1
|
Lin Y, Zhan M, Xu B. Exportin XPO7 acts as an oncogenic factor in prostate cancer via upregulation of TCF3. J Cancer Res Clin Oncol 2023; 149:7663-7677. [PMID: 37000263 DOI: 10.1007/s00432-023-04705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE As a nuclear transport protein, XPO7 has been observed to show abnormal expression in various types of human cancers. However, the role of XPO7 in PCa remains elusive. METHODS Here, in this study, immunohistochemistry and bioinformatics were used to determine the expression pattern and prognostic significance of XPO7. To investigate the functions of XPO7 in vitro and in vivo, we knocked down XPO7 in PCa cell lines and established xenograft mice models. Then, we used multiple experiments to determine the cell proliferation, migration, invasion, cell cycle and EMT in PCa cells after XPO7 modulation. Mechanistically, we conducted RNA-seq and identified the regulating effect of XPO7 on cell cycle-related and PI3K-AKT pathways. Furthermore, we assessed the regulating correlation between XPO7 and TCF3 and verified by a series of rescue experiments. RESULTS We found a higher XPO7 expression in prostate cancer tissues and predicted a poorer prognosis of prostate cancer. Then, we further revealed that the ectopic expression of XPO7 in PCa cells facilitated cells proliferation, migration, cell cycle progression and EMT in vitro and promoted tumor growth in vivo. Mechanistically, we conducted RNA-seq and identified the regulating effect of XPO7 on cell cycle-related and PI3K-AKT pathways. Furthermore, a significantly positive correlation was discovered between the expression of XPO7 and TCF3. In addition, XPO7 may regulate PCa through mediating TCF3 expression. TCF3 depletion could alleviate the influence of XPO7 overexpression on malignant phenotypes of PCa cells. CONCLUSIONS These findings indicate that XPO7 promotes PCa initiation and progression and that targeting XPO7 might be therapeutically beneficial to patients with PCa.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Yu X, Li Z, Bai R, Tang F. Transcriptional factor 3 binds to sirtuin 1 to activate the Wnt/β-catenin signaling in cervical cancer. Bioengineered 2022; 13:12516-12531. [PMID: 35587604 PMCID: PMC9275895 DOI: 10.1080/21655979.2022.2076481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transcriptional factor 3 (TCF3, also termed E2A), first reported to exert crucial functions during lymphocyte development, has been revealed to participate in the pathogenesis of human cancers. The aim of this work was to investigate the function of TCF3 in cervical cancer (CC) and the molecular interactions. The bioinformatics prediction suggested that TCF3 was highly expressed in CC and linked to poor prognosis. Increased TCF3 expression was identified in CC cell lines, and its downregulation reduced proliferation and migration of CC cells in vitro as well as growth of xenograft tumors in vivo. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the TCF-3-related genes and genes showed differential expression between CC and normal tissues were mainly enriched in the Wnt/β-catenin pathway. TCF3 bound to sirtuin 1 (SIRT1) promoter for transcriptional activation, and SIRT1 promoted deacetylation and nuclear translocation of β-catenin in CC. SIRT1 overexpression blocked the role of TCF3 silencing and restored cell proliferation in vitro and tumor growth in vivo. Treatment with XAV-939, a β-catenin inhibitor, significantly suppressed the cell proliferation and tumor growth induced by SIRT1 overexpression. In conclusion, this study demonstrates that TCF3 augments progression of CC by activating SIRT1-mediated β-catenin signaling.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Gynecological Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan, P.R. China
| | - Zhaoshuo Li
- Department of Cerebrovascular Disease, Henan Provincial People's Hospital, Henan, P.R. China
| | - Ruihua Bai
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan, P.R. China
| | - Fuxiang Tang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| |
Collapse
|
3
|
