1
|
Liu X, Lin L, Cai Q, Li C, Xu H, Zeng R, Zhang M, Qiu X, Chen S, Zhang X, Huang L, Liang W, He J. Do testosterone and sex hormone-binding globulin affect cancer risk? A Mendelian randomization and bioinformatics study. Aging Male 2023; 26:2261524. [PMID: 37936343 DOI: 10.1080/13685538.2023.2261524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023] Open
Abstract
Using Mendelian Randomization (MR) and large-scale Genome-Wide Association Study (GWAS) data, this study aimed to investigate the potential causative relationship between testosterone and sex hormone-binding globulin (SHBG) levels and the onset of several cancers, including pathway enrichment analyses of single nucleotide polymorphisms (SNPs) associated with cancer allowed for a comprehensive bioinformatics approach, which offered a deeper biological understanding of these relationships. The results indicated that increased testosterone levels in women were associated with a higher risk of breast and cervical cancers but a lower risk of ovarian cancer. Conversely, increased testosterone was linked to lower stomach cancer risk for men, whereas high SHBG levels were related to decreased risks of breast and prostate cancers. The corresponding genes of the identified SNPs, as revealed by pathway enrichment analysis, were involved in significant metabolic and proliferative pathways. These findings emphasize the need for further research into the biological mechanisms behind these associations, paving the way for potential targeted interventions in preventing and treating these cancers.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Haoxiang Xu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Zeng
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Mingtong Zhang
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Xinyi Qiu
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Chen
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Xizhe Zhang
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Linchong Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- The First People's Hospital of Zhaoqing, Zhaoqing, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Hou J, Pan T, Li F, Sang Q, Wu X, Li J, Yu B, Zang M, Zhu ZG, Su L, Liu B. Androgen receptor promotes cell stemness via interacting with co-factor YAP1 in gastric cancer. Biochem Pharmacol 2023; 217:115849. [PMID: 37806457 DOI: 10.1016/j.bcp.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Cancer stem cells (CSCs) have been proposed to explain tumor relapse and chemoresistance in various types of cancers, and androgen receptor (AR) has been emerged as a potential regulator of stemness in cancers. However, the underlying mechanism of AR-regulated CSCs properties and chemoresistance in gastric cancer (GC) remains unknown. Here, we shown that AR is upregulated in GC tissues and correlates with poor survival rate and CSCs phenotypes of GC patients. According to our experimental data, overexpression of AR upregulated the expression of CSCs markers and this was consistent with the result concluded from data analysis that the expression of AR was positively correlated with CD44 in GC patients. In addition, AR overexpression obviously enhanced the tumor sphere formation ability and chemoresistance of GC cells in vitro. Whereas these effects were attenuated by inhibition of AR. These results were further validated in vivo that MGC-803 cells overexpressing AR had stronger properties to initiate gastric tumorigenesis than the control cells, and inhibition of AR increased the chemosensitivity of GC cells. Mechanically, AR upregulated CD44 expression by directly binding to its promoter region and Yes-associated protein 1 (YAP1) served as the co-factor of AR, which was demonstrated by the fact that the promoting effects of AR on GC cells stemness were partially counteracted by YAP1 knockdown. Thus, this study revealed that AR facilitates CSCs properties and chemoresistance of GC cells via forming complex with YAP1and indicates a potential therapeutic approach to GC patients.
Collapse
Affiliation(s)
- Junyi Hou
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fangyuan Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qingqing Sang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongyan Wu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zheng-Gang Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| |
Collapse
|
3
|
Chang J, Wu Y, Zhou S, Tian Y, Wang Y, Tian J, Song W, Dong Y, Li J, Zhao Z, Che G. Genetically predicted testosterone and cancers risk in men: a two-sample Mendelian randomization study. J Transl Med 2022; 20:573. [PMID: 36482455 PMCID: PMC9730605 DOI: 10.1186/s12967-022-03783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE In observational studies, testosterone has been reported to be associated with some types of cancers. However, the direction and magnitude of the causal association between testosterone and different types of cancer remain unclear. This Mendelian randomization study assessed the causal associations of total testosterone (TT) and bioavailable testosterone (BT) with cancer risk in men. METHODS We performed two-sample Mendelian randomization using publicly available GWAS summary statistics to investigate the genetically causal association between testosterone and the risk of 22 kinds of cancers in men. Causal estimates were calculated by the inverse variance weighted method. We also performed additional sensitivity tests to evaluate the validity of the casualty. RESULTS Genetically predicted BT level were significantly associated with an increased risk of prostate cancer [odds ratio (OR) = 1.17 95% confidence interval (CI): 1.09-1.26, P = 2.51E-05] in the MR analysis with the IVW method. TT was found to be the suggestive protective factor against stomach cancer (OR = 0.66, 95% CI: 0.48-0.93, P = 0.0116) as well as pancreatic cancer (OR = 0.59, 95% CI: 0.36-0.96, P = 0.0346). A suggestive association was found between TT and the occurrence of small intestine cancer (OR = 1.0004, 95% CI: 1.0001-1.0007, P = 0.0116). However, testosterone had no significant association with other cancers. CONCLUSION This study investigated the role of testosterone in the development of prostate cancer, stomach cancer, pancreatic cancer, and small intestine cancer but found no strong association with the other cancers in men.
