1
|
Adewuyi EO, Porter T, O'Brien EK, Olaniru O, Verdile G, Laws SM. Genome-wide cross-disease analyses highlight causality and shared biological pathways of type 2 diabetes with gastrointestinal disorders. Commun Biol 2024; 7:643. [PMID: 38802514 PMCID: PMC11130317 DOI: 10.1038/s42003-024-06333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Studies suggest links between diabetes and gastrointestinal (GI) traits; however, their underlying biological mechanisms remain unclear. Here, we comprehensively assess the genetic relationship between type 2 diabetes (T2D) and GI disorders. Our study demonstrates a significant positive global genetic correlation of T2D with peptic ulcer disease (PUD), irritable bowel syndrome (IBS), gastritis-duodenitis, gastroesophageal reflux disease (GERD), and diverticular disease, but not inflammatory bowel disease (IBD). We identify several positive local genetic correlations (negative for T2D - IBD) contributing to T2D's relationship with GI disorders. Univariable and multivariable Mendelian randomisation analyses suggest causal effects of T2D on PUD and gastritis-duodenitis and bidirectionally with GERD. Gene-based analyses reveal a gene-level genetic overlap between T2D and GI disorders and identify several shared genes reaching genome-wide significance. Pathway-based study implicates leptin (T2D - IBD), thyroid, interferon, and notch signalling (T2D - IBS), abnormal circulating calcium (T2D - PUD), cardiovascular, viral, proinflammatory and (auto)immune-mediated mechanisms in T2D and GI disorders. These findings support a risk-increasing genetic overlap between T2D and GI disorders (except IBD), implicate shared biological pathways with putative causality for certain T2D - GI pairs, and identify targets for further investigation.
Collapse
Affiliation(s)
- Emmanuel O Adewuyi
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia.
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia
| | - Eleanor K O'Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia
| | - Oladapo Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia.
| |
Collapse
|
2
|
Nguyen TA, Le MK, Nguyen PT, Tran NQV, Kondo T, Nakao A. SLC22A3 that encodes organic cation transporter-3 is associated with prognosis and immunogenicity of human lung squamous cell carcinoma. Transl Lung Cancer Res 2023; 12:1972-1986. [PMID: 38025816 PMCID: PMC10654437 DOI: 10.21037/tlcr-23-334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Background SLC22A3, the gene which encodes organic cation transporter (OCT)-3, has been linked to the prognosis of several types of cancer. However, its role in lung squamous cell carcinoma (LSCC) has not been addressed elsewhere. Methods We analyzed gene expression, DNA methylation, and clinicopathological data from The Cancer Genome Atlas - Lung Squamous Cell Carcinoma (TCGA-LUSC) (n=501), a publicly available database exclusively consisting of LSCC patients. Using a 5 FPKM (fragments per kilobase of exon per million mapped fragments) cut-off, we divided LSCC patients into two groups: patients with tumors possessing high and low SLC22A3 expression (SLC22A3-high and SLC22A3-low, respectively). Prognostic significance was determined through Cox analyses and Kaplan-Meier curves for overall survival (OS) and disease-free survival (DFS). Differential methylation position (DMP), differentially gene expression, and pathway analyses were performed. Validation was carried out in GSE74777 (n=107), GSE37745 (n=66), GSE162520 (n=45) and GSE161537 (n=17). Results SLC22A3-high LSCC patients had lower OS and DFS rates than SLC22A3-low LSCC patients. The different expression levels of SLC22A3 in LSCC were correlated with the methylation status of the SLC22A3 gene. Pathway analysis indicated that SLC22A3 expression levels were positively correlated with immune-related pathways such as inflammatory response and abundance of infiltrating immune cells in the tumor microenvironment (TME). Notably, in the SLC22A3-high group, many genes encoding immunological checkpoint inhibitory molecules were upregulated. In addition, SLC22A3 expression positively correlated with the Hot Oral Tumor (HOT) score, indicating high tumor immunogenicity. Conclusions These findings suggest that high expression of SLC22A3 is associated with poor prognosis and high immunogenicity in LSCC tumors.