Zhou N, Yan B, Ma J, Jiang H, Li L, Tang H, Ji F, Yao Z. Expression of TCF3 in Wilms' tumor and its regulatory role in kidney tumor cell viability, migration and apoptosis in vitro. Mol Med Rep 2021; 24:642. [PMID: 34278464 PMCID: PMC8299189 DOI: 10.3892/mmr.2021.12281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Wilms' tumor (WT) is a major type of kidney cancer in children; however, the therapeutic measures for control of tumor metastasis, recurrence and death for this type of cancer remain unsatisfactory. The present study aimed to verify the expression of T-cell factor 3 (TCF3) in WT, and to explore its role in regulating the viability, migration and apoptosis of kidney tumor cells. Tumor tissues were collected from 10 patients with WT, and adjacent tissues were collected as normal controls. The expression levels of TCF3 were detected in WT tissues and adjacent tissues by reverse transcription-quantitative PCR (RT-qPCR), western blotting and immunohistochemistry. In addition, TCF3 expression was silenced in G401 kidney tumor cells via small interfering RNA transfection. Cell viability, cell cycle progression and cell apoptosis were assessed using the MTT assay and flow cytometry; the migration and invasion of kidney tumor cells were examined using Transwell and wound-healing assays; and the expression levels of Wnt signaling pathway-related genes (Wnt1, β-catenin and c-myc) were detected by RT-qPCR and western blotting. The results revealed that the expression levels of TCF3 were high in WT tissues from patients. Silencing TCF3 expression in G401 kidney tumor cells in vitro significantly inhibited cell viability and migration, and promoted cell apoptosis. Moreover, silencing TCF3 expression in G401 cells inhibited the expression levels of Wnt signaling pathway-related genes. Overall, these data indicated that TCF3 may be involved in WT development through regulation of Wnt signaling pathways. The findings of the present study provide a novel potential marker for the treatment and prognostic evaluation of WT.
Collapse
Affiliation(s)
- Nian Zhou
- Department of Skin, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Bing Yan
- Department of Urology Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Jing Ma
- Department of Otorhinolaryngology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Hongchao Jiang
- Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li Li
- Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Haoyu Tang
- Department of Urology Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Fengming Ji
- Department of Urology Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zhigang Yao
- Department of Urology Surgery, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| |
Collapse
|
4
|
Mehboob R, Kurdi M, Ahmad M, Gilani SA, Khalid S, Nasief H, Mirdad A, Malibary H, Hakamy S, Hassan A, Alaifan M, Bamaga A, Shahzad SA. Comprehensive Analysis of Genes Associated With Sudden Infant Death Syndrome. Front Pediatr 2021; 9:742225. [PMID: 34722422 PMCID: PMC8555024 DOI: 10.3389/fped.2021.742225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Sudden infant death syndrome (SIDS) is a tragic incident which remains a mystery even after post-mortem investigation and thorough researches. Methods: This comprehensive review is based on the genes reported in the molecular autopsy studies conducted on SIDS so far. A total of 20 original studies and 7 case reports were identified and included in this analysis. The genes identified in children or adults were not included. Most of the genes reported in these studies belonged to cardiac channel and cardiomyopathy. Cardiac channel genes in SIDS were scrutinized for further analysis. Results: After screening and removing the duplicates, 42 unique genes were extracted. When the location of these genes was assessed, it was observed that most of these belonged to Chromosomes 11, 1 and 3 in sequential manner. The pathway analysis shows that these genes are involved in the regulation of heart rate, action potential, cardiac muscle cell contraction and heart contraction. The protein-protein interaction network was also very big and highly interactive. SCN5A, CAV3, ALG10B, AKAP9 and many more were mainly found in these cases and were regulated by many transcription factors such as MYOG C2C1 and CBX3 HCT11. Micro RNA, "hsa-miR-133a-3p" was found to be prevalent in the targeted genes. Conclusions: Molecular and computational approaches are a step forward toward exploration of these sad demises. It is so far a new arena but seems promising to dig out the genetic cause of SIDS in the years to come.
Collapse
Affiliation(s)
- Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mursleen Ahmad
- Department of Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Sidra Khalid
- Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Hisham Nasief
- Department of Obstetric and Gynecology, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Abeer Mirdad
- Pediatric Department, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Center of Excellence in Genomic Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amber Hassan
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Meshari Alaifan
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bamaga
- Paediatric Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Neurology and Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Adnan Shahzad
- Faculty of Medicine and University Hospital of Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|