Collapse
Affiliation(s)
- Junke Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongming Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Sicheng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Tian
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenpeng Song
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yinxian Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jue Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyi Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Comparison between Heat-Clearing Medicine and Antirheumatic Medicine in Treatment of Gastric Cancer Based on Network Pharmacology, Molecular Docking, and Tumor Immune Infiltration Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7490279. [PMID: 35069767 PMCID: PMC8767399 DOI: 10.1155/2022/7490279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
Background Clinical research found that TCM is therapeutic in treating gastric cancer. Clearing heat is the most common method, while some antirheumatic medicines are widely used in treatment as well. To explore the pharmacological mechanism, we researched the comparison between heat-clearing medicine and antirheumatic medicine in treating gastric cancer. Methods First, related ingredients and targets were searched, respectively, and are shown in an active ingredient-target network. Combining the relevant targets of gastric cancer, we constructed a PPI network and MCODE network. Then, GO and KEGG enrichment analyses were conducted. Molecular docking experiments were performed to verify the affinity of targets and ligands. Finally, we analyzed the tumor immune infiltration on gene expression, somatic CNA, and clinical outcome. Results A total of 31 ingredients and 90 targets of heat-clearing medicine, 31 ingredients and 186 targets of antirheumatic medicine, and 12,155 targets of gastric cancer were collected. Antirheumatic medicine ranked the top in all the enrichment analyses. In the KEGG pathway, both types of medicines were related to pathways in cancer. In the KEGG map, AR, MMP2, ERBB2, and TP53 were the most crucial targets. Key targets and ligands were docked with low binding energy. Analysis of tumor immune infiltration showed that the expressions of AR and ERBB2 were correlated with the abundance of immune infiltration and made a difference in clinical outcomes. Conclusions Quercetin is an important ingredient in both heat-clearing medicine and antirheumatic medicine. AR signaling pathway exists in both types of medicines. The mechanism of the antitumor effect in antirheumatic medicine was similar to trastuzumab, a targeted drug aimed at ERBB2. Both types of medicines were significant in tumor immune infiltration. The immunology of gastric tumor deserves further research.
Collapse
|
5
|
Liu B, Zhou M, Li X, Zhang X, Wang Q, Liu L, Yang M, Yang D, Guo Y, Zhang Q, Zheng H, Wang Q, Li L, Chu X, Wang W, Li H, Song F, Pan Y, Zhang W, Chen K. Interrogation of gender disparity uncovers androgen receptor as the transcriptional activator for oncogenic miR-125b in gastric cancer. Cell Death Dis 2021; 12:441. [PMID: 33947843 PMCID: PMC8096848 DOI: 10.1038/s41419-021-03727-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
There is a male preponderance in gastric cancer (GC), which suggests a role of androgen and androgen receptor (AR). However, the mechanism of AR signaling in GC especially in female patients remains obscure. We sought to identify the AR signaling pathway that might be related to prognosis and examine the potential clinical utility of the AR antagonist for treatment. Deep learning and gene set enrichment analysis was used to identify potential critical factors associated with gender bias in GC (n = 1390). Gene expression profile analysis was performed to screen differentially expressed genes associated with AR expression in the Tianjin discovery set (n = 90) and TCGA validation set (n = 341). Predictors of survival were identified via lasso regression analyses and validated in the expanded Tianjin cohort (n = 373). In vitro and in vivo experiments were established to determine the drug effect. The GC gender bias was attributable to sex chromosome abnormalities and AR signaling dysregulation. The candidates for AR-related gene sets were screened, and AR combined with miR-125b was associated with poor prognosis, particularly among female patients. AR was confirmed to directly regulate miR-125b expression. AR-miR-125b signaling pathway inhibited apoptosis and promoted proliferation. AR antagonist, bicalutamide, exerted anti-tumor activities and induced apoptosis both in vitro and in vivo, using GC cell lines and female patient-derived xenograft (PDX) model. We have shed light on gender differences by revealing a hormone-regulated oncogenic signaling pathway in GC. Our preclinical studies suggest that AR is a potential therapeutic target for this deadly cancer type, especially in female patients.
