1
|
Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024; 196:104275. [PMID: 38302050 DOI: 10.1016/j.critrevonc.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Despite advancements, prostate cancers (PCa) pose a significant global health challenge due to delayed diagnosis and therapeutic resistance. This review delves into the complex landscape of prostate cancer, with a focus on long-noncoding RNAs (lncRNAs). Also explores the influence of aberrant lncRNAs expression in progressive PCa stages, impacting traits like proliferation, invasion, metastasis and therapeutic resistance. The study elucidates how lncRNAs modulate crucial molecular effectors, including transcription factors and microRNAs, affecting signaling pathways such as androgen receptor signaling. Besides, this manuscript sheds light on novel concepts and mechanisms driving PCa progression through lncRNAs, providing a critical analysis of their impact on the disease's diverse characteristics. Besides, it discusses the potential of lncRNAs as diagnostics and therapeutic targets in PCa. Collectively, this work highlights state of art mechanistic comprehension and rigorous scientific approaches to advance our understanding of PCa and depict innovations in this evolving field of research.
Collapse
Affiliation(s)
- Zongpan Ke
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China; Wannan Medical College, No. 22 Wenchangxi Road, Yijiang District, Wuhu 241000, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Deyun Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| | - Muhammad Imran Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 China.
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| |
Collapse
|
2
|
Li Y, Fang Z, Ge S, Li J, Qu L, Shi X, Zhang W, Sun Y, Ren S, Wang L. Long non-coding RNA ENST00000503625 is a potential prognostic biomarker and metastasis suppressor gene in prostate cancer. J Cancer Res Clin Oncol 2023; 149:7305-7317. [PMID: 36920562 DOI: 10.1007/s00432-023-04676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Dysregulation of Long Non-coding RNAs (lncRNAs) emerges to be a hallmark of cancers. Metastatic prostate cancer and localized disease that recurs after treatment are clinical challenges, it remains unclear how lncRNA plays a role in those processes. METHODS From previous RNA-Seq data on 65 prostate cancer and adjacent normal tissues. We identified a novel lncRNA ENST00000503625 down-regulated in prostate cancer and correlated with tumor progression characteristics. Public datasets were examined for associations between ENST00000503625 expression and clinical parameters and prognoses. Subsequently, we constructed and externally validated a nomogram for predicting biochemical recurrence (BCR). Finally, in vitro experiments were carried out to determine how ENST00000503625 functions biologically in prostate cancer. RESULTS Low ENST00000503625 in tumor was associated with poor clinical features and prognoses. TCGA pan-cancer analysis found that ENST00000503625 was deregulated in a variety of tumors and correlated with overall survival, disease-specific survival, and progression-free survival. The nomogram for predicting BCR was constructed using TCGA data, which exhibited excellent accuracy in external validation with Chinese Prostate Cancer Genome and Epigenome Atlas data. Gene Ontology and KEGG pathway analysis found that genes related to ENST00000503625 were enriched in multiple tumor progression related pathways. When ENST00000503625 was knocked down in vitro, the epithelial-mesenchymal transition was induced, by which cancer cells migrated and invaded more readily. CONCLUSION Our data suggested that ENST00000503625 may serve as a potential prognostic marker or a therapeutic target for prostate cancer metastases.
Collapse
Affiliation(s)
- Yaoming Li
- Department of Urology, Institute of Surgery Research, Daping Hospital/Army Medical Center, Army Medical University, Chongqing, 400042, China
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Silun Ge
- Department of Urology, Jinling Hospital, Nanjing Medical University, Nanjing, 201101, China
| | - Jingyi Li
- Department of Urology, Institute of Surgery Research, Daping Hospital/Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Le Qu
- Department of Urology, Jinling Hospital, Nanjing Medical University, Nanjing, 201101, China
| | - Xiaolei Shi
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shancheng Ren
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Luofu Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital/Army Medical Center, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Gao K, Li X, Ni J, Wu B, Guo J, Zhang R, Wu G. Non-coding RNAs in enzalutamide resistance of castration-resistant prostate cancer. Cancer Lett 2023; 566:216247. [PMID: 37263338 DOI: 10.1016/j.canlet.2023.216247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Enzalutamide (Enz) is a next-generation androgen receptor (AR) antagonist used to treat castration-resistant prostate cancer (CRPC). Unfortunately, the relapsing nature of CRPC results in the development of Enz resistance in many patients. Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins, which include microRNAs (miRNA), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs with known and unknown functions. Recently, dysregulation of ncRNAs in CRPC, particularly their regulatory function in drug resistance, has attracted more and more attention. Herein, we introduce the roles of dysregulation of different ncRNAs subclasses in the development of CRPC progression and Enz resistance. Recently determined mechanisms of Enz resistance are discussed, focusing mainly on the role of AR-splice variant-7 (AR-V7), mutations, circRNAs and lncRNAs that act as miRNA sponges. Also, the contributions of epithelial-mesenchymal transition and glucose metabolism to Enz resistance are discussed. We summarize the different mechanisms of miRNAs, lncRNAs, and circRNAs in the progression of CRPC and Enz resistance, and highlight the prospect of future therapeutic strategies against Enz resistance.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/therapeutic use
- RNA, Circular/genetics
- Drug Resistance, Neoplasm/genetics
- Neoplasm Recurrence, Local
- Nitriles
- Androgen Receptor Antagonists/therapeutic use
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Bin Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China; The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
4
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
5
|