Collapse
Affiliation(s)
- Thuy-An Nguyen
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Minh-Khang Le
- Department of Human Pathology, University of Yamanashi, Yamanashi, Japan
| | - Phuc-Tan Nguyen
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nguyen Quoc Vuong Tran
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi, Yamanashi, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Li Z, Yuan X, Liu X, Yang Y, Huang L, Tan Q, Li C. The Influence of SLC22A3 Genetic Polymorphisms on Susceptibility to Type 2 Diabetes Mellitus in Chinese Population. Diabetes Metab Syndr Obes 2023; 16:1775-1781. [PMID: 37342315 PMCID: PMC10278656 DOI: 10.2147/dmso.s412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Background Solute carrier family 22 member 3 (SLC22A3) gene had been reported to be associated with the efficacy of metformin in type 2 diabetes mellitus (T2DM). However, few studies reported the relationship between SLC22A3 polymorphism and T2DM. The aim of this study was to investigate the association of SLC22A3 polymorphism and susceptibility to T2DM in Chinese population. Methods We identified SLC22A3 rs555754, rs3123636, rs3088442 genotypes of 450 T2DM patients and 220 healthy controls from the Chinese population. The association between SNPs of SLC22A3 and susceptibility of T2DM was evaluated. Results The clinical characteristics were significantly different between T2DM patients and healthy controls. The polymorphisms of SLC22A3 rs555754 and rs3123636 were obviously associated with the susceptibility of T2DM which was adjusted for age, sex and BMI, while rs3088442 did not. And there was haplotype association of SLC22A3 rs3088442-rs3123636 with T2DM susceptibility. Conclusion SLC22A3 rs555754 and rs3123636 polymorphisms were associated with the susceptibility to T2DM in Chinese Han population. Large sample size studies would be required to verify this association.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Blood Transfusion, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, People’s Republic of China
| | - Xiangmin Yuan
- Department of Pharmacy, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, People’s Republic of China
| | - Xin Liu
- Department of Pharmacy, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, People’s Republic of China
| | - Yuping Yang
- Department of Pharmacy, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, People’s Republic of China
| | - Li Huang
- Department of Pharmacy, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, People’s Republic of China
| | - Qiuhong Tan
- Department of Pharmacy, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, People’s Republic of China
| | - Cuilin Li
- Department of Pharmacy, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412007, People’s Republic of China
| |
Collapse
|
4
|
Schröder J, Chegwidden L, Maj C, Gehlen J, Speller J, Böhmer AC, Borisov O, Hess T, Kreuser N, Venerito M, Alakus H, May A, Gerges C, Schmidt T, Thieme R, Heider D, Hillmer AM, Reingruber J, Lyros O, Dietrich A, Hoffmeister A, Mehdorn M, Lordick F, Stocker G, Hohaus M, Reim D, Kandler J, Müller M, Ebigbo A, Fuchs C, Bruns CJ, Hölscher AH, Lang H, Grimminger PP, Dakkak D, Vashist Y, May S, Görg S, Franke A, Ellinghaus D, Galavotti S, Veits L, Weismüller J, Dommermuth J, Benner U, Rösch T, Messmann H, Schumacher B, Neuhaus H, Schmidt C, Wissinowski TT, Nöthen MM, Dong J, Ong JS, Buas MF, Thrift AP, Vaughan TL, Tomlinson I, Whiteman DC, Fitzgerald RC, Jankowski J, Vieth M, Mayr A, Gharahkhani P, MacGregor S, Gockel I, Palles C, Schumacher J. GWAS meta-analysis of 16 790 patients with Barrett's oesophagus and oesophageal adenocarcinoma identifies 16 novel genetic risk loci and provides insights into disease aetiology beyond the single marker level. Gut 2023; 72:612-623. [PMID: 35882562 DOI: 10.1136/gutjnl-2021-326698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/07/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Oesophageal cancer (EC) is the sixth leading cause of cancer-related deaths. Oesophageal adenocarcinoma (EA), with Barrett's oesophagus (BE) as a precursor lesion, is the most prevalent EC subtype in the Western world. This study aims to contribute to better understand the genetic causes of BE/EA by leveraging genome wide association studies (GWAS), genetic correlation analyses and polygenic risk modelling. DESIGN We combined data from previous GWAS with new cohorts, increasing the sample size to 16 790 BE/EA cases and 32 476 controls. We also carried out a transcriptome wide association study (TWAS) using expression data from disease-relevant tissues to identify BE/EA candidate genes. To investigate the relationship with reported BE/EA risk factors, a linkage disequilibrium score regression (LDSR) analysis was performed. BE/EA risk models were developed combining clinical/lifestyle risk factors with polygenic risk scores (PRS) derived from the GWAS meta-analysis. RESULTS The GWAS meta-analysis identified 27 BE and/or EA risk loci, 11 of which were novel. The TWAS identified promising BE/EA candidate genes at seven GWAS loci and at five additional risk loci. The LDSR analysis led to the identification of novel genetic correlations and pointed to differences in BE and EA aetiology. Gastro-oesophageal reflux disease appeared to contribute stronger to the metaplastic BE transformation than to EA development. Finally, combining PRS with BE/EA risk factors improved the performance of the risk models. CONCLUSION Our findings provide further insights into BE/EA aetiology and its relationship to risk factors. The results lay the foundation for future follow-up studies to identify underlying disease mechanisms and improving risk prediction.
