1
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
2
|
Wu LW, Jang SJ, Shapiro C, Fazlollahi L, Wang TC, Ryeom SW, Moy RH. Diffuse Gastric Cancer: A Comprehensive Review of Molecular Features and Emerging Therapeutics. Target Oncol 2024; 19:845-865. [PMID: 39271577 PMCID: PMC11557641 DOI: 10.1007/s11523-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Diffuse-type gastric cancer (DGC) accounts for approximately one-third of gastric cancer diagnoses but is a more clinically aggressive disease with peritoneal metastases and inferior survival compared with intestinal-type gastric cancer (IGC). The understanding of the pathogenesis of DGC has been relatively limited until recently. Multiomic studies, particularly by The Cancer Genome Atlas, have better characterized gastric adenocarcinoma into molecular subtypes. DGC has unique molecular features, including alterations in CDH1, RHOA, and CLDN18-ARHGAP26 fusions. Preclinical models of DGC characterized by these molecular alterations have generated insight into mechanisms of pathogenesis and signaling pathway abnormalities. The currently approved therapies for treatment of gastric cancer generally provide less clinical benefit in patients with DGC. Based on recent phase II/III clinical trials, there is excitement surrounding Claudin 18.2-based and FGFR2b-directed therapies, which capitalize on unique biomarkers that are enriched in the DGC populations. There are numerous therapies targeting Claudin 18.2 and FGFR2b in various stages of preclinical and clinical development. Additionally, there have been preclinical advancements in exploiting unique therapeutic vulnerabilities in several models of DGC through targeting of the focal adhesion kinase (FAK) and Hippo pathways. These preclinical and clinical advancements represent a promising future for the treatment of DGC.
Collapse
Affiliation(s)
- Lawrence W Wu
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA
| | - Sung Joo Jang
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron Shapiro
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan H Moy
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Mi L, Yan YJ, Li MY, Xu T, Namulinda T, Meerovich GA, Reshetov IV, Kogan EA, Atassi Y, Chen ZL. Synthesis and evaluation of 5,15-diaryltetrabenzoporphyrins as photosensitizers for photo-diagnosis and photodynamic activity of tumors. Bioorg Chem 2024; 151:107710. [PMID: 39146762 DOI: 10.1016/j.bioorg.2024.107710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Photodynamic therapy (PDT) is a well-established treatment modality, typically conducted with single-wavelength irradiation, which may not always be optimal for varying tumor locations and sizes. To address this, photosensitizers with absorption wavelengths ranging from 550 to 760 nm are being explored. Herein, a series of 5,15-diaryltetrabenzoporphyrins (Ar2TBPs) were synthesized. All compounds displayed obvious absorption at 550-700 nm (especially at ∼668 nm), intense fluorescence, efficient generation of singlet oxygen and good photodynamic antitumor effects. Notably, compound I3 (5,15-bis[(4-carboxymethoxy)phenyl]tetrabenzoporphyrin) showed excellent cytotoxicity against Eca-109 cell line upon red light irradiation, with an IC50 value of 0.45 μM, and phototherapeutic index of 25.8. Flow cytometry revealed that I3 could induce distinct cell apoptosis. In vivo studies revealed that compound I3 selectively accumulated at tumor site and exhibited outstanding PDT effect with antitumor activity under single-time administration and light irradiation, and revealed more efficiency than the clinical photosensitizer Verteporfin. These findings underscore the considerable promise of I3 as a robust theranostic agent, offering capabilities in real-time fluorescence imaging and serving as a potent photosensitizer for personalized and precise photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Le Mi
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China
| | - Man-Yi Li
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tao Xu
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gennady A Meerovich
- General Physics Institute of Russian Academy of Sciences, Moscow 119435, Russia
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Evgeniy A Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Yomen Atassi
- Department of Applied Physics, Materials Science Laboratory, Higher Institute for Applied Science and Technology, Damascus 31983, Syria
| | - Zhi-Long Chen
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
Li W, Wei J, Cheng M, Liu M. Unveiling promising targets in gastric cancer therapy: A comprehensive review. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200857. [PMID: 39280587 PMCID: PMC11396074 DOI: 10.1016/j.omton.2024.200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge, ranking fifth in incidence and third in mortality among all malignancies worldwide. Its insidious onset, aggressive growth, proclivity for metastasis, and limited treatment options have contributed to its high fatality rate. Traditional approaches for GC treatment primarily involve surgery and chemotherapy. However, there is growing interest in targeted therapies and immunotherapies. This comprehensive review highlights recent advancements in GC targeted therapy and immunotherapy. It delves into the mechanisms of various strategies, underscoring their potential in GC treatment. Additionally, the review evaluates the efficacy and safety of relevant clinical trials. Despite the benefits observed in numerous advanced GC patients with targeted therapies and immunotherapies, challenges persist. We discuss pertinent strategies to overcome these challenges, thereby providing a solid foundation for enhancing the clinical effectiveness of targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Wenke Li
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jing Wei
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Mo Cheng
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ming Liu
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
5
|
Kashihara T, Morita Y, Hatta M, Inoue S, Suzuki Y, Morita A, Nakahara T. YAP activation in Müller cells protects against NMDA-induced retinal ganglion cell injury by regulating Bcl-xL expression. Front Pharmacol 2024; 15:1446521. [PMID: 39166115 PMCID: PMC11333228 DOI: 10.3389/fphar.2024.1446521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Retinal neurodegeneration, characterized by retinal ganglion cell (RGC) death, is a leading cause of vision impairment and loss in blind diseases, such as glaucoma. Müller cells play crucial roles in maintaining retinal homeostasis. Thus, dysfunction of Müller cells has been implicated as one of the causes of retinal diseases. Yes-associated protein 1 (YAP), a nuclear effector of the Hippo pathway, regulates mammalian cell survival. In this study, we investigated the role of YAP in Müller cells during N-methyl-D-aspartic acid (NMDA)-induced excitotoxic RGC injury in rats. We found that YAP expression increased and was activated in Müller cells after NMDA-induced RGC injury. This YAP response was partly due to an increase in Yap mRNA levels, although it may be independent of the Hippo pathway and β-TrCP-mediated YAP degradation. Morphological analysis revealed that verteporfin, a selective YAP inhibitor, exacerbated NMDA-induced RGC degeneration, suggesting that YAP activation in Müller cells contributes to RGC survival in NMDA-treated retinas. Studies in the rat Müller cell line (rMC-1) demonstrated that overexpression of YAP increased the levels of Bcl-xL, while verteporfin decreased the levels of Bcl-xL and cell viability and increased the levels of cytochrome c released from mitochondria and cleaved caspase-3. Finally, we found that Bcl-xL expression increased slightly in NMDA-treated retinas, whereas intravitreal injection of verteporfin suppressed this increase. Our findings suggest that activated YAP in Müller cells protects against NMDA-induced RGC injury by upregulating Bcl-xL expression.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
6
|
Al-Nuaimi DA, Rütsche D, Abukar A, Hiebert P, Zanetti D, Cesarovic N, Falk V, Werner S, Mazza E, Giampietro C. Hydrostatic pressure drives sprouting angiogenesis via adherens junction remodelling and YAP signalling. Commun Biol 2024; 7:940. [PMID: 39097636 PMCID: PMC11297954 DOI: 10.1038/s42003-024-06604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior. Here we show that hydrostatic pressure triggers partial and transient endothelial-to-mesenchymal transition in endothelial monolayers of different vascular beds. Values mimicking microvascular pressure environments promote proliferative and migratory behavior and impair barrier properties that are characteristic of a mesenchymal transition, resulting in increased sprouting angiogenesis in 3D organotypic model systems ex vivo and in vitro. Mechanistically, this response is linked to differential cadherin expression at the adherens junctions, and to an increased YAP expression, nuclear localization, and transcriptional activity. Inhibition of YAP transcriptional activity prevents pressure-induced sprouting angiogenesis. Together, this work establishes hydrostatic pressure as a key modulator of endothelial homeostasis and as a crucial component of the endothelial mechanical niche.
Collapse
Affiliation(s)
| | - Dominic Rütsche
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland
| | - Asra Abukar
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland
| | - Paul Hiebert
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, HU6 7RX, UK
| | - Dominik Zanetti
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Sabine Werner
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| |
Collapse
|
7
|
Mao X, Wang L, Chen Z, Huang H, Chen J, Su J, Li Z, Shen G, Ren Y, Li Z, Wang W, Ou J, Guo W, Hu Y. SCD1 promotes the stemness of gastric cancer stem cells by inhibiting ferroptosis through the SQLE/cholesterol/mTOR signalling pathway. Int J Biol Macromol 2024; 275:133698. [PMID: 38972654 DOI: 10.1016/j.ijbiomac.2024.133698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Cancer stem cells (CSCs) play a substantial role in cancer onset and recurrence. Anomalous iron and lipid metabolism have been documented in CSCs, suggesting that ferroptosis, a recently discovered form of regulated cell death characterised by lipid peroxidation, could potentially exert a significant influence on CSCs. However, the precise role of ferroptosis in gastric cancer stem cells (GCSCs) remains unknown. To address this gap, we screened ferroptosis-related genes in GCSCs using The Cancer Genome Atlas and corroborated our findings through quantitative polymerase chain reaction and western blotting. These results indicate that stearoyl-CoA desaturase (SCD1) is a key player in the regulation of ferroptosis in GCSCs. This study provides evidence that SCD1 positively regulates the transcription of squalene epoxidase (SQLE) by eliminating transcriptional inhibition of P53. This mechanism increases the cholesterol content and the elevated cholesterol regulated by SCD1 inhibits ferroptosis via the mTOR signalling pathway. Furthermore, our in vivo studies showed that SCD1 knockdown or regulation of cholesterol intake affects the stemness of GCSCs and their sensitivity to ferroptosis inducers. Thus, targeting the SCD1/squalene epoxidase/cholesterol signalling axis in conjunction with ferroptosis inducers may represent a promising therapeutic approach for the treatment of gastric cancer based on GCSCs.