Liu F, Shi X, Wang F, Han S, Chen D, Gao X, Wang L, Wei Q, Xing N, Ren S. Evaluation and multi-institutional validation of a novel urine biomarker lncRNA546 to improve the diagnostic specificity of prostate cancer in PSA gray-zone. Front Oncol 2022; 12:946060. [PMID: 36033474 PMCID: PMC9411806 DOI: 10.3389/fonc.2022.946060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectives Prostate specific antigen (PSA) is currently the most commonly used biomarker for prostate cancer diagnosis. However, when PSA is in the gray area of 4-10 ng/ml, the diagnostic specificity of prostate cancer is extremely low, leading to overdiagnosis in many clinically false-positive patients. This study was trying to discover and evaluate a novel urine biomarker long non-coding RNA (lncRNA546) to improve the diagnostic accuracy of prostate cancer in PSA gray-zone. Methods A cohort study including consecutive 440 participants with suspected prostate cancer was retrospectively conducted in multi-urology centers. LncRNA546 scores were calculated with quantitative real-time polymerase chain reaction. The area under the receiver operating characteristic curve (AUROC), decision curve analysis (DCA) and a biopsy-specific nomogram were utilized to evaluate the potential for clinical application. Logistic regression model was constructed to confirm the predictive power of lncRNA546. Results LncRNA546 scores were sufficient to discriminate positive and negative biopsies. ROC analysis showed a higher AUC for lncRNA546 scores than prostate cancer antigen 3 (PCA3) scores (0.78 vs. 0.66, p<0.01) in the overall cohort. More importantly, the AUC of lncRNA546 (0.80) was significantly higher than the AUCs of total PSA (0.57, p=0.02), percentage of free PSA (%fPSA) (0.64, p=0.04) and PCA3 (0.63, p<0.01) in the PSA 4-10 ng/ml cohort. A base model constructed by multiple logistic regression analysis plus lncRNA546 scores improved the predictive accuracy (PA) from 79.8% to 86.3% and improved AUC results from 0.862 to 0.915. DCA showed that the base model plus lncRNA546 displayed greater net benefit at threshold probabilities beyond 15% in the PSA 4-10 ng/ml cohort. Conclusion LncRNA546 is a promising novel biomarker for the early detection of prostate cancer, especially in the PSA 4-10 ng/ml cohort.
Collapse
Affiliation(s)
- Fei Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Fei Liu, ; Shancheng Ren,
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Fangming Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Linhui Wang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Chengdu, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
- *Correspondence: Fei Liu, ; Shancheng Ren,
| |
Collapse
|
6
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Xu J, Sang N, Zhao J, He W, Zhang N, Li X. Knockdown of circ_0067934 inhibits gastric cancer cell proliferation, migration and invasion via the miR‑1301‑3p/KIF23 axis. Mol Med Rep 2022; 25:202. [PMID: 35475447 PMCID: PMC9073844 DOI: 10.3892/mmr.2022.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, circular RNAs (circRNAs/circs) have attracted significant attention due to their potentially important functions in a variety of human cancer types. circ_0067934 is a newly identified circRNA, the role of which in gastric cancer (GC) has yet to be reported, to the best of our knowledge. In the present study, the expression levels of circ_0067934, microRNA (miR)‑1301‑3p and kinesin family member 23 (KIF23) in GC cells were detected via reverse transcription‑quantitative PCR. Cell proliferation was measured using Cell Counting Kit‑8 assays and EdU staining. Wound healing and Transwell assays were performed to assess cell migration and invasion, respectively. Western blotting was performed to measure the protein expression levels of Ki67, proliferating cell nuclear antigen, MMP2, MMP9 and KIF23. The starBase database and luciferase reporter assays were used to predict and verify the binding between circ_0067934 and miR‑1301‑3p, as well as KIF23, in GC cells. The results demonstrated that circ_0067934 expression was upregulated in GC cells, and circ_0067934 silencing significantly inhibited GC cell proliferation, migration and invasion. In addition, miR‑1301‑3p was regulated by circ_0067934, and miR‑1301‑3p overexpression suppressed GC cell migration, invasion and proliferation. miR‑1301‑3p was found to target KIF23, and KIF23 overexpression reversed the effects of circ_0067934 silencing and miR‑1301‑3p overexpression on cell proliferation, migration and invasion. In conclusion, circ_0067934 may regulate the proliferation, invasion and migration of GC cells via the miR‑1301‑3p/KIF23 signaling axis, which may represent a novel therapeutic target for GC metastasis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Sang
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Junning Zhao
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Wei He
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Nannan Zhang
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu 210024, P.R. China
| | - Xueliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
8
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
9
|
Song Y, Pan H, Yang L, Fan Y, Zhang H, Pan M, Zhang Y. DGUOK-AS1 promotes cervical squamous cell carcinoma progression by suppressing miR-499a-5p that targets SPRR1B in vitro. Biochem Biophys Res Commun 2021; 585:177-184. [PMID: 34808501 DOI: 10.1016/j.bbrc.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Cervical squamous cell carcinoma (CESC) is the most common cancer type of cervical cancer, which threatens women's life seriously. LncRNA DGUOK-AS1has been reported to promote the biologic processes of CESC. We aim to figure out the role of DGUOK-AS1-miR-499a-5p-SPRR1B axis in modulating the CESC progression in vitro. METHODS The levels of DGUOK-AS1, miR-499a-5p, and SPRR1B in CESC tissues and cells were examined by RT-qPCR. The interaction of DGUOK-AS1-miR-499a-5p-SPRR1B was verified by luciferase assay. Inhibition of DGUOK-AS1, miR-499a-5p, and SPRR1B was applied for exploring the biological function based on detection of cell viability, proliferation, migration, and apoptosis in CESC SiHa and HeLa cells. RESULTS DGUOK-AS1 and SPRR1B expressions were obviously elevated, whereas the expression of miR-499a-5p was reduced in both CESC tissues and cells. Silencing of DGUOK-AS1 attenuated cell growth and boosted apoptosis of CESC cells. Notably, DGUOK-AS1 inhibited miR-499a-5p to release SPRR1B, which significantly accelerated the development of CESC. CONCLUSION DGUOK-AS1sponging miR-499a-5p facilitated CESC cells progression by releasing SPRR1B in vitro. It provides a new sight for the treatment of CESC patients involving DGUOK-AS1-miR-499a-5p-SPRR1B.
