1
|
Villar-Alvarez E, Golán-Cancela I, Pardo A, Velasco B, Fernández-Vega J, Cambón A, Al-Modlej A, Topete A, Barbosa S, Costoya JA, Taboada P. Inhibiting HER3 Hyperphosphorylation in HER2-Overexpressing Breast Cancer through Multimodal Therapy with Branched Gold Nanoshells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303934. [PMID: 37632323 DOI: 10.1002/smll.202303934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Indexed: 08/27/2023]
Abstract
Treatment failure in breast cancers overexpressing human epidermal growth factor receptor 2 (HER2) is associated mainly to the upregulation of human epidermal growth factor receptor 3 (HER3) oncoprotein linked to chemoresitence. Therefore, to increase patient survival, here a multimodal theranostic nanoplatform targeting both HER2 and HER3 is developed. This consists of doxorubicin-loaded branched gold nanoshells functionalized with the near-infrared (NIR) fluorescent dye indocyanine green, a small interfering RNA (siRNA) against HER3, and the HER2-specific antibody Transtuzumab, able to provide a combined therapeutic outcome (chemo- and photothermal activities, RNA silencing, and immune response). In vitro assays in HER2+ /HER3+ SKBR-3 breast cancer cells have shown an effective silencing of HER3 by the released siRNA and an inhibition of HER2 oncoproteins provided by Trastuzumab, along with a decrease of the serine/threonine protein kinase Akt (p-AKT) typically associated with cell survival and proliferation, which helps to overcome doxorubicin chemoresistance. Conversely, adding the NIR light therapy, an increment in p-AKT concentration is observed, although HER2/HER3 inhibitions are maintained for 72 h. Finally, in vivo studies in a tumor-bearing mice model display a significant progressively decrease of the tumor volume after nanoparticle administration and subsequent NIR light irradiation, confirming the potential efficacy of the hybrid nanocarrier.
Collapse
Affiliation(s)
- Eva Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Irene Golán-Cancela
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Facultad de Medicina, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, 15782, Spain
| | - Alberto Pardo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Brenda Velasco
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Javier Fernández-Vega
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Abeer Al-Modlej
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Facultad de Medicina, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, 15782, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| |
Collapse
|
2
|
Desaulniers D, Cummings-Lorbetskie C, Leingartner K, Meier MJ, Pickles JC, Yauk CL. DNA methylation changes from primary cultures through senescence-bypass in Syrian hamster fetal cells initially exposed to benzo[a]pyrene. Toxicology 2023; 487:153451. [PMID: 36754249 DOI: 10.1016/j.tox.2023.153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Current chemical testing strategies are limited in their ability to detect non-genotoxic carcinogens (NGTxC). Epigenetic anomalies develop during carcinogenesis regardless of whether the molecular initiating event is associated with genotoxic (GTxC) or NGTxC events; therefore, epigenetic markers may be harnessed to develop new approach methodologies that improve the detection of both types of carcinogens. This study used Syrian hamster fetal cells to establish the chronology of carcinogen-induced DNA methylation changes from primary cells until senescence-bypass as an essential carcinogenic step. Cells exposed to solvent control for 7 days were compared to naïve primary cultures, to cells exposed for 7 days to benzo[a]pyrene, and to cells at the subsequent transformation stages: normal colonies, morphologically transformed colonies, senescence, senescence-bypass, and sustained proliferation in vitro. DNA methylation changes identified by reduced representation bisulphite sequencing were minimal at day-7. Profound DNA methylation changes arose during cellular senescence and some of these early differentially methylated regions (DMRs) were preserved through the final sustained proliferation stage. A set of these DMRs (e.g., Pou4f1, Aifm3, B3galnt2, Bhlhe22, Gja8, Klf17, and L1l) were validated by pyrosequencing and their reproducibility was confirmed across multiple clones obtained from a different laboratory. These DNA methylation changes could serve as biomarkers to enhance objectivity and mechanistic understanding of cell transformation and could be used to predict senescence-bypass and chemical carcinogenicity.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Karen Leingartner
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
3
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
4
|