Collapse
Affiliation(s)
- Julia Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Laura Chegwidden
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Carlo Maj
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Jan Gehlen
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Jan Speller
- Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne C Böhmer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Timo Hess
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Nicole Kreuser
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Hakan Alakus
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Andrea May
- Department of Gastroenterology, Oncology and Pneumology, Asklepios Paulinen Clinic Wiesbaden, Wiesbaden, Germany
| | - Christian Gerges
- Department of Internal Medicine II, Evangelisches Krankenhaus Dusseldorf, Dusseldorf, Germany
| | - Thomas Schmidt
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Rene Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University Hospital Cologne, Cologne, Germany
| | - Julian Reingruber
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Orestis Lyros
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | | | - Matthias Mehdorn
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Florian Lordick
- University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Gertraud Stocker
- University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Michael Hohaus
- Department for General and Visceral Surgery, Städt. Klinikum Dresden Friedrichstadt, Dresden, Germany
| | - Daniel Reim
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, München, Germany
| | - Jennis Kandler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty of Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Michaela Müller
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Claudia Fuchs
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Arnulf H Hölscher
- Department for General, Visceral and Trauma Surgery, Elisabeth-Krankenhaus-Essen GmbH, Essen, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Peter P Grimminger
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Dani Dakkak
- Department of Internal Medicine and Gastroenterology, Elisabeth Hospital Essen, Essen, Germany
| | | | - Sandra May
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Lübeck/Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sara Galavotti
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lothar Veits
- Institute of Pathology, Friedrich-Alexander-Universiät Erlangen-Nürnberg, Klinikum Bayreuth, Bayreuth, Germany
| | | | | | - Udo Benner
- Gastroenterologische Gemeinschaftspraxis, Koblenz, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Brigitte Schumacher
- Department of Internal Medicine and Gastroenterology, Elisabeth Hospital Essen, Essen, Germany
| | - Horst Neuhaus
- Department of Internal Medicine II, Evangelisches Krankenhaus Dusseldorf, Dusseldorf, Germany
| | - Carsten Schmidt
- Medical Clinic II (Gastroenterology, Hepatology, Endocrinology, Diabetology and Infektiology), Klinikum Fulda, University Medicine Marburg-Campus Fulda, Fulda, Germany
- Medical Faculty, Friedrich Schiller University Jena, Jena, Germany
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Jing Dong
- Division of Hematology and Oncology, Department of Medicine, Cancer Center, and Genomic Sciences & Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - David C Whiteman
- Cancer Control, Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca Claire Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Janusz Jankowski
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universiät Erlangen-Nürnberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Andreas Mayr
- Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), Medical Faculty, University of Bonn, Bonn, Germany
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
5
|
Selim MS, Kassem AB, El-Bassiouny NA, Salahuddin A, Abu El-Ela RY, Hamza MS. Polymorphic renal transporters and cisplatin's toxicity in urinary bladder cancer patients: current perspectives and future directions. Med Oncol 2023; 40:80. [PMID: 36650399 PMCID: PMC9845168 DOI: 10.1007/s12032-022-01928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/10/2022] [Indexed: 01/19/2023]
Abstract
Urinary bladder cancer (UBC) holds a potentially profound social burden and affects over 573,278 new cases annually. The disease's primary risk factors include occupational tobacco smoke exposure and inherited genetic susceptibility. Over the past 30 years, a number of treatment modalities have emerged, including cisplatin, a platinum molecule that has demonstrated effectiveness against UBC. Nevertheless, it has severe dose-limiting side effects, such as nephrotoxicity, among others. Since intracellular accumulation of platinum anticancer drugs is necessary for cytotoxicity, decreased uptake or enhanced efflux are the root causes of platinum resistance and response failure. Evidence suggests that genetic variations in any transporter involved in the entry or efflux of platinum drugs alter their kinetics and, to a significant extent, determine patients' responses to them. This review aims to consolidate and describe the major transporters and their polymorphic variants in relation to cisplatin-induced toxicities and resistance in UBC patients. We concluded that the efflux transporters ABCB1, ABCC2, SLC25A21, ATP7A, and the uptake transporter OCT2, as well as the organic anion uptake transporters OAT1 and OAT2, are linked to cisplatin accumulation, toxicity, and resistance in urinary bladder cancer patients. While suppressing the CTR1 gene's expression reduced cisplatin-induced nephrotoxicity and ototoxicity, inhibiting the expression of the MATE1 and MATE2-K genes has been shown to increase cisplatin's nephrotoxicity and resistance. The roles of ABCC5, ABCA8, ABCC10, ABCB10, ABCG1, ATP7B, ABCG2, and mitochondrial SLC25A10 in platinum-receiving urinary bladder cancer patients should be the subject of further investigation.