Collapse
Affiliation(s)
- Yan Song
- Department of Obstetrics, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, China
| | - Hongjuan Pan
- Department of Obstetrics, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, China
| | - Ling Yang
- Department of Gynaecology, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, 518108, China
| | - Yan Fan
- Department of Obstetrics, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, China
| | - Hui Zhang
- Department of Obstetrics, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, China
| | - Meichen Pan
- Department of Obstetrics, Taikang Tongji (Wuhan) Hospital, Wuhan, 430050, China
| | - Yali Zhang
- Department of Gynaecology, Shenzhen Longhua Maternal and Child Health Hospital, Shenzhen, 518110, China.
| |
Collapse
|
10
|
Luo S, Lin R, Liao X, Li D, Qin Y. Identification and verification of the molecular mechanisms and prognostic values of the cadherin gene family in gastric cancer. Sci Rep 2021; 11:23674. [PMID: 34880371 PMCID: PMC8655011 DOI: 10.1038/s41598-021-03086-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
While cadherin (CDH) genes are aberrantly expressed in cancers, the functions of CDH genes in gastric cancer (GC) remain poorly understood. The clinical significance and molecular mechanisms of CDH genes in GC were assessed in this study. Data from a total of 1226 GC patients included in The Cancer Genome Atlas (TCGA) and Kaplan–Meier plotter database were used to independently explore the value of CDH genes in clinical application. The TCGA RNA sequencing dataset was used to explore the molecular mechanisms of CDH genes in GC. Using enrichment analysis tools, CDH genes were found to be related to cell adhesion and calcium ion binding in function. In TCGA cohort, 12 genes were found to be differentially expressed between GC para-carcinoma and tumor tissue. By analyzing GC patients in two independent cohorts, we identified and verified that CDH2, CDH6, CDH7 and CDH10 were significantly associated with a poor GC prognosis. In addition, CDH2 and CDH6 were used to construct a GC risk score signature that can significantly improve the accuracy of predicting the 5-year survival of GC patients. The GSEA approach was used to explore the functional mechanisms of the four prognostic CDH genes and their associated risk scores. It was found that these genes may be involved in multiple classic cancer-related signaling pathways, such as the Wnt and phosphoinositide 3-kinase signaling pathways in GC. In the subsequent CMap analysis, three small molecule compounds (anisomycin, nystatin and bumetanide) that may be the target molecules that determine the risk score in GC, were initially screened. In conclusion, our current study suggests that four CDH genes can be used as potential biomarkers for GC prognosis. In addition, a prognostic signature based on the CDH2 and CDH6 genes was constructed, and their potential functional mechanisms and drug interactions explored.
Collapse
Affiliation(s)
- Shanshan Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China.
| | - Rujing Lin
- Department of General Surgery, The People's Hospital of Binyang County, Nanning, 530405, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Daimou Li
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China.