Collapse
Affiliation(s)
- Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jialin Chen
- Hepatobiliary and Pancreatic Center, The First Affiliated Hospital, Sun Yat-sen University, 510515, PR China
| | - Jin Su
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of General Surgery, Zhuzhou Hospital affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412000, PR China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jinzhou Ou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
Gupta SRR, Singh S, Rustagi V, Pahuja M, Mangangcha IR, Rinchui M, Jha SK, Singh A, Singh IK. Prognostic role of TEAD4 in TNBC: in-silico inhibition of the TEAD4-YAP interaction by flufenamic acid analogs. In Silico Pharmacol 2024; 12:64. [PMID: 39035099 PMCID: PMC11255177 DOI: 10.1007/s40203-024-00239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant global health challenge due to its highly aggressive nature and invasive characteristics. Dysregulation of the Hippo pathway, a key regulator of various biological processes, is observed in TNBC, and its inhibition holds promise for impeding cancer growth. This in-silico analysis investigates the role of Transcriptional Enhanced Associate Domain 4 (TEAD4) in TNBC and its interaction with Yes Associated Protein (YAP) in cancer progression. Our results demonstrate that TEAD4 upregulation is linked to poor prognosis in TNBC, emphasizing its critical role in the disease. Moreover, we identify CID44521006, an analog of Flufenamic acid, as a potential therapeutic compound capable of disrupting the TEAD4-YAP interaction by binding to the YAP-binding domain of TEAD4. These findings underscore the significance of TEAD4 in TNBC and propose CID44521006 as a promising candidate for therapeutic intervention. The study contributes valuable insights to advance treatment options for TNBC, offering a potential avenue for the development of targeted therapies against this aggressive form of breast cancer. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00239-8.
Collapse
Affiliation(s)
- Shradheya R. R. Gupta
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Shivani Singh
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, 201310 India
| | - Vanshika Rustagi
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Monika Pahuja
- Extramural Wing, Indian Council of Medical Research, New Delhi, 110029 India
| | - Irengbam Rocky Mangangcha
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Moses Rinchui
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
| | - Saurabh K. Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, 110008 India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - Indrakant K. Singh
- Molecular Biology Research Laboratory, Department of Zoology, & DBC I4 Centre, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, 110007 India
| |
Collapse
|
9
|
Qiao J, Feng M, Zhou W, Tan Y, Yang S, Liu Q, Wang Q, Feng W, Pan Y, Cui L. YAP inhibition overcomes adaptive resistance in HER2-positive gastric cancer treated with trastuzumab via the AKT/mTOR and ERK/mTOR axis. Gastric Cancer 2024; 27:785-801. [PMID: 38782859 PMCID: PMC11193831 DOI: 10.1007/s10120-024-01508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC) is a heterogeneous GC subtype characterized by the overexpression of HER2. To date, few specific targeted therapies have demonstrated durable efficacy in HER2-positive GC patients, with resistance to trastuzumab typically emerging within 1 year. However, the mechanisms of resistance to trastuzumab remain incompletely understood, presenting a significant challenge to clinical practice. METHODS In this study, we integrated genetic screening and bulk transcriptome and epigenomic profiling to define the mechanisms mediating adaptive resistance to HER2 inhibitors and identify potential effective therapeutic strategies for treating HER2-positive GCs. RESULTS We revealed a potential association between adaptive resistance to trastuzumab in HER2-positive GC and the expression of YES-associated protein (YAP). Notably, our investigation revealed that long-term administration of trastuzumab triggers extensive chromatin remodeling and initiates YAP gene transcription in HER2-positive cells characterized by the initial inhibition and subsequent reactivation. Furthermore, treatment of HER2-positive GC cells and cell line-derived xenografts (CDX) models with YAP inhibitors in combination with trastuzumab was found to induce synergistic effects through the AKT/mTOR and ERK/mTOR pathways. CONCLUSION These findings underscore the pivotal role of reactivated YAP and mTOR signaling pathways in the development of adaptive resistance to trastuzumab and may serve as a promising joint target to overcome resistance to trastuzumab.
Collapse
Affiliation(s)
- Jiao Qiao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Mei Feng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China
| | - Wenyuan Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuan Tan
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Qi Liu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Weimin Feng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yisheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China
| | - Liyan Cui
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
10
|
Chirikian O, Faynus MA, Merk M, Singh Z, Muray C, Pham J, Chialastri A, Vander Roest A, Goldstein A, Pyle T, Lane KV, Roberts B, Smith JE, Gunawardane RN, Sniadecki NJ, Mack DL, Davis J, Bernstein D, Streichan SJ, Clegg DO, Dey SS, Wilson MZ, Pruitt BL. YAP dysregulation triggers hypertrophy by CCN2 secretion and TGFβ uptake in human pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597045. [PMID: 38895282 PMCID: PMC11185505 DOI: 10.1101/2024.06.03.597045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFβ. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.
Collapse
|
11
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
12
|
Kim G, Bhattarai PY, Lim SC, Lee KY, Choi HS. Sirtuin 5-mediated deacetylation of TAZ at K54 promotes melanoma development. Cell Oncol (Dordr) 2024; 47:967-985. [PMID: 38112979 DOI: 10.1007/s13402-023-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE Nuclear accumulation of YAP/TAZ promotes tumorigenesis in several cancers, including melanoma. Although the mechanisms underlying the nuclear retention of YAP are known, those underlying the retention of TAZ remain unclear. Our study investigates a novel acetylation/deacetylation switch in TAZ, governing its subcellular localization in melanoma tumorigenesis. METHODS Immunoprecipitation/Western blot assessed TAZ protein interactions and acetylation. SIRT5 activity was quantified with enzyme-linked immunosorbent assay. Immunofluorescence indicated TAZ nuclear localization. TEAD transcriptional activity was measured through luciferase reporter assays. ChIP detected TAZ binding to the CTGF promoter. Transwell and wound healing assays quantified melanoma cell invasiveness and migration. Metastasis was evaluated using a mouse model via tail vein injections. Clinical relevance was explored via immunohistochemical staining of patient tumors. RESULTS CBP facilitated TAZ acetylation at K54 in response to epidermal growth factor stimulation, while SIRT5 mediated deacetylation. Acetylation correlated with phosphorylation, regulating TAZ's binding with LATS2 or TEAD. TAZ K54 acetylation enhanced its S89 phosphorylation, promoting cytosolic retention via LATS2 interaction. SIRT5-mediated deacetylation enhanced TAZ-TEAD interaction and nuclear retention. Chromatin IP showed SIRT5-deacetylated TAZ recruited to CTGF promoter, boosting transcriptional activity. In a mouse model, SIRT5 overexpression induced melanoma metastasis to lung tissue following the injection of B16F10 melanocytes via the tail vein, and this effect was prevented by verteporfin treatment. CONCLUSIONS Our study revealed a novel mechanism of TAZ nuclear retention regulated by SIRT5-mediated K54 deacetylation and demonstrated the significance of TAZ deacetylation in CTGF expression. This study highlights the potential implications of the SIRT5/TAZ axis for treating metastatic melanoma.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Poshan Yugal Bhattarai
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
13
|
Ryu HJ, Kim C, Jang H, Kim SI, Shin SJ, Chung KY, Torres-Cabala C, Kim SK. Nuclear Localization of Yes-Associated Protein Is Associated With Tumor Progression in Cutaneous Melanoma. J Transl Med 2024; 104:102048. [PMID: 38490470 DOI: 10.1016/j.labinv.2024.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Yes-associated protein (YAP), an effector molecule of the Hippo signaling pathway, is expressed at high levels in cutaneous melanoma. However, the role of YAP in melanoma progression according to cellular localization is poorly understood. Tissues from 140 patients with invasive melanoma were evaluated by immunohistochemistry. Flow cytometry, western blotting, viability assays, wound healing assays, verteporfin treatment, and xenograft assays were conducted using melanoma cell lines B16F1 and B16F10 subjected to YapS127A transfection and siYap knockdown. Nuclear YAP localization was identified in 63 tumors (45.0%) and was more frequent than cytoplasmic YAP in acral lentiginous and nodular subtypes (P = .007). Compared with cytoplasmic YAP melanomas, melanomas with nuclear YAP had higher mitotic activity (P = .016), deeper invasion (P < .001), and more frequently metastasized to lymph nodes (P < .001) and distant organs (P < .001). Patients with nuclear YAP melanomas had poorer disease-free survival (P < .001) and overall survival (P < .001). Nuclear YAP was an independent risk factor for distant metastasis (hazard ratio: 3.206; 95% CI, 1.032-9.961; P = .044). Proliferative ability was decreased in siYapB16F1 (P < .001) and siYapB16F10 (P = .001) cells and increased in YapS127AB16F1 (P = .003) and YapS127AB16F10 (P = .002) cells. Cell cycle analysis demonstrated relative G1 retention in siYapB16F1 (P < .001) and siYapB16F10 (P < .001) cells and S retention in YapS127AB16F1 cells (P = .008). Wound healing assays showed that Yap knockdown inhibited cell invasion (siYapB16F1, P = .001; siYapB16F10, P < .001), whereas nuclear YAP promoted it (YapS127AB16F, P < .001; YapS127AB16F1, P = .017). Verteporfin, a direct YAP inhibitor, reduced cellular proliferation in B16F1 (P = .003) and B16F10 (P < .001) cells. Proliferative effects of nuclear YAP were confirmed in xenograft mice (P < .001). In conclusion, nuclear YAP in human melanomas showed subtype specificity and correlated with proliferative activity and proinvasiveness. It is expected that YAP becomes a useful prognostic marker, and its inhibition may be a potential therapy for melanoma patients.
