furthermore, rs7573065 was confirmed as the independent predicator of overall survival (OS) for prostate cancer patients [Hazard ratio (HR) = 1.30, 95% CI = 1.01-1.66, P = 0.041]. The significant association between SLC11A1 and prostate cancer risk was calculated by gene-based analysis (P = 0.030). We also observed that the mRNA of SLC11A1 in prostate tumor tissues was significantly over-expressed than that in normal tissues. CONCLUSION This study suggested that rs7573065 in SLC11A1 was associated with an increased risk and poor OS of prostate cancer. Our findings may provide evidence for genetic variants in autophagy-lysosome pathway as the risk and prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Qiuyuan Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yixuan Meng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Lu JW, Tseng YS, Lo YS, Lin YM, Yeh CM, Lin SH. Prognostic Significance of Cytoplasmic SPNS2 Expression in Patients with Oral Squamous Cell Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:164. [PMID: 33673355 PMCID: PMC7917906 DOI: 10.3390/medicina57020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023]
Abstract
Background and Objectives: Oral squamous cell carcinoma (OSCC) is a malignant disease with a particularly high incidence in Taiwan. Our objective in this study was to elucidate the involvement of sphingolipid transporter 2 (SPNS2) expression and SPNS2 protein expression in the clinicopathological indexes and the clinical outcomes of OSCC patients. Materials and Methods: Immunohistochemistry analysis was performed for SPNS2 protein expression in samples from 264 cases of OSCC. Correlations of SPNS2 expression with clinicopathological variables and patient survival were analyzed. Results: Our results revealed that the cytoplasmic protein expression of SPNS2 in OSCC tissue specimens was lower than in normal tissue specimens. Negative cytoplasmic protein expression of SPNS2 was significantly correlated with T status and stage. Kaplan-Meier survival curve analysis revealed that negative cytoplasmic SPNS2 expression was predictive of poorer overall survival of OSCC patients in stage III/IV. We also determined that low SPNS2 expression was an independent prognostic factor related to overall survival among OSCC patients in stage III/IV from univariate Cox proportional hazard models. Multivariate Cox proportional hazard models revealed that cytoplasmic SPNS2 expression, T status, lymph node metastasis, and histological grade were independent prognostic factors for survival. Conclusions: Overall, this study determined that SPNS2 protein may be a useful prognostic marker for OSCC patients and potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Yen-Shuo Tseng
- Department of Dermatology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Yu-Sheng Lo
- Department of Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| |
Collapse
|
9
|
Ni J, Deng B, Zhu M, Wang Y, Yan C, Wang T, Liu Y, Li G, Ding Y, Jin G. Integration of GWAS and eQTL Analysis to Identify Risk Loci and Susceptibility Genes for Gastric Cancer. Front Genet 2020; 11:679. [PMID: 32754194 PMCID: PMC7366424 DOI: 10.3389/fgene.2020.00679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified several susceptibility loci for gastric cancer (GC), but the majority of identified single-nucleotide polymorphisms (SNPs) fall within the non-coding region and are likely to exert their biological function by modulating gene expression. To systematically estimate expression-associated SNPs (eSNPs) that confer genetic predisposition to GC, we evaluated the associations of 314,203 stomach tissue-specific eSNPs with GC risk in three GWAS datasets (2,631 cases and 4,373 controls). Subsequently, we conducted a gene-based analysis to calculate the cumulative effect of eSNPs through sequence kernel association combined test and Sherlock integrative analysis. At the SNP-level, we identified two novel variants (rs836545 at 7p22.1 and rs1892252 at 6p22.2) associated with GC risk. The risk allele carriers of rs836545-T and rs1892252-G exhibited higher expression levels of DAGLB (P = 3.70 × 10–18) and BTN3A2 (P = 3.20 × 10–5), respectively. Gene-based analyses identified DAGLB and FBXO43 as novel susceptibility genes for GC. DAGLB and FBXO43 were significantly overexpressed in GC tissues than in their adjacent tissues (P = 5.59 × 10–7 and P = 3.90 × 10–6, respectively), and high expression level of these two genes was associated with an unfavorable prognosis of GC patients (P = 1.30 × 10–7 and P = 7.60 × 10–3, respectively). Co-expression genes with these two novel genes in normal stomach tissues were significantly enriched in several cancer-related pathways, including P53, MAPK and TGF-beta pathways. In summary, our findings confirm the importance of eSNPs in dissecting the genetic basis of GC, and the identified eSNPs and relevant genes will provide new insight into the genetic and biological basis for the mechanism of GC development.