| |
Collapse
|
11
|
Luo Z, Hao S, Yuan J, Zhu K, Liu S, Zhang J, Yao L. Long non-coding RNA LINC00958 promotes colorectal cancer progression by enhancing the expression of LEM domain containing 1 via microRNA miR-3064-5p. Bioengineered 2021; 12:8100-8115. [PMID: 34672237 PMCID: PMC8806780 DOI: 10.1080/21655979.2021.1985259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a common cause of cancer-related death worldwide. Thus, there is an urgent need to determine the mechanism of progression of colorectal cancer. In this study, we investigated the function and mechanism of long non-coding RNA LINC00958, providing a new biomarker for colorectal cancer. The expression of LINC00958, miR-3064-5p, and LEM domain containing 1 (LEMD1) in colorectal cancer tissues and cell lines was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between LINC00958, miR-3064-5p, and LEMD1 was assessed using the luciferase assay. The viability, proliferation, migration, invasion, and apoptosis of colorectal cancer cells with silenced LINC00958, miR-3064-5p, and LEMD1 were investigated using the cell counting kit-8 (CCK-8), 5′-Bromo-2′-deoxyuridine (BrdU), flow cytometry, wound healing, and transwell assays. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein levels were measured by western blotting. LINC00958 and LEMD1 were found to have increased, while the expression of miR-3064-5p was decreased in colorectal cancer tissues and cell lines. Silencing of LINC00958 hampered cell viability, proliferation, migration, and invasion, while enhancing the apoptosis in colorectal cancer cells. Notably, LINC00958 inhibited miR-3064-5p and promoted LEMD1; the miR-3064-5p inhibitor abrogated the effect of LINC00958 silencing in colorectal cancer cells. Additionally, LEMD1 knockdown inhibited the activation of PI3K/AKT signaling. Our analyses have shown that LINC00958 could facilitate the progression of colorectal cancer by sponging miR-3064-5p and releasing LEMD1, leading to the activation of the PI3K/AKT pathway. Thus, LINC00958 may be considered as an effective biomarker for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shunxin Hao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jian Yuan
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuo Liu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lei Yao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Bi F, Chen C, Fu J, Yu L, Geng J. Inhibiting proliferation and metastasis of osteosarcoma cells by downregulation of long non-coding RNA colon cancer-associated transcript 2 targeting microRNA-143. Oncol Lett 2021; 21:265. [PMID: 33664828 PMCID: PMC7882883 DOI: 10.3892/ol.2021.12526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor, which has a high incidence in children and adolescents. However, the pathogenesis of osteosarcoma remains unclear. Long noncoding RNA (lncRNA) is a new potential therapeutic target and diagnostic biomarker for osteosarcoma. Hence, the present study aimed to explore the effect of lncRNA colon cancer-associated transcript (CCAT2) on osteosarcoma and its potential underlying mechanisms. For this purpose, the proliferation of osteosarcoma cells was measured using the CCK-8 assay. The scratch-wound and cell invasion assays were used to determine the migration and invasion of osteosarcoma cells, respectively. LncRNA CCAT2 and microRNA (miR)-143 binding sites were identified by the dual-luciferase reporter assay. RNA and protein expression levels were detected by reverse-transcription quantitative PCR and western blotting, respectively. Downregulation of lncRNA CCAT2 inhibited the proliferation, migration, and invasion of osteosarcoma cells. The findings also revealed that miR-143 bound directly to lncRNA CCAT2. The expression of miR-143 was upregulated by the knockdown of lncRNA CCAT2. Downregulation of the FOS-like antigen 2 was also observed after knockdown of lncRNA CCAT2. The function of lncRNA CCAT2 in osteosarcoma cells was attenuated by co-transfection with anti-miR-143 oligodeoxyribonucleotide. In conclusion, downregulation of lncRNA CCAT2 inhibited the proliferation and metastasis of osteosarcoma cells by targeting miR-143. lncRNA CCAT2 was identified as a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Fengjiang Bi
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Can Chen
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Jing Fu
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Lei Yu
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China
| | - Jia Geng
- Department of Orthopedics, The First Hospital of Qiqihaer, Qiqihaer, Heilongjiang 161005, P.R. China,Correspondence to: Dr Jia Geng, Department of Orthopedics, The First Hospital of Qiqihaer, 30 Park Road, Qiqihaer, Heilongjiang 161005, P.R. China, E-mail:
| |
Collapse
|
13
|
Silencing lncRNA DUXAP8 inhibits lung adenocarcinoma progression by targeting miR-26b-5p. Biosci Rep 2021; 41:227120. [PMID: 33269379 PMCID: PMC7791543 DOI: 10.1042/bsr20200884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD), a common type of lung cancer, has become a popularly aggressive cancer. Long noncoding RNAs (lncRNAs) play a critical role in the pathogenesis of human cancers, while the function of double homeobox A pseudogene 8 (DUXAP8) in LUAD remains to be fully inquired. Therefore, our study was conducted to elucidate the DUXAP8 expression in LUAD and its mechanism on the biological features of LUAD cells. Loss-of-function experiments were performed to assess the function of DUXAP8 proliferation and apoptosis of H1975 and A549 cells. Functionally, silencing DUXAP8 inhibited proliferation and induced apoptosis of LUAD cells. Mechanistically, further correlation assay indicated a negative association between miR-26b-5p and DUXAP8 expression. Subsequently, we testified that DUXAP8 exerted its role in the progression and development of LUAD through targeting miR-26b-5p. In summary, our results elucidated that that DUXAP8 promoted tumor progression in LUAD by targeting miR-26b-5p, which provide a novel therapeutic target for diagnosis and therapy of LUAD.
Collapse
|
14
|
Nalivaeva NN, Zhuravin IA, Turner AJ. Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev 2020; 192:111363. [PMID: 32987038 PMCID: PMC7519013 DOI: 10.1016/j.mad.2020.111363] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
Neprilysin (NEP) is an integral membrane-bound metallopeptidase with a wide spectrum of substrates and physiological functions. It plays an important role in proteolytic processes in the kidney, cardiovascular regulation, immune response, cell proliferation, foetal development etc. It is an important neuropeptidase and amyloid-degrading enzyme which makes NEP a therapeutic target in Alzheimer's disease (AD). Moreover, it plays a preventive role in development of cancer, obesity and type-2 diabetes. Recently a role of NEP in COVID-19 pathogenesis has also been suggested. Despite intensive research into NEP structure and functions in different organisms, changes in its expression and regulation during brain development and ageing, especially in age-related pathologies, is still not fully understood. This prevents development of pharmacological treatments from various diseases in which NEP is implicated although recently a dual-acting drug sacubitril-valsartan (LCZ696) combining a NEP inhibitor and angiotensin receptor blocker has been approved for treatment of heart failure. Also, various natural compounds capable of upregulating NEP expression, including green tea (EGCG), have been proposed as a preventive medicine in prostate cancer and AD. This review summarizes the existing literature and our own research on the expression and activity of NEP in normal brain development, ageing and under pathological conditions.