Collapse
Affiliation(s)
- Hyang Joo Ryu
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chayeon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyenguk Jang
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Il Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Joon Shin
- Department of Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Yang Chung
- Department of Dermatology, Yonsei University College of Medicine, Seoul, South Korea
| | - Carlos Torres-Cabala
- Department of Pathology, The University of Texas, MD Anderson Cancer Center, Houston, Texas.
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Rio-Vilariño A, Cenigaonandia-Campillo A, García-Bautista A, Mateos-Gómez PA, Schlaepfer MI, Del Puerto-Nevado L, Aguilera O, García-García L, Galeano C, de Miguel I, Serrano-López J, Baños N, Fernández-Aceñero MJ, Lacal JC, Medico E, García-Foncillas J, Cebrián A. Inhibition of the AURKA/YAP1 axis is a promising therapeutic option for overcoming cetuximab resistance in colorectal cancer stem cells. Br J Cancer 2024; 130:1402-1413. [PMID: 38467828 PMCID: PMC11014903 DOI: 10.1038/s41416-024-02649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.
Collapse
Affiliation(s)
- Anxo Rio-Vilariño
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Aiora Cenigaonandia-Campillo
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Ana García-Bautista
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Pedro A Mateos-Gómez
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain
| | - Marina I Schlaepfer
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Oscar Aguilera
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura García-García
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Carlos Galeano
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, Madrid, Spain
| | - Irene de Miguel
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain
| | | | - Natalia Baños
- Preclinical program START Madrid-FJD, Hospital Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - María Jesús Fernández-Aceñero
- Department of Pathology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC/UAM, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, Madrid, Spain
| | - Enzo Medico
- Department of Oncology, Università degli Studi di Torino, Candiolo (TO), Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain.
| | - Arancha Cebrián
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain.
| |
Collapse
|
15
|
Pepe G, Appierdo R, Ausiello G, Helmer-Citterich M, Gherardini PF. A Meta-Analysis Approach to Gene Regulatory Network Inference Identifies Key Regulators of Cardiovascular Diseases. Int J Mol Sci 2024; 25:4224. [PMID: 38673810 PMCID: PMC11049946 DOI: 10.3390/ijms25084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) represent a major concern for global health, whose mechanistic understanding is complicated by a complex interplay between genetic predisposition and environmental factors. Specifically, heart failure (HF), encompassing dilated cardiomyopathy (DC), ischemic cardiomyopathy (ICM), and hypertrophic cardiomyopathy (HCM), is a topic of substantial interest in basic and clinical research. Here, we used a Partial Correlation Coefficient-based algorithm (PCC) within the context of a meta-analysis framework to construct a Gene Regulatory Network (GRN) that identifies key regulators whose activity is perturbed in Heart Failure. By integrating data from multiple independent studies, our approach unveiled crucial regulatory associations between transcription factors (TFs) and structural genes, emphasizing their pivotal roles in regulating metabolic pathways, such as fatty acid metabolism, oxidative stress response, epithelial-to-mesenchymal transition, and coagulation. In addition to known associations, our analysis also identified novel regulators, including the identification of TFs FPM315 and OVOL2, which are implicated in dilated cardiomyopathies, and TEAD1 and TEAD2 in both dilated and ischemic cardiomyopathies. Moreover, we uncovered alterations in adipogenesis and oxidative phosphorylation pathways in hypertrophic cardiomyopathy and discovered a role for IL2 STAT5 signaling in heart failure. Our findings underscore the importance of TF activity in the initiation and progression of cardiac disease, highlighting their potential as pharmacological targets.
Collapse
Affiliation(s)
- Gerardo Pepe
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (R.A.)
| | - Romina Appierdo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (R.A.)
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gabriele Ausiello
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (R.A.)
| | | | | |
Collapse
|
16
|
Liu J, Yuan Q, Guo H, Guan H, Hong Z, Shang D. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed Pharmacother 2024; 173:116310. [PMID: 38394851 DOI: 10.1016/j.biopha.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa. The latest global cancer statistics show that GC ranks fifth in incidence and fourth in mortality among all cancers, posing a serious threat to public health. While early-stage GC is primarily treated through surgery, chemotherapy is the frontline option for advanced cases. Currently, commonly used chemotherapy regimens include FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine). However, with the widespread use of chemotherapy, an increasing number of cases of drug resistance have emerged. This article primarily explores the potential mechanisms of chemotherapy resistance in GC patients from five perspectives: cell death, tumor microenvironment, non-coding RNA, epigenetics, and epithelial-mesenchymal transition. Additionally, it proposes feasibility strategies to overcome drug resistance from four angles: cancer stem cells, tumor microenvironment, natural products, and combined therapy. The hope is that this article will provide guidance for researchers in the field and bring hope to more GC patients.
Collapse
Affiliation(s)
- Jiahua Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hewen Guan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhijun Hong
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
17
|
Li X, Zhong H, Shi Q, Ruan R, Huang C, Wen Q, Zeng S, Xia Y, Zeng Q, Xiong J, Wang S, Chen J, Lei W, Deng J. YAP1-CPNE3 positive feedback pathway promotes gastric cancer cell progression. Cell Mol Life Sci 2024; 81:143. [PMID: 38493426 PMCID: PMC10944813 DOI: 10.1007/s00018-024-05178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Hippo-Yes-associated protein 1 (YAP1) plays an important role in gastric cancer (GC) progression; however, its regulatory network remains unclear. In this study, we identified Copine III (CPNE3) was identified as a novel direct target gene regulated by the YAP1/TEADs transcription factor complex. The downregulation of CPNE3 inhibited proliferation and invasion, and increased the chemosensitivity of GC cells, whereas the overexpression of CPNE3 had the opposite biological effects. Mechanistically, CPNE3 binds to the YAP1 protein in the cytoplasm, inhibiting YAP1 ubiquitination and degradation mediated by the E3 ubiquitination ligase β-transducin repeat-containing protein (β-TRCP). Thereby activating the transcription of YAP1 downstream target genes, which creates a positive feedback cycle to facilitate GC progression. Immunohistochemical analysis demonstrated significant upregulation of CPNE3 in GC tissues. Survival and Cox regression analyses indicated that high CPNE3 expression was an independent prognostic marker for GC. This study elucidated the pivotal involvement of an aberrantly activated CPNE3/YAP1 positive feedback loop in the malignant progression of GC, thereby uncovering novel prognostic factors and therapeutic targets in GC.