Akerman I, Kasaai B, Bazarova A, Sang PB, Peiffer I, Artufel M, Derelle R, Smith G, Rodriguez-Martinez M, Romano M, Kinet S, Tino P, Theillet C, Taylor N, Ballester B, Méchali M. A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun 2020; 11:4826. [PMID: 32958757 PMCID: PMC7506530 DOI: 10.1038/s41467-020-18527-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
DNA replication initiates from multiple genomic locations called replication origins. In metazoa, DNA sequence elements involved in origin specification remain elusive. Here, we examine pluripotent, primary, differentiating, and immortalized human cells, and demonstrate that a class of origins, termed core origins, is shared by different cell types and host ~80% of all DNA replication initiation events in any cell population. We detect a shared G-rich DNA sequence signature that coincides with most core origins in both human and mouse genomes. Transcription and G-rich elements can independently associate with replication origin activity. Computational algorithms show that core origins can be predicted, based solely on DNA sequence patterns but not on consensus motifs. Our results demonstrate that, despite an attributed stochasticity, core origins are chosen from a limited pool of genomic regions. Immortalization through oncogenic gene expression, but not normal cellular differentiation, results in increased stochastic firing from heterochromatin and decreased origin density at TAD borders. In metazoan the DNA sequence elements characterizing origin specification are unknown. By generating and analysing 19 SNS-seq datasets from different human cell types, the authors reveal a class and features of Core origins of replication which can be predicted by an algorithm.
Collapse
Affiliation(s)
- Ildem Akerman
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France. .,Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.
| | - Bahar Kasaai
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Alina Bazarova
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK.,Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Pau Biak Sang
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Marie Artufel
- Aix-Marseille University, INSERM, TAGC, UMR S1090, Marseille, France
| | - Romain Derelle
- Life and Environmental Sciences (LES), University of Birmingham, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | | | - Manuela Romano
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Peter Tino
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.,Pediatric Oncology Branch, NCI, CCR, NIH, Bethesda, MD, USA
| | - Benoit Ballester
- Aix-Marseille University, INSERM, TAGC, UMR S1090, Marseille, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Caglar HO, Biray Avci C. Alterations of cell cycle genes in cancer: unmasking the role of cancer stem cells. Mol Biol Rep 2020; 47:3065-3076. [DOI: 10.1007/s11033-020-05341-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
|
6
|
Anderson G. Breast cancer: Occluded role of mitochondria N-acetylserotonin/melatonin ratio in co-ordinating pathophysiology. Biochem Pharmacol 2019; 168:259-268. [PMID: 31310736 DOI: 10.1016/j.bcp.2019.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
A plethora of factors contribute to the biochemical underpinnings of breast cancer, in the absence of any clear, integrative framework. This article proposes that melatonergic pathway regulation within mitochondria provides an integrative framework for the wide array of data driving breast cancer pathophysiology. As melatonin is toxic to breast cancer cells, its production within mitochondria poses a significant challenge to breast cancer cell survival. Consequently, the diverse plasticity in breast cancer cells may arise from a requirement to decrease mitochondria melatonin synthesis. The aryl hydrocarbon receptor role in breast cancer pathophysiology may be mediated by an increase in cytochrome P450 (CYP)1b1 in mitochondria, leading to the backward conversion of melatonin to N-acetylserotonin (NAS). NAS has distinct effects to melatonin, including its activation of the tyrosine receptor kinase B (TrkB) receptor. TrkB activation significantly contributes to breast cancer cell survival and migration. However, the most important aspect of NAS induction by CYP1b1 in breast cancer cells is the prevention of melatonin effects in mitochondria. Many of the changes occurring in breast cancer cells arise from the need to regulate this pathway in mitochondria, allowing this to provide a framework that integrates a host of previously disparate data, including: microRNAs, estrogen, 14-3-3 proteins, sirtuins, glycolysis, oxidative phosphorylation, indoleamine 2,3-dioxygenase and the kynurenine pathways. It is also proposed that this framework provides a pathoetiological model incorporating the early developmental regulation of the gut microbiome that integrates breast cancer risk factors, including obesity. This has significant treatment, prevention and research implications.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PH, UK.
| |
Collapse
|