Collapse
Affiliation(s)
- N N Nalivaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - I A Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/β-catenin pathway. Cancer Cell Int 2020; 20:571. [PMID: 33292272 PMCID: PMC7694907 DOI: 10.1186/s12935-020-01665-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer (PC) is common male cancer with high mortality worldwide. Emerging evidence demonstrated that long noncoding RNAs (lncRNAs) play critical roles in various type of cancers including PC by serving as competing endogenous RNAs (ceRNAs) to modulate microRNAs (miRNAs). LncRNA activated by DNA damage (NORAD) was found to be upregulated in PC cells, while the detailed function and regulatory mechanism of NORAD in PC progression remains largely unclear. Methods Expression of NORAD in PC tissues and cell lines were detected by real-time quantitative PCR (qRT-PCR). NORAD was respectively overexpressed and knocked down by transfection with pcDNA-NORAD and NORAD siRNA into PC-3 and LNCap cells. Cell proliferation, invasion and apoptosis were determined by using CCK-8, Transwell and Flow cytometry assays, respectively. The target correlations between miR-30-5p and NORAD or RAB11A were confirmed by using dual luciferase reporter assay. Moreover, expression levels of RAB11A, the epithelial-mesenchymal transition (EMT) marker proteins and the Wnt pathway related proteins were measured by Western blotting. Tumor xenograft assay was used to study the effect of NORAD on tumor growth in vivo. Results NORAD was upregulated in PC tissues and cells. Overexpression of NORAD promoted cell proliferation, invasion, EMT, and inhibited cell apoptosis; while knockdown of NORAD had the opposite effect. NORAD was found to be functioned as a ceRNA to bind and downregulated miR-30a-5p that was downregulated in PC tumor tissues. Rescue experiments revealed that miR-30a-5p could weaken the NORAD-mediated promoting effects on cell proliferation, invasion and EMT. Furthermore, RAB11A that belongs to a member of RAS oncogene family was verified as a target of miR-30a-5p, and reintroduction of RAB11A attenuated the effects of miR-30a-5p overexpression on cell proliferation, invasion, EMT and apoptosis of PC cells. More importantly, silencing RAB11A partially reversed the promoting effects of NORAD overexpression on cell proliferation, invasion and EMT of PC cells via the WNT/β-catenin pathway. Lastly, tumorigenicity assay in vivo demonstrated that NORAD increased tumor volume and weight via miR-30a-5p /RAB11A pathway. Conclusion Our results indicated a significant role of NORAD in mechanisms associated with PC progression. NORAD promoted cell proliferation, invasion and EMT via the miR-30a-5p/RAB11A/WNT/β-catenin pathway, thus inducing PC tumor growth.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Nursing, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China.
| | - Yang Li
- The Second Ward, Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China
| |
Collapse
|
16
|
Chen J, Wang F, Xu H, Xu L, Chen D, Wang J, Huang S, Wen Y, Fang L. Long Non-Coding RNA SNHG1 Regulates the Wnt/β-Catenin and PI3K/AKT/mTOR Signaling Pathways via EZH2 to Affect the Proliferation, Apoptosis, and Autophagy of Prostate Cancer Cell. Front Oncol 2020; 10:552907. [PMID: 33194612 PMCID: PMC7643000 DOI: 10.3389/fonc.2020.552907] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignant cancer in western developed countries, which has seriously threatened the life style and life quality of men. Its pathogenesis and causes remain indistinct. Currently, it is found that lncRNA-SNHG1 (SNHG1) is highly expressed in multiple tumors with proto-oncogene effect, but its function and mechanism in PCa need to be further studied. METHODS The expression of SNHG1 and EZH2 was detected by RT-qPCR in the 20 pairs of PCa tissue, adjacent tissue and PCa cell lines. They were transfected with siRNA NC, SNHG1 siRNA, EZH2 siRNA, SNHG1 siRNA+empty, and SNHG1 siRNA+EZH2 overexpression. Then, MTT and colony formation assay were used to detect the proliferation and cloning ability of PCa cells LNCaP and PC3. Transwell and flow cytometry were used to measure cell migration and invasion ability and apoptosis level respectively. Immunofluorescence was used to detect the LC3 spot formation. Western blot was used to detect the expression of the autophagy-related proteins, and PI3K/AKT/mTOR and Wnt/β-catenin signaling pathway related proteins. Finally, in vivo nude mice tumorigenesis experiment to explore the effect of SNHG1 expression on PCa. RESULTS We found that SNHG1 and EZH2 were up-regulated in PCa tissue and cells. The expression of SNHG1 and EZH2 was positively correlated. RNA pull down and RNA IP assay further confirmed that SNHG1 bound to EZH2. The proliferation, colony formation, migration and invasion of LNCaP and PC3 cells were significantly reduced with the interference with SNHG1or EZH2 compared with the control group. The related proteins of Wnt/β-catenin and PI3K/AKT/mTOR signaling pathway were significantly reduced after the interference with SNHG1 or EZH2; after simultaneous interference with SNHG1 and overexpression of EZH2, the functional effects on LNCaP and PC3 cells interfered with SNHG1 were reversed. These results were also confirmed in vivo nude mice tumor formation experiments. CONCLUSIONS This study reveals that lncRNA-SNHG1 regulates Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways via EZH2 gene to affect proliferation, apoptosis and autophagy of PCa cells. This experiment provides ideas and experimental basis for the improvement and treatment of PCa.