Collapse
Affiliation(s)
- Mohamed S Selim
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Amira B Kassem
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Noha A El-Bassiouny
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ahmad Salahuddin
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Biochemistry Department, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Raghda Y Abu El-Ela
- Medical Oncology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa Samir Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
6
|
Kon M, Ishikawa T, Ohashi Y, Yamada H, Ogasawara M. Epigallocatechin gallate stimulated histamine production and downregulated histamine H1 receptor in oral cancer cell lines expressing histidine decarboxylase. J Oral Biosci 2022; 64:120-130. [PMID: 35031480 DOI: 10.1016/j.job.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Increased histamine production and the overexpression of receptors (H1R∼H4R) has been reported in several tumors. The effects of TGFβ1 and epigallocatechin gallate (EGCG) on histamine synthesizing enzymes (HDCs), and the histamine transporter systems and receptors were investigated in this study. METHODS Four oral cancer cell lines (HSC2, HSC3, HSC4, and SAS) were treated with or without TGFβ1 or EGCG for 24 h. The expression levels of HDC, SLC22A3, H1R∼H4R, and TAS2R14 were investigated by Western blotting. Histamine concentrations were determined using the enzyme immune assay. Bitter taste receptor (TAS2R14 and TAS2R39) mRNAs were investigated by RT-PCR. RESULTS Varying expression levels of HDC, SLC22A3, H1R∼H4R, and TAS2R14 were observed in the four cell lines, where histamine concentrations were found to be ∼500 fmol/ml in cell culture media and induced 2-2.5 times higher amounts of histamine following EGCG treatment. TGFβ1 increased HDC expression in three cell lines, SLC22A3 expression in three cell lines, H1R expression in two cell lines, H2R expression in three cell lines, H3R expression in three cell lines, and H4R expression in three cell lines. EGCG decreased HDC expression in all four cell lines, SLC22A3 expression in three expression, H1R expression in all four cell lines, H2R expression in two cell lines, H3R expression in three cell lines, and H4R expression in two cell lines. CONCLUSIONS EGCG upregulated histamine production and decreased the expression level of H1R in the oral cancer cell lines. It might prove useful for cancer therapy during histamine regulation.
Collapse
Affiliation(s)
- Masashi Kon
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan; Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Iwate, Japan
| | - Yu Ohashi
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan
| | - Masahito Ogasawara
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan.
| |
Collapse
|
7
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
8
|
Bendova P, Pardini B, Susova S, Rosendorf J, Levy M, Skrobanek P, Buchler T, Kral J, Liska V, Vodickova L, Landi S, Soucek P, Naccarati A, Vodicka P, Vymetalkova V. Genetic variations in microRNA-binding sites of solute carrier transporter genes as predictors of clinical outcome in colorectal cancer. Carcinogenesis 2021; 42:378-394. [PMID: 33319241 DOI: 10.1093/carcin/bgaa136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
One of the principal mechanisms of chemotherapy resistance in highly frequent solid tumors, such as colorectal cancer (CRC), is the decreased activity of drug transport into tumor cells due to low expression of important membrane proteins, such as solute carrier (SLC) transporters. Sequence complementarity is a major determinant for target gene recognition by microRNAs (miRNAs). Single-nucleotide polymorphisms (SNPs) in target sequences transcribed into messenger RNA may therefore alter miRNA binding to these regions by either creating a new site or destroying an existing one. miRSNPs may explain the modulation of expression levels in association with increased/decreased susceptibility to common diseases as well as in chemoresistance and the consequent inter-individual variability in drug response. In the present study, we investigated whether miRSNPs in SLC transporter genes may modulate CRC susceptibility and patient's survival. Using an in silico approach for functional predictions, we analyzed 26 miRSNPs in 9 SLC genes in a cohort of 1368 CRC cases and 698 controls from the Czech Republic. After correcting for multiple tests, we found several miRSNPs significantly associated with patient's survival. SNPs in SLCO3A1, SLC22A2 and SLC22A3 genes were defined as prognostic factors in the classification and regression tree analysis. In contrast, we did not observe any significant association between miRSNPs and CRC risk. To the best of our knowledge, this is the first study investigating miRSNPs potentially affecting miRNA binding to SLC transporter genes and their impact on CRC susceptibility or patient's prognosis.