Collapse
Affiliation(s)
- Xuan Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qianqian Shi
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qin Wen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yang Xia
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, People's Republic of China
| | - Shanshan Wang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Wan Lei
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, People's Republic of China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
18
|
Cong Q, Yang Y. Hedgehog Signaling Controls Chondrogenesis and Ectopic Bone Formation via the Yap-Ihh Axis. Biomolecules 2024; 14:347. [PMID: 38540766 PMCID: PMC10968511 DOI: 10.3390/biom14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 07/16/2024] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disorder characterized by abnormal bone formation due to ACVR1 gene mutations. The identification of the molecular mechanisms underlying the ectopic bone formation and expansion in FOP is critical for the effective treatment or prevention of HO. Here we find that Hh signaling activation is required for the aberrant ectopic bone formation in FOP. We show that the expression of Indian hedgehog (Ihh), a Hh ligand, as well as downstream Hh signaling, was increased in ectopic bone lesions in Acvr1R206H; ScxCre mice. Pharmacological treatment with an Ihh-neutralizing monoclonal antibody dramatically reduced chondrogenesis and ectopic bone formation. Moreover, we find that the activation of Yap in the FOP mouse model and the genetic deletion of Yap halted ectopic bone formation and decreased Ihh expression. Our mechanistic studies showed that Yap and Smad1 directly bind to the Ihh promoter and coordinate to induce chondrogenesis by promoting Ihh expression. Therefore, the Yap activation in FOP lesions promoted ectopic bone formation and expansion in both cell-autonomous and non-cell-autonomous manners. These results uncovered the crucial role of the Yap-Ihh axis in FOP pathogenesis, suggesting the inhibition of Ihh or Yap as a potential therapeutic strategy to prevent and reduce HO.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
19
|
Seeneevassen L, Zaafour A, Sifré E, Genevois C, Nguyen TL, Pobiedonoscew Y, Giese A, Guignard J, Tiffon C, Rousseau B, Raymond AA, Belleannée G, Boeuf H, Gronnier C, Martin OCB, Giraud J, Lehours P, Dubus P, Varon C. Targeting metastasis-initiating cancer stem cells in gastric cancer with leukaemia inhibitory factor. Cell Death Discov 2024; 10:120. [PMID: 38453889 PMCID: PMC10920825 DOI: 10.1038/s41420-024-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer's (GC) bad prognosis is usually associated with metastatic spread. Invasive cancer stem cells (CSC) are considered to be the seed of GC metastasis and not all CSCs are able to initiate metastasis. Targeting these aggressive metastasis-initiating CSC (MIC) is thus vital. Leukaemia inhibitory factor (LIF) is hereby used to target Hippo pathway oncogenic members, found to be induced in GC and associated with CSC features. LIF-treated GC cell lines, patient-derived xenograft (PDX) cells and/or CSC tumourspheres underwent transcriptomics, laser microdissection-associated proteomics, 2D and 3D invasion assays and in vivo xenograft in mice blood circulation. LIFR expression was analysed on tissue microarrays from GC patients and in silico from public databases. LIF-treated cells, especially CSC, presented decreased epithelial to mesenchymal transition (EMT) phenotype and invasion capacity in vitro, and lower metastasis initiation ability in vivo. These effects involved both the Hippo and Jak/Stat pathways. Finally, GC's high LIFR expression was associated with better clinical outcomes in patients. LIF treatment could thus represent a targeted anti-CSC strategy to fight against metastatic GC, and LIFR detection in primary tumours could constitute a potential new prognosis marker in this disease.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Anissa Zaafour
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Elodie Sifré
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Coralie Genevois
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
- VIVOPTIC TBM-Core, University Bordeaux, CNRS UAR3427 INSERM US005, 33076, Bordeaux, France
| | - Tra Ly Nguyen
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Yasmine Pobiedonoscew
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Alban Giese
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Jérôme Guignard
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Camille Tiffon
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Benoit Rousseau
- Animal Facility, University of Bordeaux, 33076, Bordeaux, France
| | - Anne-Aurélie Raymond
- Oncoprot TBM-Core, University of Bordeaux, CNRS UAR3427 INSERM US005, 33076, Bordeaux, France
| | - Geneviève Belleannée
- CHU Bordeaux, F-33076, Bordeaux, France
- Department of Histology and Pathology, CHU Bordeaux, F-33000, Bordeaux, France
| | - Hélène Boeuf
- INSERM U1026, Tissue Bioengineering, University of Bordeaux, Bordeaux, France
| | - Caroline Gronnier
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
- CHU Bordeaux, F-33076, Bordeaux, France
- Department of Digestive Surgery, Haut-Lévêque Hospital, F-33000, Bordeaux, France
| | - Océane C B Martin
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Julie Giraud
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
| | - Philippe Lehours
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
- CHU Bordeaux, F-33076, Bordeaux, France
- Centre National de Référence des Campylobacters et Helicobacters, Pellegrin Hospital, Bordeaux, 33076, France
| | - Pierre Dubus
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France
- CHU Bordeaux, F-33076, Bordeaux, France
- Department of Histology and Pathology, CHU Bordeaux, F-33000, Bordeaux, France
| | - Christine Varon
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
20
|
Liu K, Wehling L, Wan S, Weiler SME, Tóth M, Ibberson D, Marhenke S, Ali A, Lam M, Guo T, Pinna F, Pedrini F, Damle-Vartak A, Dropmann A, Rose F, Colucci S, Cheng W, Bissinger M, Schmitt J, Birner P, Poth T, Angel P, Dooley S, Muckenthaler MU, Longerich T, Vogel A, Heikenwälder M, Schirmacher P, Breuhahn K. Dynamic YAP expression in the non-parenchymal liver cell compartment controls heterologous cell communication. Cell Mol Life Sci 2024; 81:115. [PMID: 38436764 PMCID: PMC10912141 DOI: 10.1007/s00018-024-05126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
INTRODUCTION The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.
Collapse
Affiliation(s)
- Kaijing Liu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangdong, China
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Lilija Wehling
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Department of Modeling of Biological Processes, COS Heidelberg/BioQuant, Heidelberg University, Heidelberg, Germany
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Macrina Lam
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Te Guo
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Pinna
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Fabiola Pedrini
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Amruta Damle-Vartak
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Anne Dropmann
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wenxiang Cheng
- Translational Medicine R&D Center, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jennifer Schmitt
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Patrizia Birner
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Zaafour A, Seeneevassen L, Nguyen TL, Genevois C, Nicolas N, Sifré E, Giese A, Porcheron C, Descarpentrie J, Dubus P, Khatib AM, Varon C. Inhibition of proprotein convertases activity results in repressed stemness and invasiveness of cancer stem cells in gastric cancer. Gastric Cancer 2024; 27:292-307. [PMID: 38280128 DOI: 10.1007/s10120-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Gastric cancer (GC), the fourth leading cause of cancer-related death worldwide, with most deaths caused by advanced and metastatic disease, has limited curative options. Here, we revealed the importance of proprotein convertases (PCs) in the malignant and metastatic potential of GC cells through the regulation of the YAP/TAZ/TEAD pathway and epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSC). METHODS The general PCs inhibitor, decanoyl-RVKR-chloromethyl-ketone (CMK), was used to repress PCs activity in CSCs of various GC cell lines. Their tumorigenic properties, drug resistance, YAP/TAZ/TEAD pathway activity, and invasive properties were then investigated in vitro, and their metastatic properties were explored in a mouse xenograft model. The prognostic value of PCs in GC patients was also explored in molecular databases of GC. RESULTS Inhibition of PCs activity in CSCs in all GC cell lines reduced tumorsphere formation and growth, drug efflux, EMT phenotype, and invasive properties that are associated with repressed YAP/TAZ/TEAD pathway activity in vitro. In vivo, PCs' inhibition in GC cells reduced their metastatic spread. Molecular analysis of tumors from GC patients has highlighted the prognostic value of PCs. CONCLUSIONS PCs are overexpressed in GC and associated with poor prognosis. PCs are involved in the malignant and metastatic potential of CSCs via the regulation of EMT, the YAP/TAZ/TEAD oncogenic pathway, and their stemness and invasive properties. Their repression represents a new strategy to target CSCs and impair metastatic spreading in GC.
Collapse
Affiliation(s)
- Anissa Zaafour
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Lornella Seeneevassen
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Tra Ly Nguyen
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Coralie Genevois
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
- Vivoptic Platform, CNRS, INSERM TBM-Core UAR3427 US5, Univ. Bordeaux, 33000, Bordeaux, France
| | - Nour Nicolas
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Elodie Sifré
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Alban Giese
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Chloé Porcheron
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Jean Descarpentrie
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Pierre Dubus
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
- Department of Histology and Pathology, CHU Bordeaux, 33000, Bordeaux, France
| | - Abdel-Majid Khatib
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France
| | - Christine Varon
- BoRdeaux Institute of onCology (BRIC), INSERM U1312, Univ. Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
22
|
Chen L, Xu G, Song X, Zhang L, Chen C, Xiang G, Wang S, Zhang Z, Wu F, Yang X, Zhang L, Ma X, Yu J. A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer by CCR5-YAP1 regulation. Cancer Lett 2024; 583:216635. [PMID: 38237887 DOI: 10.1016/j.canlet.2024.216635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) with a high mortality rate, and few effective therapeutic strategies are available. CCL5/CCR5 is an appealing immunotherapeutic target for TNBC. However, its signaling mechanism is poorly understood and its direct antagonists have not been reported. Here, we developed a high-throughput screening (HTS) assay for discovering its antagonists. Verteporfin was identified as a more selective and potent antagonist than the known CCR5 antagonist maraviroc. Without photodynamic therapy, verteporfin demonstrated significant inhibition on TNBC tumor growth through immune regulation, remarkable suppression of lung metastasis by cell-intrinsic mechanism, and a significant extension of overall survival in vivo. Mechanistically, CCR5 was found to be essential for expression of the key hippo effector YAP1. It promoted YAP1 transcription via HIF-1α and exerted further control over the migration of CD8+ T, NK, and MDSC immune cells through chemokines CXCL16 and CXCL8 which were identified from RNA-seq. Moreover, the CCR5-YAP1 axis played a vital role in promoting metastasis by modulating β-catenin and core epithelial-mesenchymal transition transcription factors ZEB1 and ZEB2. It is noteworthy that the regulatory relationship between CCR5 and YAP1 was observed across various BC subtypes, TNBC patients, and showed potential relevance in fifteen additional cancer types. Overall, this study introduced an easy-to-use HTS assay that streamlines the discovery of CCL5/CCR5 axis antagonists. Verteporfin was identified as a specific molecular probe of this axis with great potentials as a therapeutic agent for treating sixteen malignant diseases characterized by heightened CCR5 and YAP1 levels.