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Fubo Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huan Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lingfan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dong Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jialiang Wang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Sihuai Huang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yiqun Wen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Longmin Fang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
17
|
Identification of MSC-AS1, a novel lncRNA for the diagnosis of laryngeal cancer. Eur Arch Otorhinolaryngol 2020; 278:1107-1118. [PMID: 33079247 DOI: 10.1007/s00405-020-06427-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Our study was aimed to identify potential lncRNAs related to laryngeal cancer (LC) and explore their potential regulatory mechanisms. METHODS RNA sequencing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to identify differentially expressed genes (DEGs). Receiver operating characteristic (ROC) curve analysis was performed to analyze the sensitivity and specificity of differentially expressed lncRNAs (DElncRNAs) as biomarkers. Weighted gene co-expression network analysis (WGCNA) was applied to identify co-expressed DElncRNAs and differentially expressed mRNAs (DEmRNAs) associated with clinical indicators. We performed functional enrichment analysis on target genes and constructed a lncRNA-miRNA-mRNA ceRNA network. The expression of lncRNA and mRNAs in ceRNA network were validated via RT-qPCR. RESULTS By differential expression analyzing TCGA and GEO data, 6 up-regulated DElncRNAs were consistently identified, and their predictive performance were suggested to be considerable via ROC curve. 1998 DEmRNAs and 6 lncRNAs were involved in the construction of WGCNA network, in which the MEblue module was positively correlated with clinical stage. Functional enrichment analysis of this module suggested that the functions of DEmRNAs were closely involved in PI3K/Akt pathway. A ceRNA network composed of MSC-AS1, miR-429, COL4A1 and ITGAV was constructed. It was verified by RT-qPCR that the lncRNA and mRNAs in the ceRNA network were highly expressed in multiple LC tissues. CONCLUSIONS This study identified lncRNA MSC-AS1 as a potential biomarker of LC. Besides, we constructed a ceRNA network, which provides a basis for the research of ceRNA in LC.
Collapse
|
18
|
Wang G, Feng B, Niu Y, Wu J, Yang Y, Shen S, Guo Y, Liang J, Guo W, Dong Z. A novel long noncoding RNA, LOC440173, promotes the progression of esophageal squamous cell carcinoma by modulating the miR-30d-5p/HDAC9 axis and the epithelial-mesenchymal transition. Mol Carcinog 2020; 59:1392-1408. [PMID: 33079409 DOI: 10.1002/mc.23264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
Countless evidence suggests that long noncoding RNAs (lncRNAs) are involved in human malignant cancers, including esophageal squamous cell carcinoma (ESCC), although their exact function remains unclear. In the present study, we aimed to investigate the roles and molecular mechanisms of the lncRNA LOC440173 in ESCC progression. Microarray analysis and quantitative real-time polymerase chain reaction were conducted to measure the expression levels of LOC440173 and miR-30d-5p. The biological function of this lncRNA was investigated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, clone formation, and transwell assays, as well as flow cytometry and Western blot analysis. The function of LOC440173 was validated in vivo using tumor xenografts. The regulatory network of LOC440173/miR-30d-5p/HDAC9 was established using bioinformatic analysis and verified with dual-luciferase reporter assays, RNA immunoprecipitation assay, and rescue experiments. The expression level of LOC440173 was significantly increased in ESCC tissues and esophageal carcinoma cells. High LOC440173 expression was correlated with histological grade, tumor invasion depth, lymph node metastasis, and TNM stage. Overexpression of LOC440173 promoted esophageal cancer cell proliferation, migration, and invasion, as well as the epithelial-mesenchymal transition (EMT) process in vitro, and facilitated tumor growth in vivo. MicroRNA-30d-5p (miR-30d-5p) was downregulated in ESCC tissues and acted as a direct binding target of LOC440173 during the regulation of HDAC9 expression in esophageal carcinoma cells. In conclusion, LOC440173 exerts a promotive role in ESCC tumorigenesis by targeting the miR-30d-5p/HDAC9 axis and regulating the EMT process. LOC440173 might be a new therapeutic target for the treatment of ESCC.