Collapse
Affiliation(s)
- Petra Bendova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Susova
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Srobarova, Prague, Czech Republic
| | - Jachym Rosendorf
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Miloslav Levy
- Department of Surgery, Thomayer University Hospital, Videnska, Prague, Czech Republic
| | - Pavel Skrobanek
- Department of Oncology, Thomayer Hospital, Videnska, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Thomayer Hospital, Videnska, Prague, Czech Republic
| | - Jan Kral
- Institute for Clinical and Experimental Medicine, IKEM, Prague, Czech Republic
| | - Vaclav Liska
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Via Derna, Pisa, Italy
| | - Pavel Soucek
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Srobarova, Prague, Czech Republic
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov, Prague, Czech Republic.,Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody, Pilsen, Czech Republic
| |
Collapse
|
9
|
Hong S, Li S, Bi M, Yu H, Yan Z, Liu T, Wang H. lncRNA ILF3-AS1 promotes proliferation and metastasis of colorectal cancer cells by recruiting histone methylase EZH2. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:1012-1023. [PMID: 34141456 PMCID: PMC8167202 DOI: 10.1016/j.omtn.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
The role of long non-coding RNA (lncRNA) has been displayed in colorectal cancer (CRC). Here, we aimed to discuss the role of lncRNA interleukin enhancer-binding factor 3-antisense RNA 1 (ILF3-AS1)/enhancer of zeste homolog 2 (EZH2)/cyclin-dependent kinase inhibitor 2 (CDKN2A)/histone 3 (H3) lysine 27 trimethylation (H3K27me3) in cell proliferation and metastasis of CRC. ILF3-AS1, EZH2, and CDKN2A levels in CRC tissues and cells were detected. The relationship between ILF3-AS1/EZH2 expression and the clinicopathological features of CRC was analyzed. High/low expression of ILF3-AS1/EZH2 plasmids were composed to explore the function of ILF3-AS1/EZH2 in invasion, migration, proliferation, colony formation, and apoptosis of CRC cells. The growth status of nude mice was observed to verify the in vitro results from in vivo experiment. ILF3-AS1 and EZH2 increased, whereas CDKN2A reduced in CRC tissues and cells. ILF3-AS1 and EZH2 expression was linked to Dukes stage, distant metastasis, vascular invasion, and lymph node metastasis of CRC patients. Depleted ILF3-AS1 or reduced EZH2 suppressed proliferation, migration, colony-formation, and invasion ability, as well as facilitated apoptosis of CRC cells and attenuated the tumor growth in CRC mice. ILF3-AS1 accelerates the proliferation and metastasis of CRC cells by recruiting histone methylase EZH2 to induce trimethylation of H3K27 and downregulate CDKN2A.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Miaomiao Bi
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Haiyao Yu
- Chief Pharmacist, Changchun Food and Drug Inspection Center, Changchun, Jilin, People’s Republic of China
| | - Zhenkun Yan
- Endoscopy Center, The China-Japan Union Hospital of Jilin University, Changchun 130022, Jilin, People’s Republic of China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| | - Helei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People’s Republic of China
| |
Collapse
|
10
|
Expression and clinical significance of organic cation transporter family in glioblastoma multiforme. Ir J Med Sci 2021; 191:1115-1121. [PMID: 34080124 DOI: 10.1007/s11845-021-02675-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Solute carrier (SLC) 22 A1, A2, and A3 are polyspecific transporters transporting organic cations like histamine, serotonin, norepinephrine, dopamine, MPP + , and toxins. The expression of SLC22A1-A3 in cancer is seldom investigated, and the function of SLC22A1-A3 in glioblastoma multiforme (GBM) is never elucidated. MATERIALS In our study, we detected the expression of SLC22A1-A3 in 11 fresh GBMs and tumor-adjacent brain tissues with qPCR, and in 129 paraffin-embedded GBMs with immunohistochemistry (IHC). With chi-square test, we investigated the correlation between expression of SLC22A1-A3 and the clinicopathological factors including patients' age, sex, tumor size, and KPS score. With Kaplan-Meier method and Cox-regression model, we estimated the prognostic significance of SLC22A1-A3 in GBM. RESULTS SLC22A3 was significantly downregulated in GBMs compared with the tumor-adjacent normal tissues. With univariate survival analyses, we showed that SLC22A3, instead of SLC22A1 and A2, was an independent biomarker predicting favorable prognosis. With multivariate analyses, SLC22A3 was identified as an independent prognostic biomarker indicating the favorable outcome of GBM. CONCLUSIONS SLC22A3 is an independent favorable prognostic biomarker of GBM. Patients with low SLC22A3 may be more high-risk and should receive more intensive post-operational supervision and treatments.
Collapse
|
11
|
Liu Z, Gao J, Yang Y, Zhao H, Ma C, Yu T. Potential targets identified in adenoid cystic carcinoma point out new directions for further research. Am J Transl Res 2021; 13:1085-1108. [PMID: 33841642 PMCID: PMC8014416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Adenoid cystic carcinoma (AdCC) of the head and neck originates from salivary glands, with high risks of recurrence and metastasis that account for the poor prognosis of patients. The purpose of this research was to identify key genes related to AdCC for further investigation of their diagnostic and prognostic significance. In our study, the AdCC sample datasets GSE36820, GSE59702 and GSE88804 from the Gene Expression Omnibus (GEO) database were used to explore the abnormal coexpression of genes in AdCC compared with their expression in normal tissue. A total of 115 DEGs were obtained by screening with GEO2R and FunRich software. According to functional annotation analysis using Enrichr, these DEGs were mainly enriched in the SOX2, AR, SMAD and MAPK signaling pathways. A protein-protein network of the DEGs was established by the Search Tool for the Retrieval of Interacting Genes (STRING) and annotated through the WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) and was shown to be enriched with proteins involved in cardiac muscle cell proliferation and extracellular matrix organization. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that ITGA9, LAMB1 and BAMBI were associated with the PI3K-Akt and TGF-β pathways. Furthermore, 36 potential target miRNAs were identified by the OncomiR and miRNA Pathway Dictionary Database (miRPathDB). In conclusion, SLC22A3, FOXP2, Cdc42EP3, COL27A1, DUSP1 and HSPB8 played critical roles according to the enrichment analysis; ITGA9, LAMB1 and BAMBI were involved in significant pathways according to the KEGG analysis; ST3Gal4 is a pivotal component of the PPI network of all the DEGs obtained; SPARC, COL4A2 and PRELP were highly related to multiple malignancies in pan-cancer research; hsa-miR-29-3p, hsa-miR-132-3p and hsa-miR-708-5p were potential regulators in AdCC. The involved pathways, biological processes and miRNAs have been shown to play significant roles in the genesis, growth, invasion and metastasis of AdCC. In this study, these identified DEGs were considered to have a potential influence on AdCC but have not been studied in this disease. The analysis results promote our understanding of the molecular mechanisms and biological processes of AdCC, which might be useful for targeted therapy or diagnosis.