Collapse
Affiliation(s)
- Ling Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiying Xu
- Department of Breast Surgery, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Xiaoxu Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lianbo Zhang
- Department of Breast Surgery, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Chuyu Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gang Xiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuxuan Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuanming Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Li H, Kuhn M, Kelly RA, Singh A, Palanivel KK, Salama I, De Ieso ML, Stamer WD, Ganapathy PS, Herberg S. Targeting YAP/TAZ mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology. Am J Physiol Cell Physiol 2024; 326:C513-C528. [PMID: 38105758 PMCID: PMC11192480 DOI: 10.1152/ajpcell.00438.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Pathological alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared with that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell mechanosignaling via YAP and transcriptional coactivator with PDZ-binding motif (TAZ) in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP/TAZ activity in primary human SC cells, and whether disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP/TAZ activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP/TAZ mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Finally, we found that perfusion of the clinically used, small molecule YAP/TAZ inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP/TAZ mechanosignaling in SC cell dysfunction and suggest that YAP/TAZ inhibition has therapeutic value for treating ocular hypertension in glaucoma.NEW & NOTEWORTHY Pathologically altered biomechanical properties of the Schlemm's canal (SC) inner wall microenvironment were recently validated as the cause for increased outflow resistance in ocular hypertensive glaucoma. However, the involvement of specific mechanotransduction pathways in these disease processes is largely unclear. Here, we demonstrate that Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are central regulators of glaucoma-like SC cell dysfunction in response to extracellular matrix stiffening and that targeted disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and enhances outflow function.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ruth A Kelly
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Kavipriya Kovai Palanivel
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Izzy Salama
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
24
|
Abou Hammoud A, Giraud J, Gauthereau X, Blanchard C, Daburon S, Zese M, Molina-Castro S, Dubus P, Varon C, Boeuf H. The "StemDif Sensor Test": A Straightforward, Non-Invasive Assay to Characterize the Secreted Stemness and/or Differentiation Activities of Tumor-Derived Cancer Cell Lines. Biomedicines 2023; 11:3293. [PMID: 38137514 PMCID: PMC10741605 DOI: 10.3390/biomedicines11123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer stem cells are a subpopulation of tumor cells characterized by their ability to self-renew, induce tumors upon engraftment in animals and exhibit strong resistance to chemotherapy and radiotherapy. These cells exhibit numerous characteristics in common with embryonic stem cells, expressing some of their markers, typically absent in non-pathological adult differentiated cells. The aim of this study was to investigate the potential of conditioned media from cancer stem cells to modulate the fate of Leukemia Inhibitory Factor (LIF)-dependent murine embryonic stem cells (mESCs) as a way to obtain a direct readout of the secretome of cancer cells. A functional assay, "the StemDif sensor test", was developed with two types of cancer stem cells derived from grade IV glioblastoma (adult and pediatric) or from gastric adenocarcinoma. We show that conditioned media from the selection of adult but not pediatric Glioma-Inducing Cells (GICs) maintain mESCs' pluripotency in correlation with LIF secretion and activation of STAT3 protein. In contrast, conditioned media from gastric adenocarcinoma cells display LIF-independent stemness and differentiation activities on mESC. Our test stands out for its user-friendly procedures, affordability and straightforward output, positioning it as a pioneering tool for in-depth exploration of cancer stem cell secretome characteristics.
Collapse
Affiliation(s)
- Aya Abou Hammoud
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
- Univ. Bordeaux, INSERM, BRIC-MIRCADE Team, U1312, F-33000 Bordeaux, France
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Julie Giraud
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
- Univ. Bordeaux, CNRS, ImmunoConcEpT, U5164, F-33000 Bordeaux, France;
| | - Xavier Gauthereau
- Univ. Bordeaux, CNRS, ImmunoConcEpT, U5164, F-33000 Bordeaux, France;
| | - Camille Blanchard
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
| | | | - Marco Zese
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
| | - Silvia Molina-Castro
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Pierre Dubus
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Christine Varon
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Helene Boeuf
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
| |
Collapse
|
25
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
26
|
Hou J, Pan T, Li F, Sang Q, Wu X, Li J, Yu B, Zang M, Zhu ZG, Su L, Liu B. Androgen receptor promotes cell stemness via interacting with co-factor YAP1 in gastric cancer. Biochem Pharmacol 2023; 217:115849. [PMID: 37806457 DOI: 10.1016/j.bcp.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Cancer stem cells (CSCs) have been proposed to explain tumor relapse and chemoresistance in various types of cancers, and androgen receptor (AR) has been emerged as a potential regulator of stemness in cancers. However, the underlying mechanism of AR-regulated CSCs properties and chemoresistance in gastric cancer (GC) remains unknown. Here, we shown that AR is upregulated in GC tissues and correlates with poor survival rate and CSCs phenotypes of GC patients. According to our experimental data, overexpression of AR upregulated the expression of CSCs markers and this was consistent with the result concluded from data analysis that the expression of AR was positively correlated with CD44 in GC patients. In addition, AR overexpression obviously enhanced the tumor sphere formation ability and chemoresistance of GC cells in vitro. Whereas these effects were attenuated by inhibition of AR. These results were further validated in vivo that MGC-803 cells overexpressing AR had stronger properties to initiate gastric tumorigenesis than the control cells, and inhibition of AR increased the chemosensitivity of GC cells. Mechanically, AR upregulated CD44 expression by directly binding to its promoter region and Yes-associated protein 1 (YAP1) served as the co-factor of AR, which was demonstrated by the fact that the promoting effects of AR on GC cells stemness were partially counteracted by YAP1 knockdown. Thus, this study revealed that AR facilitates CSCs properties and chemoresistance of GC cells via forming complex with YAP1and indicates a potential therapeutic approach to GC patients.
Collapse
Affiliation(s)
- Junyi Hou
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tao Pan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fangyuan Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qingqing Sang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiongyan Wu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zheng-Gang Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China.
| |
Collapse
|
27
|
Shi H, Zou Y, Zhong W, Li Z, Wang X, Yin Y, Li D, Liu Y, Li M. Complex roles of Hippo-YAP/TAZ signaling in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:15311-15322. [PMID: 37608027 DOI: 10.1007/s00432-023-05272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The Hippo signaling pathway is an evolutionarily conserved signaling module that controls organ size in different species, and the disorder of the Hippo pathway can induce liver cancer in organisms, especially hepatocellular carcinoma (HCC). The exact mechanism that causes cancer is still unknown. Recent studies have shown that it is a classical kinase cascade that phosphorylates the Mst1/2-sav1 complex and activates the phosphorylation of the Lats1/2-mob1A/B complex for inactivating Yap and Taz. These kinases and scaffolds are regarded as primary regulators of the Hippo pathway, and help in activating a variety of carcinogenic processes. Among them, Yap/Taz is seen to be the main effector molecule, which is downstream of the Hippo pathway, and its abnormal activation is related to a variety of human cancers including liver cancer. Currently, since Yap/Taz plays a variety of roles in cancer promotion and tumor regeneration, the Hippo pathway has emerged as an attractive target in recent drug development research. METHODS We collect and review relevant literature in web of Science and Pubmed. CONCLUSION This review highlights the important roles of Yap/Taz in activating Hippo pathway in liver cancer. The recent findings on the crosstalks between the Hippo and other cancer associated pathways and moleculars are also discussed. In this review, we summarized and discussed recent breakthroughs in our understanding of how key components of the Hippo-YAP/TAZ pathway influence the hepatocellular carcinoma, including their effects on tumor occurrence and development, their roles in regulating metastasis, and their function in chemotherapy resistance. Further, the molecular mechanism and roles in regulating cross talk between Hippo-YAP/TAZ pathway and other cancer-associated pathways or oncogenes/cancer suppressor genes were summarized and discussed. More, many other inducers and inhibitors of this signaling cascade and available experimental therapies against the YAP/TAZ/TEAD axis were discussed. Targeting this pathway for cancer therapy may have great significance in the treatment of hepatocellular carcinoma. Graphical summary of the complex role of Hippo-YAP/TAZ signaling in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hewen Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Zou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Weiwei Zhong
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhaoying Li
- Traditional Chinese Medicine Research Center, Shandong Public Health Clinical Center, Jinan, 250102, People's Republic of China
| | - Xiaoxue Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Yu L, Zhu G, Zhang Z, Xu Z, Peng W, Zeng L, Yu Y, Wang S, Lin Z, Zhang X, Zhou N, Zhang L, Liang L. Nano-Photosensitizer Directed Targeted Phototherapy Effective Against Oral Cancer in Animal Model. Int J Nanomedicine 2023; 18:6185-6198. [PMID: 37933297 PMCID: PMC10625746 DOI: 10.2147/ijn.s434917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
Background Photodynamic therapy (PDT) has emerged as a promising strategy for oral cancer treatment. Verteporfin is a powerful photosensitizer and widely used in the treatment of macular degeneration. However, rare work has reported its potential in the treatment of oral cancer. Methods In this study, we introduce an innovative approach of nano-photosensitizer based on Verteporfin, which was prepared by utilizing macrophage membrane to coat Verteporfin-loaded zeolitic imidazolate framework 8 (ZIF-8) for effective photodynamic therapy against oral cancer. Nanoparticle characteristics were assessed including size, zeta potential, and PDI. Cellular uptake studies were conducted using CAL-27 cells. Furthermore, inhibitory effects in both in vitro and in vivo settings were observed, ensuring biosafety. Assessment of anticancer efficacy involved tumor volume measurement, histological analyses, and immunohistochemical staining. Results In vitro experiments indicated that the nano-photosensitizer showed efficient cellular uptake in the oral cancer cells. Upon the laser irradiation, the nano-photosensitizer induced the generation of reactive oxygen species (ROS), leading to cancer cell apoptosis. The in vivo experiments indicated that the coating with cell membranes enhanced the circulation time of nano-photosensitizer. Moreover, the specificity of the nano-photosensitizer to the cancer cells was also improved by the cell membrane-camouflaged structure in the tumor-bearing mouse model, which inhibited the tumor growth significantly by the photodynamic effect in the presence of laser irradiation. Conclusion Overall, our findings demonstrate the potential of macrophage membrane-coated ZIF-8-based nanoparticles loaded with Verteporfin for effective photodynamic therapy in oral cancer treatment. This nano-system holds promise for synergistic cancer therapy by combining the cytotoxic effects of PDT with the activation of the immune system, providing a novel therapeutic strategy for combating cancer.