Collapse
Affiliation(s)
- Ben Liu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Xiangchun Li
- Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Xining Zhang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,Cancer Institute, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Meng Yang
- Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, Department of Computational and Systems Biology University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yan Guo
- Department of Cancer Biobank, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qiang Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qiong Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Haixin Li
- Department of Cancer Biobank, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yuan Pan
- Department of Senior Ward, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Wei Zhang
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston- Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Leal YA, Song M, Zabaleta J, Medina-Escobedo G, Caron P, Lopez-Colombo A, Guillemette C, Camargo MC. Circulating Levels of Sex Steroid Hormones and Gastric Cancer. Arch Med Res 2021; 52:660-664. [PMID: 33781580 DOI: 10.1016/j.arcmed.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Men develop gastric cancer more frequently than women, yet little is known about the mechanisms underlying this sex difference. Sex steroid hormones may influence gastric cancer risk. We therefore assessed whether major circulating adrenal precursors, androgens and estrogens were associated with gastric cancer in a high-risk Mexican population. METHODS Blood samples were collected at time of diagnosis from 50 noncardia gastric cancer patients and 50 histologically confirmed non-atrophic gastritis controls. Serum levels of estradiol, testosterone and dehydroepiandrosterone (DHEA) measured with a validated mass spectrometry method were categorized in tertiles as low (T1), middle (T2), and high (T3). Unconditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CI), adjusting for age, sex, and education. RESULTS Levels of DHEA were inversely associated with gastric cancer (p-trend per tertile increase: <0.0001), with adjusted ORs (95% CI) of T2 and T3 (vs. T1) of 0.25 (0.09-0.70) and 0.10 (0.03-0.34), respectively. Levels of estradiol and testosterone were not significantly associated with gastric cancer. CONCLUSIONS Our study provides evidence that higher concentration of circulating DHEA may be associated with lower risk of noncardia gastric cancer. Longitudinal studies are needed to evaluate the temporality of this association and investigate mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Yelda A Leal
- Centro Institucional de Capacitación y Registro de Cáncer, Unidad Médica de Alta Especialidad, Centro Médico Nacional Ignacio García Téllez, Instituto Mexicano de Seguro Social, Mérida, Yucatán, México.
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Gilberto Medina-Escobedo
- Departamento de Patología, Unidad Médica de Alta Especialidad, Centro Médico Nacional Ignacio García Téllez, Instituto Mexicano de Seguro Social, Mérida, Yucatán, México
| | - Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier de l'Universite Laval de Quebec, Research Center and Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
| | - Aurelio Lopez-Colombo
- Unidad Médica de Alta Especialidad, Centro Médico Nacional Manuel Ávila Camacho, Instituto Mexicano de Seguro Social, Puebla, Puebla, México
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier de l'Universite Laval de Quebec, Research Center and Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
7
|
Altay SB, Akkurt G, Yılmaz N, Özdemir N. Clinicopathological Evaluation of Gastric Signet Ring Cell Carcinoma: Our Experience. Euroasian J Hepatogastroenterol 2020; 10:76-84. [PMID: 33511069 PMCID: PMC7801891 DOI: 10.5005/jp-journals-10018-1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim Gastric cancer is one of the most common cancers worldwide. In Turkey, stomach cancer is ranked 5th among men and 8th among women in all cancers and is located in the forefront in cancer-related deaths. Signet ring cell adenocarcinoma, which is the histopathological subtype of gastric cancer, has a poor prognosis. The incidence of signet ring cell adenocarcinoma is rising. In the present study, we aimed to describe the clinicopathologic features of signet ring cell adenocarcinoma. Materials and Methods A total of 79 patients with 30 being female (38%) and 49 male (62%) who were diagnosed with gastric signet ring cell adenocarcinoma in the Medical Oncology Department of Ankara Numune Training and Research Hospital between January 2004 and October 2015 were retrospectively evaluated. Results The baseline demographic characteristics of the patients, such as tumor localization, tumor stage, preoperative serum tumor markers, and treatment type (surgery and chemotherapy regimen), and the effects of these variables on survival and mortality were evaluated. Total surgery, stage III disease, moderate to poor grade, preoperative serum CA 19-9 and CEA levels were found as independent predictors of progression risk (p < 0.05). Each 1 ng/mL increase in preoperative serum CEA level was found to increase the risk of progression by 1.20 folds. Again, each 1 U/mL in preoperative serum CA 19-9 level was found to increase the risk of progression and mortality by 1.06 folds. Conclusion The clinicopathologic features of signet ring cell stomach cancer were described. Tumor localization and disease, CA 19-9 and CEA levels, and treatment type (surgery and chemotherapy regimen) were effective on survival and mortality. However, further studies with larger patient groups are needed on this issue. How to cite this article Altay SB, Akkurt G, Yılmaz N, et al. Clinicopathological Evaluation of Gastric Signet Ring Cell Carcinoma: Our Experience. Euroasian J Hepato-Gastroenterol 2020;10(2):76–84.
Collapse
Affiliation(s)
- Sevgi B Altay
- Department of Internal Medicine, Gaziantep 25 Aralık State Hospital, Gaziantep, Turkey
| | - Gökhan Akkurt
- Department of General Surgery, Kecioren Training and Research Hospital, Ankara, Turkey
| | - Nisbet Yılmaz
- Department of Internal Medicine, Ankara City Hospital, Ankara, Turkey
| | | |
Collapse
|