Collapse
Affiliation(s)
- Zhenan Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Jian Gao
- Department of Stomatology, Xintai Hospital of Traditional Chinese MedicineTaian, China
| | - Yihui Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Huaqiang Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Chuan Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan, China
| | - Tingting Yu
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological HospitalJinan, China
| |
Collapse
|
12
|
Huo X, Zhou X, Peng P, Yu M, Zhang Y, Yang J, Cao D, Sun H, Shen K. Identification of a Six-Gene Signature for Predicting the Overall Survival of Cervical Cancer Patients. Onco Targets Ther 2021; 14:809-822. [PMID: 33574675 PMCID: PMC7873033 DOI: 10.2147/ott.s276553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background Although the incidence of cervical cancer has decreased in recent decades with the development of human papillomavirus vaccines and cancer screening, cervical cancer remains one of the leading causes of cancer-related death worldwide. Identifying potential biomarkers for cervical cancer treatment and prognosis prediction is necessary. Methods Samples with mRNA sequencing, copy number variant, single nucleotide polymorphism and clinical follow-up data were downloaded from The Cancer Genome Atlas database and randomly divided into a training dataset (N=146) and a test dataset (N=147). We selected and identified a prognostic gene set and mutated gene set and then integrated the two gene sets with the random survival forest algorithm and constructed a prognostic signature. External validation and immunohistochemical staining were also performed. Results We obtained 1416 differentially expressed prognosis-related genes, 624 genes with copy number amplification, 1038 genes with copy number deletion, and 163 significantly mutated genes. A total of 75 candidate genes were obtained after overlapping the differentially expressed genes and the genes with genomic variations. Subsequently, we obtained six characteristic genes through the random survival forest algorithm. The results showed that high expression of SLC19A3, FURIN, SLC22A3, and DPAGT1 and low expression of CCL17 and DES were associated with a poor prognosis in cervical cancer patients. We constructed a six-gene signature that can separate cervical cancer patients according to their different overall survival rates, and it showed robust performance for predicting survival (training set: p ˂ 0.001, AUC = 0.82; testing set: p ˂ 0.01, AUC = 0.59). Conclusion Our study identified a novel six-gene signature and nomogram for predicting the overall survival of cervical cancer patients, which may be beneficial for clinical decision-making for individualized treatment.
Collapse
Affiliation(s)
- Xiao Huo
- Medical Research Center, Peking University Third Hospital, Beijing,, People's Republic of China
| | - Xiaoshuang Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
13
|
Kölz C, Schaeffeler E, Schwab M, Nies AT. Genetic and Epigenetic Regulation of Organic Cation Transporters. Handb Exp Pharmacol 2021; 266:81-100. [PMID: 33674913 DOI: 10.1007/164_2021_450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic cation transporters (OCTs) of the solute carrier family (SLC) 22 are the subject of intensive research because they mediate the transport of many clinically-relevant drugs such as the antidiabetic agent metformin, the opioid tramadol, and the antimigraine agent sumatriptan. OCT1 (SLC22A1) and OCT2 (SLC22A2) are highly expressed in human liver and kidney, respectively, while OCT3 (SLC22A3) shows a broader tissue distribution. As suggested from studies using knockout mice, particularly OCT2 and OCT3 appear to be of relevance for brain physiological function and drug response. The knowledge of genetic factors and epigenetic modifications affecting function and expression of OCTs is important for a better understanding of disease mechanisms and for personalized treatment of patients. This review briefly summarizes the impact of genetic variants and epigenetic regulation of OCTs in general. A comprehensive overview is given on the consequences of OCT2 and OCT3 knockout in mice and the implications of genetic OCT2 and OCT3 variants on central nervous system function in humans.
Collapse
Affiliation(s)
- Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
14
|
Tan Y, Yang X, Pei M, Xu X, Wang C, Liu X. A genome-wide survey of interaction between rice and Magnaporthe oryzae via microarray analysis. Bioengineered 2020; 12:108-116. [PMID: 33356807 PMCID: PMC8806351 DOI: 10.1080/21655979.2020.1860479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The main aim of the work is to study the regulation of gene expression in the interaction between rice and Magnaporthe oryzae by gene chip technology. In this study, we mainly focused on changes of gene expression at 24, 48, and 72 hours post-inoculation (hpi), through which we could conduct a more comprehensive analysis of rice blast-related genes in the process of infection. The results showed that the experimental groups contained 460, 1227, and 3937 significant differentially expressed genes at 24, 48, and 72 hpi, respectively. Furthermore, 115 significantly differentially expressed genes were identified in response to rice blast infection at all three time points. By annotating these 115 genes, they were divided into three categories: metabolic pathways, proteins or enzymes, and organelle components. As expected, many of these genes were known rice blast-related genes; however, we discovered new genes with high fold changes. Most of them encoded conserved hypothetical proteins, and some were hypothetically conserved genes. Our study may contribute to finding new resistance genes and understanding the mechanism of rice blast development.