Collapse
Affiliation(s)
- Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
| | - Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
| | - Zidan Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
| | - Weijie Peng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, People’s Republic of China
| | - Siran Wang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
| | - Zhongxiao Lin
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau, People’s Republic of China
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau, People’s Republic of China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macau, People’s Republic of China
| | - Lingmin Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Lu Liang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, People’s Republic of China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
29
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
30
|
Xiao X, Liu M, Xie S, Liu C, Huang X, Huang X. Long non-coding HOXA-AS3 contributes to osteosarcoma progression through the miR-1286/TEAD1 axis. J Orthop Surg Res 2023; 18:730. [PMID: 37752588 PMCID: PMC10523635 DOI: 10.1186/s13018-023-04214-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Long non-coding RNA (lncRNA) HOXA cluster antisense RNA 3 (HOXA-AS3) regulates the progression of several types of human malignancy. However, the role and potential mechanism of HOXA-AS3 in osteosarcoma (OS) remain unknown. In this study, upregulation of HOXA-AS3 was observed in OS tissues and cell lines and associated with poor clinical outcomes. Silencing of HOXA-AS3 significantly inhibited the proliferation, migration and invasion of OS cells in vitro and suppressed the tumorigenesis of OS cells in vivo. Furthermore, knockdown of HOXA-AS3 inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) and epithelial-to-mesenchymal transition (EMT) in OS. Further investigation of this mechanism revealed that HOXA-AS3 could directly upregulate the expression of TEAD1 via its competing endogenous RNA (ceRNA) activity on miR-1286. This study clarified the oncogenic roles of the HOXA-AS3/miR-1286/TEAD1 axis in OS progression, suggesting a novel therapeutic target for OS.
Collapse
Affiliation(s)
- Xiangjun Xiao
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Mingjiang Liu
- Department of Orthopedic Trauma and Hand Surgery, Changsha Central Hospital Affiliated to Nanhua University, NO. 161 Shaoshan Nan Road, Changsha, 410018, China.
| | - Songlin Xie
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Changxiong Liu
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xinfeng Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xiongjie Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| |
Collapse
|
31
|
Osama M, Essibayi MA, Osama M, Ibrahim IA, Nasr Mostafa M, Şakir Ekşi M. The impact of interaction between verteporfin and yes-associated protein 1/transcriptional coactivator with PDZ-binding motif-TEA domain pathway on the progression of isocitrate dehydrogenase wild-type glioblastoma. J Cent Nerv Syst Dis 2023; 15:11795735231195760. [PMID: 37600236 PMCID: PMC10439684 DOI: 10.1177/11795735231195760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Verteporfin and 5-ALA are used for visualizing malignant tissue components in different body tumors and as photodynamic therapy in treating isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM). Additionally, verteporfin interferes with Yes-associated protein 1 (YAP)/Transcriptional coactivator with PDZ-binding motif - TEA domain (TAZ-TEAD) pathway, thus inhibiting the downstream effect of these oncogenes and reducing the malignant properties of GBM. Animal studies have shown verteporfin to be successful in increasing survival rates, which have led to the conduction of phase 1 and 2 clinical trials to further investigate its efficacy in treating GBM. In this article, we aimed to review the novel mechanism of verteporfin's action, the impact of its interaction with YAP/TAZ-TEAD, its effect on glioblastoma stem cells, and its role in inducing ferroptosis.
Collapse
Affiliation(s)
- Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammed Amir Essibayi
- Department of Neurosurgery, Albert Einstein College of Medicine, New York City, NY, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mona Osama
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ismail A. Ibrahim
- Department of Physical Therapy and Rehabilitation, Fenerbahce University, Istanbul, Turkey
| | | | - Murat Şakir Ekşi
- Neurosurgery Clinic, FSM Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
32
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
33
|
Ni T, Chu Z, Tao L, Zhao Y, Zhu M, Luo Y, Sunagawa M, Wang H, Liu Y. PTBP1 drives c-Myc-dependent gastric cancer progression and stemness. Br J Cancer 2023; 128:1005-1018. [PMID: 36635500 PMCID: PMC10006230 DOI: 10.1038/s41416-022-02118-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) tumorigenesis and treatment failure are caused by cancer stem cells. Polypyrimidine tract binding protein 1 (PTBP1) was shown to be involved in the development of embryonic stem cells and is now being considered as a therapeutic target for tumour progression and stem-cell characteristics. METHODS PTBP1 expression in GC samples was detected using tissue microarrays. Proliferation, colony formation, spheroid formation and stem-cell analysis were used to examine PTBP1's role in tumorigenesis and stem-cell maintenance. In AGS and HGC-27 cells with or without PTBP1 deficiency, ubiquitin-related protein expression and co-precipitation assays were performed. RESULTS We identified that PTBP1 was aberrantly highly expressed and represented a novel prognostic factor in GC patients. PTBP1 maintained the tumorigenic activity and stem-cell characteristics of GC in vitro and in vivo. PTBP1 directly interacts with c-Myc and stabilises its protein levels by preventing its proteasomal degradation. This is mediated by upregulating the ubiquitin-specific proteases USP28 and limiting FBW7-mediated ubiquitination of c-Myc. Moreover, the depletion of PTBP1-caused tumour regression was significantly compromised by exogenous c-Myc expression. CONCLUSIONS By preserving the stability of c-Myc through the ubiquitin-proteasome pathway, the oncogene PTBP1 supports stem-cell-like phenotypes of GC and is involved in GC progression.
Collapse
Affiliation(s)
- Tengyang Ni
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Zewen Chu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Li Tao
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,Department of Pharmacy, College of Medicine, Yangzhou University, 225001, Yangzhou, Jiangsu, China
| | - Yang Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,Department of Pharmacy, College of Medicine, Yangzhou University, 225001, Yangzhou, Jiangsu, China
| | - Miao Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142, Japan
| | - Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China. .,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China.
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China. .,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China.
| |
Collapse
|
34
|
Cao Z, An L, Han Y, Jiao S, Zhou Z. The Hippo signaling pathway in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36924251 DOI: 10.3724/abbs.2023038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) is an aggressive malignant disease which still lacks effective early diagnosis markers and targeted therapies, representing the fourth-leading cause of cancer-associated death worldwide. The Hippo signaling pathway plays crucial roles in organ size control and tissue homeostasis under physiological conditions, yet its aberrations have been closely associated with several hallmarks of cancer. The last decade witnessed a burst of investigations dissecting how Hippo dysregulation contributes to tumorigenesis, highlighting the therapeutic potential of targeting this pathway for tumor intervention. In this review, we systemically document studies on the Hippo pathway in the contexts of gastric tumor initiation, progression, metastasis, acquired drug resistance, and the emerging development of Hippo-targeting strategies. By summarizing major open questions in this field, we aim to inspire further in-depth understanding of Hippo signaling in GC development, as well as the translational implications of targeting Hippo for GC treatment.
Collapse
Affiliation(s)
- Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China.,CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.,Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
35
|
Golubev DA, Zemskaya NV, Gorbunova AA, Kukuman DV, Moskalev A, Shaposhnikov MV. Studying the Geroprotective Properties of YAP/TAZ Signaling Inhibitors on Drosophila melanogaster Model. Int J Mol Sci 2023; 24:ijms24066006. [PMID: 36983079 PMCID: PMC10058302 DOI: 10.3390/ijms24066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging.
Collapse
Affiliation(s)
- Denis A Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Nadezhda V Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Anastasia A Gorbunova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Daria V Kukuman
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Mikhail V Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
36
|
Liu Y, Zhang B, Zhou Y, Xing Y, Wang Y, Jia Y, Liu D. Targeting Hippo pathway: A novel strategy for Helicobacter pylori-induced gastric cancer treatment. Biomed Pharmacother 2023; 161:114549. [PMID: 36958190 DOI: 10.1016/j.biopha.2023.114549] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The Hippo pathway plays an important role in cell proliferation, apoptosis, and differentiation; it is a crucial regulatory pathway in organ development and tumor growth. Infection with Helicobacter pylori (H. pylori) increases the risk of developing gastric cancer. In recent years, significant progress has been made in understanding the mechanisms by which H. pylori infection promotes the development and progression of gastric cancer via the Hippo pathway. Exploring the Hippo pathway molecules may yield new diagnostic and therapeutic targets for H. pylori-induced gastric cancer. The current article reviews the composition and regulatory mechanism of the Hippo pathway, as well as the research progress of the Hippo pathway in the occurrence and development of H. pylori-related gastric cancer, in order to provide a broader perspective for the study and prevention of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Bingkai Zhang
- Department of Anorectal Surgery, Qingzhou People's Hospital, Qingzhou, People's Republic of China
| | - Yimin Zhou
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China.