Collapse
Affiliation(s)
- Gaoyan Wang
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bo Feng
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunfeng Niu
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianhua Wu
- Department of Experimental Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Yang
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Supeng Shen
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Guo
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia Liang
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiming Dong
- Department of Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Downregulation of LINC00958 inhibits proliferation, invasion and migration, and promotes apoptosis of colorectal cancer cells by targeting miR‑3619‑5p. Oncol Rep 2020; 44:1574-1582. [PMID: 32945474 PMCID: PMC7448424 DOI: 10.3892/or.2020.7707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
The aberrant expression of long non-coding RNAs (lncRNAs), including LINC00958, has been demonstrated in several types cancers. The present study aimed to investigate the role of LINC00958 in colorectal cancer (CRC) and identify the possible underlying mechanisms. The expression of LINC00958 and microRNA (miR)-3619-5p was detected in several human CRC cell lines using reverse transcription-quantitative PCR. Then, short hairpin RNA (shRNA)-LINC00958 was transfected into the cells. The results revealed that the expression of LINC00958 was notably upregulated, whereas miR-3619-5p was downregulated in CRC cells. Transfection with shRNA-LINC00958 inhibited the proliferation, invasion and migration of CRC cells. Moreover, the rate of apoptosis was enhanced, accompanied by a decrease in the expression of Bcl-2 and an increase in the expression of Bax and caspase-3. A luciferase reporter assay was conducted to verify the target binding site between LINC00958 and miR-3619-5p. The luciferase reporter assay confirmed that miR-3619-5p could be directly targeted by LINC00958. Furthermore, the miR-3619-5p inhibitor reversed the effects of LINC00958 silencing on proliferation, invasion, migration and apoptosis. Taken together, the findings suggest that the downregulation of LINC00958 suppresses the proliferation, invasion and migration, and promotes the apoptosis of CRC cells by targeting miR-3619-5p in vitro, which provides a theoretical basis and therapeutic strategy for the treatment of CRC.
Collapse
|
20
|
Bai M, Lei Y, Wang M, Ma J, Yang P, Mou X, Dong Y, Han S. Long Non-coding RNA SNHG17 Promotes Cell Proliferation and Invasion in Castration-Resistant Prostate Cancer by Targeting the miR-144/CD51 Axis. Front Genet 2020; 11:274. [PMID: 32351538 PMCID: PMC7174785 DOI: 10.3389/fgene.2020.00274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Previously, we found that the expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 17 (SNHG17) was up-regulated in castration-resistant prostate cancer (CRPC) cells compared to that in hormone sensitive prostate cancer (HSPC) cells. Moreover, we found that CD51 was up-regulated in prostate cancer cells and promoted the carcinogenesis and progression of prostate cancer. However, the regulatory mechanism of SNHG17 and CD51 in the development of CRPC remains unclear. In the current study, we aimed to elucidate the expressions, functions, and underlying mechanism of SNHG17 and CD51 in CRPC. Our results further confirmed that both SNHG17 and CD51 were up-regulated in CRPC tissues and cells. In addition, we found that SNHG17 expression was positively correlated with CD51 expression in prostate cancer. Mechanically, SNHG17 functioned as a competing endogenous RNA (ceRNA) to up-regulate CD51 expression through competitively sponging microRNA-144 (miR-144), and CD51 was identified as a direct downstream target of miR-144 in CRPC. Functionally, down-regulation of SNHG17 or up-regulation of miR-144 inhibited the proliferation, migration, and invasion of CRPC cells, whereas up-regulation of SNHG17 and down-regulation of miR-144 promoted the proliferation, migration and invasion of CRPC cells in vitro and in vivo. Using gain and loss-of function assay and rescue assay, we showed that miR-144 inhibited cell proliferation, migration and invasion by directly inhibiting CD51 expression, and SNHG17 promoted cell proliferation, migration and invasion by directly enhancing CD51 expression in CRPC cells. Taken together, our study reveals the role of the SNHG17/miR-144/CD51 axis in accelerating CRPC cell proliferation and invasion, and suggests that SNHG17 may serve as a novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yutiantian Lei
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Mou
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yiping Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Lin Y, Zhao X, Miao Z, Ling Z, Wei X, Pu J, Hou J, Shen B. Data-driven translational prostate cancer research: from biomarker discovery to clinical decision. J Transl Med 2020; 18:119. [PMID: 32143723 PMCID: PMC7060655 DOI: 10.1186/s12967-020-02281-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor with increasing incidence and high heterogeneity among males worldwide. In the era of big data and artificial intelligence, the paradigm of biomarker discovery is shifting from traditional experimental and small data-based identification toward big data-driven and systems-level screening. Complex interactions between genetic factors and environmental effects provide opportunities for systems modeling of PCa genesis and evolution. We hereby review the current research frontiers in informatics for PCa clinical translation. First, the heterogeneity and complexity in PCa development and clinical theranostics are introduced to raise the concern for PCa systems biology studies. Then biomarkers and risk factors ranging from molecular alternations to clinical phenotype and lifestyle changes are explicated for PCa personalized management. Methodologies and applications for multi-dimensional data integration and computational modeling are discussed. The future perspectives and challenges for PCa systems medicine and holistic healthcare are finally provided.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiaojun Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhijun Miao