Collapse
Affiliation(s)
- Jing Ni
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yaqian Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Gang Li
- Department of General Surgery, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Huang W, Qian T, Cheng Z, Zeng T, Si C, Liu C, Deng C, Ye X, Liu Y, Cui L, Fu L. Prognostic significance of Spinster homolog gene family in acute myeloid leukemia. J Cancer 2020; 11:4581-4588. [PMID: 32489475 PMCID: PMC7255376 DOI: 10.7150/jca.44766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal and heterogeneous disease characterized by proliferation of immature myeloid cells, with impaired differentiation and maturation. Spinster homolog (SPNS) is a widely distributed transmembrane transporter, which assists sphingolipids in playing their roles through the cell membrane. However, the expression and clinical implication of the SPNS family has not been investigated in AML. From the Cancer Genome Atlas database, a total of 155 AML patients with complete clinical characteristics and SPNS1-3 expression data were contained in our study. In patients who received chemotherapy only, high expressions of SPNS2 and SPNS3 had adverse effects on event-free survival (EFS) and overall survival (OS) (all P<0.05). However, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) group, we only found a significant difference in OS between the high and low SPNS3 expression groups (P=0.001), while other SPNS members showed no effect on survival. Multivariate analysis indicated that high SPNS2 expression was an independent risk factor for both EFS and OS in chemotherapy patients. The results confirmed that high expression of SPNS2 and SPNS3 were poor prognostic factors, and the effect of SPNS2 can be neutralized by allo-HSCT.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chaozeng Si
- Information Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chaojun Liu
- Yinfeng Gene Technology Co., Ltd.; No.1109, Gangxing 3 Rd,New and High-tech Zone, Jinan City, Shandong Province, 250102, China
| | - Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| |
Collapse
|
11
|
Functional variants of autophagy-related genes are associated with the development of hepatocellular carcinoma. Life Sci 2019; 235:116675. [PMID: 31340167 DOI: 10.1016/j.lfs.2019.116675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and accounts for substantial morbidity and mortality. Autophagy plays an essential role in the development and progression of HCC. This study aims to evaluate whether genetic variants in autophagy-related genes (ATGs) affect the development of HCC. MATERIALS AND METHODS We conducted a case-control study with 986 HCC cases and 1000 healthy controls to analyze 14 functional variants of five ATGs (ATG3, ATG5, ATG10, ATG12 and ATG16L1) among a Chinese population. KEY FINDINGS We found ATG5 rs17067724 (G vs A: OR = 0.80; 95% CI = 0.65-0.98; P = 0.031), ATG10 rs1864183 (G vs A: OR = 1.29; 95% CI = 1.07-1.57; P = 0.009), ATG10 rs10514231 (C vs T: OR = 1.41; 95% CI = 1.15-1.73; P = 0.001), ATG12 rs26537 (C vs T: OR = 1.16; 95% CI = 1.02-1.33; P = 0.030), and ATG16L1 rs4663402 (T vs A: OR = 1.28; 95% CI = 1.01-1.63; P = 0.044) were significantly associated with HCC risk. Specifically, ATG10 rs10514231 kept significant association even adjusted for Bonferroni correction (P = 0.001 × 14 = 0.014). Bioinformatics analyses showed that allele C of ATG10 rs10514231 was significantly correlated with higher expression of ATG10 gene in both HCC tissues and normal liver tissues. Dual-luciferase reporter assay presented that cell lines transfected with vectors containing the risk allele C of rs10514231 showed higher relative luciferase activity compared to that containing the allele T. SIGNIFICANCE These results suggested that ATG10 rs10514231 might contribute to an allele-specific effect on the expression of host gene ATG10 and explain a fraction of HCC genetic susceptibility. Our study would benefit the construction of early warning model, early prevention, screening, even therapeutic target of HCC.
Collapse
|