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| |
Collapse
|
37
|
Condurat AL, Aminzadeh-Gohari S, Malnar M, Schider N, Opitz L, Thomas R, Menon V, Kofler B, Pruszak J. Verteporfin-induced proteotoxicity impairs cell homeostasis and survival in neuroblastoma subtypes independent of YAP/TAZ expression. Sci Rep 2023; 13:3760. [PMID: 36882436 PMCID: PMC9992669 DOI: 10.1038/s41598-023-29796-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma (NB) is a highly aggressive extracranial solid tumor in children. Due to its heterogeneity, NB remains a therapeutic challenge. Several oncogenic factors, including the Hippo effectors YAP/TAZ, are associated with NB tumorigenesis. Verteporfin (VPF) is an FDA-approved drug shown to directly inhibit YAP/TAZ activity. Our study aimed to investigate VPF's potential as a therapeutic agent in NB. We show that VPF selectively and efficiently impairs the viability of YAP/TAZ-expressing NB GI-ME-N and SK-N-AS cells, but not of non-malignant fibroblasts. To investigate whether VPF-mediated NB cell killing is YAP-dependent, we tested VPF potency in CRISPR-mediated YAP/TAZ knock-out GI-ME-N cells, and BE(2)-M17 NB cells (a MYCN-amplified, predominantly YAP-negative NB subtype). Our data shows that VPF-mediated NB cell killing is not dependent on YAP expression. Moreover, we determined that the formation of higher molecular weight (HMW) complexes is an early and shared VPF-induced cytotoxic mechanism in both YAP-positive and YAP-negative NB models. The accumulation of HMW complexes, involving STAT3, GM130 and COX IV proteins, impaired cell homeostasis and triggered cell stress and cell death mechanisms. Altogether, our study shows significant in vitro and in vivo VPF-induced suppression of NB growth, making VPF a potential therapeutic candidate against NB.
Collapse
Affiliation(s)
- Alexandra-Larisa Condurat
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Mirjana Malnar
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Nicole Schider
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Leonie Opitz
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria.
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
38
|
Ho SWT, Sheng T, Xing M, Ooi WF, Xu C, Sundar R, Huang KK, Li Z, Kumar V, Ramnarayanan K, Zhu F, Srivastava S, Isa ZFBA, Anene-Nzelu CG, Razavi-Mohseni M, Shigaki D, Ma H, Tan ALK, Ong X, Lee MH, Tay ST, Guo YA, Huang W, Li S, Beer MA, Foo RSY, Teh M, Skanderup AJ, Teh BT, Tan P. Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 2023; 72:226-241. [PMID: 35817555 DOI: 10.1136/gutjnl-2021-326483] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer (GC) comprises multiple molecular subtypes. Recent studies have highlighted mesenchymal-subtype GC (Mes-GC) as a clinically aggressive subtype with few treatment options. Combining multiple studies, we derived and applied a consensus Mes-GC classifier to define the Mes-GC enhancer landscape revealing disease vulnerabilities. DESIGN Transcriptomic profiles of ~1000 primary GCs and cell lines were analysed to derive a consensus Mes-GC classifier. Clinical and genomic associations were performed across >1200 patients with GC. Genome-wide epigenomic profiles (H3K27ac, H3K4me1 and assay for transposase-accessible chromatin with sequencing (ATAC-seq)) of 49 primary GCs and GC cell lines were generated to identify Mes-GC-specific enhancer landscapes. Upstream regulators and downstream targets of Mes-GC enhancers were interrogated using chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing, CRISPR/Cas9 editing, functional assays and pharmacological inhibition. RESULTS We identified and validated a 993-gene cancer-cell intrinsic Mes-GC classifier applicable to retrospective cohorts or prospective single samples. Multicohort analysis of Mes-GCs confirmed associations with poor patient survival, therapy resistance and few targetable genomic alterations. Analysis of enhancer profiles revealed a distinctive Mes-GC epigenomic landscape, with TEAD1 as a master regulator of Mes-GC enhancers and Mes-GCs exhibiting preferential sensitivity to TEAD1 pharmacological inhibition. Analysis of Mes-GC super-enhancers also highlighted NUAK1 kinase as a downstream target, with synergistic effects observed between NUAK1 inhibition and cisplatin treatment. CONCLUSION Our results establish a consensus Mes-GC classifier applicable to multiple transcriptomic scenarios. Mes-GCs exhibit a distinct epigenomic landscape, and TEAD1 inhibition and combinatorial NUAK1 inhibition/cisplatin may represent potential targetable options.
Collapse
Affiliation(s)
- Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Manjie Xing
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Wen Fong Ooi
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Montreal Heart Institute, Quebec, Quebec, Canada.,Department of Medicine, University of Montreal, Quebec, Quebec, Canada
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weitai Huang
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| |
Collapse
|
39
|
Wu Z, Zhu L, Nie X, Wei L, Qi Y. USP15 promotes pulmonary vascular remodeling in pulmonary hypertension in a YAP1/TAZ-dependent manner. Exp Mol Med 2023; 55:183-195. [PMID: 36635430 PMCID: PMC9898287 DOI: 10.1038/s12276-022-00920-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 01/13/2023] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disease characterized by pulmonary vascular remodeling. Excessive growth and migration of pulmonary artery smooth muscle cells (PASMCs) are believed to be major contributors to pulmonary vascular remodeling. Ubiquitin-specific protease 15 (USP15) is a vital deubiquitinase that has been shown to be critically involved in many pathologies. However, the effect of USP15 on PH has not yet been explored. In this study, the upregulation of USP15 was identified in the lungs of PH patients, mice with SU5416/hypoxia (SuHx)-induced PH and rats with monocrotaline (MCT)-induced PH. Moreover, adeno-associated virus-mediated functional loss of USP15 markedly alleviated PH exacerbation in SuHx-induced mice and MCT-induced rats. In addition, the abnormal upregulation and nuclear translocation of YAP1/TAZ was validated after PH modeling. Human pulmonary artery smooth muscle cells (hPASMCs) were exposed to hypoxia to mimic PH in vitro, and USP15 knockdown significantly inhibited cell proliferation, migration, and YAP1/TAZ signaling in hypoxic hPASMCs. Rescue assays further suggested that USP15 promoted hPASMC proliferation and migration in a YAP1/TAZ-dependent manner. Coimmunoprecipitation assays indicated that USP15 could interact with YAP1, while TAZ bound to USP15 after hypoxia treatment. We further determined that USP15 stabilized YAP1 by inhibiting the K48-linked ubiquitination of YAP1. In summary, our findings reveal the regulatory role of USP15 in PH progression and provide novel insights into the pathogenesis of PH.
Collapse
Affiliation(s)
- Zhuhua Wu
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan China
| | - Li Zhu
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan China
| | - Xinran Nie
- grid.414011.10000 0004 1808 090XDepartment of Pulmonary and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
| | - Yong Qi
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
40
|
Messina B, Lo Sardo F, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Maugeri-Saccà M, Bon G. Hippo pathway dysregulation in gastric cancer: from Helicobacter pylori infection to tumor promotion and progression. Cell Death Dis 2023; 14:21. [PMID: 36635265 PMCID: PMC9837097 DOI: 10.1038/s41419-023-05568-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The Hippo pathway plays a critical role for balancing proliferation and differentiation, thus regulating tissue homeostasis. The pathway acts through a kinase cascade whose final effectors are the Yes-associated protein (YAP) and its paralog transcriptional co‑activator with PDZ‑binding motif (TAZ). In response to a variety of upstream signals, YAP and TAZ activate a transcriptional program that modulates cellular proliferation, tissue repair after injury, stem cell fate decision, and cytoskeletal reorganization. Hippo pathway signaling is often dysregulated in gastric cancer and in Helicobacter pylori-induced infection, suggesting a putative role of its deregulation since the early stages of the disease. In this review, we summarize the architecture and regulation of the Hippo pathway and discuss how its dysregulation fuels the onset and progression of gastric cancer. In this setting, we also focus on the crosstalk between Hippo and other established oncogenic signaling pathways. Lastly, we provide insights into the therapeutic approaches targeting aberrant YAP/TAZ activation and discuss the related clinical perspectives and challenges.
Collapse
Affiliation(s)
- Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
41
|
Giraud J, Seeneevassen L, Rousseau B, Bouriez D, Sifré E, Giese A, Nguyen TL, Tiffon C, Lippi Y, Azzi-Martin L, Pannequin J, Ménard A, Bessède E, Staedel C, Mégraud F, Belleannée G, Lehours P, Gronnier C, Dubus P, Varon C. CD44v3 is a marker of invasive cancer stem cells driving metastasis in gastric carcinoma. Gastric Cancer 2023; 26:234-249. [PMID: 36528833 PMCID: PMC9950191 DOI: 10.1007/s10120-022-01357-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cancer stem cells (CSCs) are at the origin of tumour initiation and progression in gastric adenocarcinoma (GC). However, markers of metastasis-initiating cells remain unidentified in GC. In this study, we characterized CD44 variants expressed in GC and evaluated the tumorigenic and metastatic properties of CD44v3+ cells and their clinical significance in GC patients. METHODS Using GC cell lines and patient-derived xenografts, we evaluated CD44+ and CD44v3+ GC cells molecular signature and their tumorigenic, chemoresistance, invasive and metastatic properties, and expression in patients-derived tissues. RESULTS CD44v3+ cells, which represented a subpopulation of CD44+ cells, were detected in advanced preneoplastic lesions and presented CSCs chemoresistance and tumorigenic properties in vitro and in vivo. Molecular and functional analyses revealed two subpopulations of gastric CSCs: CD44v3+ CSCs with an epithelial-mesenchymal transition (EMT)-like signature, and CD44+/v3- CSCs with an epithelial-like signature; both were tumorigenic but CD44v3+ cells showed higher invasive and metastatic properties in vivo. CD44v3+ cells detected in the primary tumours of GC patients were associated with a worse prognosis. CONCLUSION CD44v3 is a marker of a subpopulation of CSCs with metastatic properties in GC. The identification of metastasis-initiating cells in GC represents a major advance for further development of anti-metastatic therapeutic strategies.