- Department of Urology, Suzhou Dushuhu Public Hospital, Suzhou, 215123, China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Pan J, Xu X, Wang G. lncRNA ZFAS1 Is Involved in the Proliferation, Invasion and Metastasis of Prostate Cancer Cells Through Competitively Binding to miR-135a-5p. Cancer Manag Res 2020; 12:1135-1149. [PMID: 32104094 PMCID: PMC7025677 DOI: 10.2147/cmar.s237439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Prostate cancer (PCa) is a common malignant tumor in men. lncRNA ZFAS1 plays a carcinogenic role in many types of cancer; however, its potential role in PCa remains unclear. The current study aimed to determine the expression and function of ZFAS1 in PC. Methods The ZFAS1 expression in PC tissues and cells was determined by quantitative polymerase chain reaction (qPCR). SiZFAS1, miR-135a-5p mimic and miR-135a-5p inhibitor were transfected into PCa cells. The direct target of ZFAS1 was predicted by Starbase and verified by dual-luciferase reporter. Cell viability, proliferation, apoptosis, migration and invasion of the PCa cells were determined by cell counting kit-8, clone formation assay, flow cytometer, scratch and Transwell assay, respectively. The expression levels of related proteins and mRNAs were determined by Western blotting and qPCR. Results ZFAS1 expression was up-regulated in PCa cells and tissues. ZFAS1 could competitively bind to miR-135a-5p in PCa cells, and down-regulation of ZFAS1 inhibited cell viability, proliferation, migration, invasion of PCa cells and the occurrence of epithelial-mesenchymal transformation (EMT) and promoted apoptosis of PCa cells and increased the miR-135a-5p expression. Moreover, the function of miR-135a-5p mimic in PCa cells was consistent with ZFAS1 knockdown, while the function of miR-135a-5p inhibitor was opposite to that of miR-135a-5p mimic in PCa cells. The results showed that knocking down ZFAS1 could attenuate the effects of miR-135a-5p inhibitor on cell proliferation, invasion and EMT of PCa cells. Conclusion Knocking down ZFAS1 could inhibit the proliferation, invasion and metastasis of PCa cells through regulating miR-135a-5p expression.
Collapse
Affiliation(s)
- Jiaqiang Pan
- Department of Urology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Xingyan Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Guangliang Wang
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
23
|
Yang X, Xin N, Qu HJ, Wei L, Han Z. Long noncoding RNA TUG1 facilitates cell ovarian cancer progression through targeting MiR-29b-3p/MDM2 axis. Anat Rec (Hoboken) 2020; 303:3024-3034. [PMID: 31930662 DOI: 10.1002/ar.24367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022]
Abstract
Ovarian cancer (OC) is one of the most aggressive female cancers in the world. OC trends to be diagnosed at an advanced stage with abdominal metastasis. Our study explored the biological function and underlying mechanism of lncRNA on OC cell proliferation and migration. The expression of turine up-regulated gene 1 (TUG1) in human OC tissues and cell lines was measured by qRT-PCR. OC cell proliferation, viability, migration, and invasion were measured by MTT assays, colony formation assays, and transwell assays in vitro. Furthermore, the nude mice xenograft model was established to determine the effects of TUG1 in vivo. The relationship between TUG1 and miR-29b-3p, as well as miR-29b-3p and MDM2 were identified using the luciferase reporter assays. We showed that the expression of TUG1 and MDM2 were significantly increased, but the expression of miR-29b-3p was remarkably decreased in OC tissues and cell lines. Knockdown of TUG1 strongly inhibited the ability of cell proliferation, colony formation, migration, and invasion in vitro. The relationship between TUG1 and miR-29b-3p, or miR-29b-3p and MDM2 were predicted by StarBase and miRanda online software. Besides, miR-29b-3p reversed the positive effect of TUG1 on the OC cell proliferation, migration, and invasion through inhibiting MDM2 expression and increasing p53 phosphorylation level. Moreover, knockdown of TUG1 suppressed tumor growth in vivo. Taken all together, this study shows that TUG1 plays a crucial oncogenic role and facilitates cell proliferation, migration, and invasion in OC through regulating miR-29b-3p/MDM2 axis.
Collapse
Affiliation(s)
- Xiaoqiu Yang
- Department of Pharmacy, Huangdao District Central Hospital, Qingdao, China
| | - Nana Xin
- Department of Pharmacy, Songshan Hospital, Medical College of Qingdao University, Qingdao, China
| | - Hai-Jun Qu
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lina Wei
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiwu Han
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
24
|
LINC00665 promotes breast cancer progression through regulation of the miR-379-5p/LIN28B axis. Cell Death Dis 2020; 11:16. [PMID: 31907362 PMCID: PMC6944690 DOI: 10.1038/s41419-019-2213-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common malignant tumor among women worldwide. Although increasing evidence indicates that long noncoding RNAs (lncRNAs) play critical roles during breast tumorigenesis and progression, the involvement of most lncRNAs in breast cancer remains largely unknown. In the current study, we demonstrated that LINC00665 promotes breast cancer cell proliferation, migration, and invasion. Accumulating evidence indicates that many lncRNAs can function as endogenous miRNA sponges by competitively binding common miRNAs. In this study, we demonstrated that LINC00665 functions as a sponge for miR-379-5p, reducing the ability of miR-379-5p to repress LIN28B. LINC00665 promoted breast cancer progression and induced an epithelial-mesenchymal transition-like phenotype via the upregulation of LIN28B expression. Clinically, LINC00665 expression was increased but miR-379-5p expression was decreased in breast cancer tissues compared with that in normal breast tissues in the TCGA database. Furthermore, the expression of LINC00665 was negatively related with miR-379-5p expression. Collectively, our results reveal the LINC00665-miR-379-5p-LIN28B axis and shed light on breast cancer therapy.
Collapse
|