Collapse
Affiliation(s)
- Yanping Tan
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xiaolin Yang
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences , Wuhan, China
| | - Minghao Pei
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xin Xu
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Chuntai Wang
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| | - Xinqiong Liu
- Hubei Provincia Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities , Wuhan, China
| |
Collapse
|
15
|
Wang S, Su W, Zhong C, Yang T, Chen W, Chen G, Liu Z, Wu K, Zhong W, Li B, Mao X, Lu J. An Eight-CircRNA Assessment Model for Predicting Biochemical Recurrence in Prostate Cancer. Front Cell Dev Biol 2020; 8:599494. [PMID: 33363156 PMCID: PMC7758402 DOI: 10.3389/fcell.2020.599494] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is a high morbidity malignancy in males, and biochemical recurrence (BCR) may appear after the surgery. Our study is designed to build up a risk score model using circular RNA sequencing data for PCa. The dataset is from the GEO database, using a cohort of 144 patients in Canada. We removed the low abundance circRNAs (FPKM < 1) and obtained 546 circRNAs for the next step. BCR-related circRNAs were selected by Logistic regression using the “survival” and “survminer” R package. Least absolute shrinkage and selector operation (LASSO) regression with 10-fold cross-validation and penalty was used to construct a risk score model by “glmnet” R software package. In total, eight circRNAs (including circ_30029, circ_117300, circ_176436, circ_112897, circ_112897, circ_178252, circ_115617, circ_14736, and circ_17720) were involved in our risk score model. Further, we employed differentially expressed mRNAs between high and low risk score groups. The following Gene Ontology (GO) analysis were visualized by Omicshare Online tools. As per the GO analysis results, tumor immune microenvironment related pathways are significantly enriched. “CIBERSORT” and “ESTIMATE” R package were used to detect tumor-infiltrating immune cells and compare the level of microenvironment scores between high and low risk score groups. What’s more, we verified two of eight circRNA’s (circ_14736 and circ_17720) circular characteristics and tested their biological function with qPCR and CCK8 in vitro. circ_14736 and circ_17720 were detected in exosomes of PCa patients’ plasma. This is the first bioinformatics study to establish a prognosis model for prostate cancer using circRNA. These circRNAs were associated with CD8+ T cell activities and may serve as a circRNA-based liquid biopsy panel for disease prognosis.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Su
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zezhen Liu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangzhou, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Weibo Zhong
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bingkun Li
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jianming Lu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Li C, Yang Y, Liu X, Li Z, Liu H, Tan Q. Glucose metabolism-related gene polymorphisms as the risk predictors of type 2 diabetes. Diabetol Metab Syndr 2020; 12:97. [PMID: 33292424 PMCID: PMC7643457 DOI: 10.1186/s13098-020-00604-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex polygenic metabolic disease characterized by elevated blood glucose. Multiple environmental and genetic factors can increase the risk of T2DM and its complications, and genetic polymorphisms are no exception. This review is mainly focused on the related genes involved in glucose metabolic, including G6PC2, GCK, GCKR and OCT3. In this review, we have summarized the results reported globally and found that the genetic variants of GCK and OCT3 genes is a risk factor for T2DM while G6PC2 and GCKR genes are controversial in different ethnic groups. Hopefully, this summary could possibly help researchers and physicians understand the mechanism of T2DM so as to diagnose and even prevent T2DM at early time.
Collapse
Affiliation(s)
- Cuilin Li
- Department of Pharmacy, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, Hunan, China.