Collapse
Affiliation(s)
- Julie Giraud
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Lornella Seeneevassen
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Benoit Rousseau
- Animal Facility, University of Bordeaux, 33076 Bordeaux, France
| | - Damien Bouriez
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,Department of Digestive Surgery, Haut-Lévêque Hospital, 33000 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France
| | - Elodie Sifré
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Alban Giese
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Tra Ly Nguyen
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Camille Tiffon
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Yannick Lippi
- Toxalim Research Centre in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lamia Azzi-Martin
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Julie Pannequin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Armelle Ménard
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Emilie Bessède
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Cathy Staedel
- INSERM U1212, ARNA, University of Bordeaux, 33076 Bordeaux, France
| | - Francis Mégraud
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France ,Centre National de Référence des Campylobacters et Helicobacters, Pellegrin Hospital, 33076 Bordeaux, France
| | - Geneviève Belleannée
- CHU Bordeaux, 33076 Bordeaux, France ,Department of Histology and Pathology, Haut-Lévêque Hospital, 33000 Bordeaux, France
| | - Philippe Lehours
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France ,Centre National de Référence des Campylobacters et Helicobacters, Pellegrin Hospital, 33076 Bordeaux, France
| | - Caroline Gronnier
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,Department of Digestive Surgery, Haut-Lévêque Hospital, 33000 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France
| | - Pierre Dubus
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France ,CHU Bordeaux, 33076 Bordeaux, France ,Department of Histology and Pathology, Haut-Lévêque Hospital, 33000 Bordeaux, France
| | - Christine Varon
- INSERM U1312, Bordeaux Institute of Oncology, University of Bordeaux, 146 rue Leo Saignat, 33076, Bordeaux, France.
| |
Collapse
|
42
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
43
|
Genetic Alterations and Deregulation of Hippo Pathway as a Pathogenetic Mechanism in Bone and Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:cancers14246211. [PMID: 36551696 PMCID: PMC9776600 DOI: 10.3390/cancers14246211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved modulator of developmental biology with a key role in tissue and organ size regulation under homeostatic conditions. Like other signaling pathways with a significant role in embryonic development, the deregulation of Hippo signaling contributes to oncogenesis. Central to the Hippo pathway is a conserved cascade of adaptor proteins and inhibitory kinases that converge and regulate the activity of the oncoproteins YAP and TAZ, the final transducers of the pathway. Elevated levels and aberrant activation of YAP and TAZ have been described in many cancers. Though most of the studies describe their pervasive activation in epithelial neoplasms, there is increasing evidence pointing out its relevance in mesenchymal malignancies as well. Interestingly, somatic or germline mutations in genes of the Hippo pathway are scarce compared to other signaling pathways that are frequently disrupted in cancer. However, in the case of sarcomas, several examples of genetic alteration of Hippo members, including gene fusions, have been described during the last few years. Here, we review the current knowledge of Hippo pathway implication in sarcoma, describing mechanistic hints recently reported in specific histological entities and how these alterations represent an opportunity for targeted therapy in this heterogeneous group of neoplasm.
Collapse
|
44
|
Srivatsa S, Montazeri H, Bianco G, Coto-Llerena M, Marinucci M, Ng CKY, Piscuoglio S, Beerenwinkel N. Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens. Nat Commun 2022; 13:7748. [PMID: 36517508 PMCID: PMC9751287 DOI: 10.1038/s41467-022-35378-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer therapies is limited by the availability of suitable drug targets. Potential candidate drug targets can be identified based on the concept of synthetic lethality (SL), which refers to pairs of genes for which an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations is lethal to the cell. Here, we present SLIdR (Synthetic Lethal Identification in R), a statistical framework for identifying SL pairs from large-scale perturbation screens. SLIdR successfully predicts SL pairs even with small sample sizes while minimizing the number of false positive targets. We apply SLIdR to Project DRIVE data and find both established and potential pan-cancer and cancer type-specific SL pairs consistent with findings from literature and drug response screening data. We experimentally validate two predicted SL interactions (ARID1A-TEAD1 and AXIN1-URI1) in hepatocellular carcinoma, thus corroborating the ability of SLIdR to identify potential drug targets.
Collapse
Affiliation(s)
- Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hesam Montazeri
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Charlotte K Y Ng
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031, Basel, Switzerland.
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
45
|
Hu X, Zhang Y, Yu H, Zhao Y, Sun X, Li Q, Wang Y. The role of YAP1 in survival prediction, immune modulation, and drug response: A pan-cancer perspective. Front Immunol 2022; 13:1012173. [PMID: 36479120 PMCID: PMC9719955 DOI: 10.3389/fimmu.2022.1012173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Dysregulation of the Hippo signaling pathway has been implicated in multiple pathologies, including cancer, and YAP1 is the major effector of the pathway. In this study, we assessed the role of YAP1 in prognostic value, immunomodulation, and drug response from a pan-cancer perspective. Methods We compared YAP1 expression between normal and cancerous tissues and among different pathologic stages survival analysis and gene set enrichment analysis were performed. Additionally, we performed correlation analyses of YAP1 expression with RNA modification-related gene expression, tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint regulator expression, and infiltration of immune cells. Correlations between YAP1 expression and IC50s (half-maximal inhibitory concentrations) of drugs in the CellMiner database were calculated. Results We found that YAP1 was aberrantly expressed in various cancer types and regulated by its DNA methylation and post-transcriptional modifications, particularly m6A methylation. High expression of YAP1 was associated with poor survival outcomes in ACC, BLCA, LGG, LUAD, and PAAD. YAP1 expression was negatively correlated with the infiltration of CD8+ T lymphocytes, CD4+ Th1 cells, T follicular helper cells, NKT cells, and activated NK cells, and positively correlated with the infiltration of myeloid-derived suppressor cells (MDSCs) and cancer-associated fibroblasts (CAFs) in pan-cancer. Higher YAP1 expression showed upregulation of TGF-β signaling, Hedgehog signaling, and KRAS signaling. IC50s of FDA-approved chemotherapeutic drugs capable of inhibiting DNA synthesis, including teniposide, dacarbazine, and doxorubicin, as well as inhibitors of hypoxia-inducible factor, MCL-1, ribonucleotide reductase, and FASN in clinical trials were negatively correlated with YAP1 expression. Discussion In conclusion, YAP1 is aberrantly expressed in various cancer types and regulated by its DNA methylation and post-transcriptional modifications. High expression of YAP1 is associated with poor survival outcomes in certain cancer types. YAP1 may promote tumor progression through immunosuppression, particularly by suppressing the infiltration of CD8+ T lymphocytes, CD4+ Th1 cells, T follicular helper cells, NKT cells, and activated NK cells, as well as recruiting MDSCs and CAFs in pan-cancer. The tumor-promoting activity of YAP1 is attributed to the activation of TGF-β, Hedgehog, and KRAS signaling pathways. AZD2858 and varlitinib might be effective in cancer patients with high YAP1 expression.
Collapse
Affiliation(s)
- Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
46
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
47
|
Targeting the Hippo Pathway in Gastric Cancer and Other Malignancies in the Digestive System: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10102512. [PMID: 36289774 PMCID: PMC9599207 DOI: 10.3390/biomedicines10102512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The Hippo pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration under physiological conditions, and its aberrations have been well studied to promote tumor initiation and progression. Dysregulation of the Hippo tumor suppressor signaling frequently occurs in gastric cancer (GC) and other solid tumors and contributes to cancer development through modulating multiple aspects, including cell proliferation, survival, metastasis, and oncotherapy resistance. In the clinic, Hippo components also possess diagnostic and prognostic values for cancer patients. Considering its crucial role in driving tumorigenesis, targeting the Hippo pathway may greatly benefit developing novel cancer therapies. This review summarizes the current research progress regarding the core components and regulation of the Hippo pathway, as well as the mechanism and functional roles of their dysregulation in gastrointestinal malignancies, especially in GC, and discusses the therapeutic potential of targeting the Hippo pathway against cancers.
Collapse
|
48
|
Qin X, Luo H, Deng Y, Yao X, Zhang J, He B. Resveratrol inhibits proliferation and induces apoptosis via the Hippo/YAP pathway in human colon cancer cells. Biochem Biophys Res Commun 2022; 636:197-204. [DOI: 10.1016/j.bbrc.2022.10.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/30/2022]
|
49
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z, Liang Z, Wu X. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response. Cells 2022; 11:cells11182828. [PMID: 36139403 PMCID: PMC9496718 DOI: 10.3390/cells11182828] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) was the fourth deadliest cancer in the world in 2020, and about 770,000 people died from GC that year. The death of patients with GC is mainly caused by the metastasis, recurrence, and chemotherapy resistance of GC cells. The cancer stem cell theory defines cancer stem cells (CSCs) as a key factor in the metastasis, recurrence, and chemotherapy resistance of cancer. It considers targeting gastric cancer stem cells (GCSCs) to be an effective method for the treatment of GC. For GCSCs, genes or noncoding RNAs are important regulatory factors. Many experimental studies have found that some drugs can target the stemness of gastric cancer by regulating these genes or noncoding RNAs, which may bring new directions for the clinical treatment of gastric cancer. Therefore, this review mainly discusses related genes or noncoding RNAs in GCSCs and drugs that target its stemness, thereby providing some information for the treatment of GC.
Collapse
|
50
|
Sun G, Yang Y, Liu J, Gao Z, Xu T, Chai J, Xu J, Fan Z, Xiao T, Jia Q, Li M. Cancer stem cells in esophageal squamous cell carcinoma. Pathol Res Pract 2022; 237:154043. [DOI: 10.1016/j.prp.2022.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
|