| | - Yuping Yang
- Department of Pharmacy, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, Hunan, China
| | - Xin Liu
- Department of Pharmacy, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, Hunan, China
| | - Zhongyu Li
- Laboratory Medical Center, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, China
| | - Hong Liu
- Department of Metabolism and Endocrinology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, China
| | - Qiuhong Tan
- Department of Pharmacy, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, Hunan, China
| |
Collapse
|
17
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
18
|
Zhang S, Cai Y, Zhang J, Liu X, He L, Cheng L, Hua K, Hui W, Zhu J, Wan Y, Cui Y. Tetra-primer ARMS-PCR combined with GoldMag lateral flow assay for genotyping: simultaneous visual detection of both alleles. NANOSCALE 2020; 12:10098-10105. [PMID: 32350488 DOI: 10.1039/d0nr00360c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rapid and simple detection of single nucleotide polymorphism (SNP) is vital for individualized diagnosis and eventual treatment in the current clinical setting. In this study, we developed a tetra-primer ARMS-PCR combined lateral flow assay (T-ARMS-PCR-LFA) method for simultaneous visual detection of two alleles. By using four primers labeled with digoxin, biotin and Cy5 separately in one PCR reaction, the amplified allele-specific products could be captured by streptavidin and the anti-Cy5 antibody on two separated test lines of a LFA strip, which allows the presentation of both alleles within the single LFA strip. Both DNA and whole blood can be used as templates in this genotyping method in which the whole detection process is completed within 75 minutes. The performance assay of T-ARMS-PCR-LFA demonstrates the accuracy, specificity and sensitivity of this method. One hundred human whole blood samples were used for MTHFR C677T genotyping in T-ARMS-PCR-LFA. The concordance rate of the results detected was up to 100% when compared with that of the sequencing results. Collectively, this newly developed method is highly applicable for SNP screening in clinical practices.
Collapse
Affiliation(s)
- Sinong Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cervenkova L, Vycital O, Bruha J, Rosendorf J, Palek R, Liska V, Daum O, Mohelnikova-Duchonova B, Soucek P. Protein expression of ABCC2 and SLC22A3 associates with prognosis of pancreatic adenocarcinoma. Sci Rep 2019; 9:19782. [PMID: 31874997 PMCID: PMC6930301 DOI: 10.1038/s41598-019-56059-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette (ABC) and solute carrier (SLC) transporters translocate diverse substances across cellular membranes and their deregulation may cause drug resistance of cancers. This study investigated significance of protein expression and cellular localization of the previously suggested putative prognostic markers ABCC2 and SLC22A3 in pancreatic cancer patients. Protein localization and brush border staining intensity of ABCC2 and SLC22A3 was assessed in tumor tissue blocks of 65 pancreatic cancer patients and associated with clinical data and survival of patients with regard to therapy. Negative SLC22A3 brush border staining in pancreatic tumors significantly increased the risk of both disease progression and patient´s death in univariate analyses. Multivariate analyses confirmed the association of SLC22A3 expression with progression-free survival of patients. A subgroup analysis of patients treated with regimens based on nucleoside analogs suggested that patients with negative brush border staining or apical localization of SLC22A3 in tumor cells have worse overall survival. The combination of positive ABCC2 and negative SLC22A3 brush border staining predicted worst overall survival and patients with positive brush border staining of both proteins had best overall and progression-free survival. The present study shows for the first time that the protein presence and to some extent also localization of SLC22A3 significantly associate with prognosis of pancreatic cancer in both unstratified and chemotherapy-treated patients. The combination of ABCC2 and SLC22A3 brush border staining also needs further attention in this regard.
Collapse
Affiliation(s)
- Lenka Cervenkova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Vycital
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Deparment of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Bruha
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Deparment of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jachym Rosendorf
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Deparment of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Richard Palek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Deparment of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Deparment of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondrej Daum
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Pathology, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
20
|
Chen Z, Wen W, Beeghly-Fadiel A, Shu XO, Díez-Obrero V, Long J, Bao J, Wang J, Liu Q, Cai Q, Moreno V, Zheng W, Guo X. Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mutations in Human Cancers. Am J Hum Genet 2019; 105:477-492. [PMID: 31402092 PMCID: PMC6731359 DOI: 10.1016/j.ajhg.2019.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of genetic risk variants for human cancers. However, target genes for the majority of risk loci remain largely unexplored. It is also unclear whether GWAS risk-loci-associated genes contribute to mutational signatures and tumor mutational burden (TMB) in cancer tissues. We systematically conducted cis-expression quantitative trait loci (cis-eQTL) analyses for 294 GWAS-identified variants for six major types of cancer-colorectal, lung, ovary, prostate, pancreas, and melanoma-by using transcriptome data from the Genotype-Tissue Expression (GTEx) Project, the Cancer Genome Atlas (TCGA), and other public data sources. By using integrative analysis strategies, we identified 270 candidate target genes, including 99 with previously unreported associations, for six cancer types. By analyzing functional genomic data, our results indicate that 180 genes (66.7% of 270) had evidence of cis-regulation by putative functional variants via proximal promoter or distal enhancer-promoter interactions. Together with our previously reported associations for breast cancer risk, our results show that 24 genes are shared by at least two cancer types, including four genes for both breast and ovarian cancer. By integrating mutation data from TCGA, we found that expression levels of 33 and 66 putative susceptibility genes were associated with specific mutational signatures and TMB of cancer-driver genes, respectively, at a Bonferroni-corrected p < 0.05. Together, these findings provide further insight into our understanding of how genetic risk variants might contribute to carcinogenesis through the regulation of susceptibility genes that are related to the biogenesis of somatic mutations.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Virginia Díez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona 08908, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona 08908, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona 08908, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08908, Spain
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jiandong Bao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona 08908, Spain; Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona 08908, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona 08908, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08908, Spain
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.
| |
Collapse
|