1
|
Desterke C, Fu Y, Bonifacio-Mundaca J, Monge C, Pineau P, Mata-Garrido J, Francés R. Single-Cell RNA Sequencing Reveals LEF1-Driven Wnt Pathway Activation as a Shared Oncogenic Program in Hepatoblastoma and Medulloblastoma. Curr Oncol 2025; 32:35. [PMID: 39851951 PMCID: PMC11763369 DOI: 10.3390/curroncol32010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
(1) Background: Hepatoblastoma and medulloblastoma are two types of pediatric tumors with embryonic origins. Both tumor types can exhibit genetic alterations that affect the β-catenin and Wnt pathways; (2) Materials and Methods: This study used bioinformatics and integrative analysis of multi-omics data at both the tumor and single-cell levels to investigate two distinct pediatric tumors: medulloblastoma and hepatoblastoma; (3) Results: The cross-transcriptome analysis revealed a commonly regulated expression signature between hepatoblastoma and medulloblastoma tumors. Among the commonly upregulated genes, the transcription factor LEF1 was significantly expressed in both tumor types. In medulloblastoma, LEF1 upregulation is associated with the WNT-subtype. The analysis of LEF1 genome binding occupancy in H1 embryonic stem cells identified 141 LEF1 proximal targets activated in WNT medulloblastoma, 13 of which are involved in Wnt pathway regulation: RNF43, LEF1, NKD1, AXIN2, DKK4, DKK1, LGR6, FGFR2, NXN, TCF7L1, STK3, YAP1, and NFATC4. The ROC curve analysis of the combined expression of these 13 WNT-related LEF1 targets yielded an area under the curve (AUC) of 1.00, indicating 100% specificity and sensitivity for predicting the WNT subtype in the PBTA medulloblastoma cohort. An expression score based on these 13 WNT-LEF1 targets accurately predicted the WNT subtype in two independent medulloblastoma transcriptome cohorts. At the single-cell level, the WNT-LEF1 expression score was exclusively positive in WNT-medulloblastoma tumor cells. This WNT-LEF1-dependent signature was also confirmed as activated in the hepatoblastoma tumor transcriptome. At the single-cell level, the WNT-LEF1 expression score was higher in tumor cells from both human hepatoblastoma samples and a hepatoblastoma patient-derived xenotransplant model; (4) Discussion: This study uncovered a shared transcriptional activation of a LEF1-dependent embryonic program, which orchestrates the regulation of the Wnt signaling pathway in tumor cells from both hepatoblastoma and medulloblastoma.
Collapse
Affiliation(s)
- Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay, INSERM UMRS-1310, 94805 Villejuif, France;
| | - Yuanji Fu
- Institut Necker Enfants Malades, INSERM, CNRS, Université Paris Cité, 75015 Paris, France;
| | - Jenny Bonifacio-Mundaca
- National Tumor Bank, Department of Pathology, National Institute of Neoplastic Diseases, Lima 15024, Peru;
| | - Claudia Monge
- Institut Pasteur, Université Paris Cité, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (P.P.)
| | - Pascal Pineau
- Institut Pasteur, Université Paris Cité, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (P.P.)
| | - Jorge Mata-Garrido
- Institut Pasteur, Université Paris Cité, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (P.P.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France
| |
Collapse
|
2
|
D’Antonio DL, Fantini F, Moscatello C, Ferrone A, Scaringi S, Valanzano R, Ficari F, Efthymakis K, Neri M, Aceto GM, Curia MC. The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues. Biomedicines 2024; 12:1730. [PMID: 39200196 PMCID: PMC11352173 DOI: 10.3390/biomedicines12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND The colorectal adenoma undergoes neoplastic progression via the normal epithelium-adenoma-adenocarcinoma sequence as reported in the Vogelgram. The hazard of developing a tumor is deeply associated with the number and size of adenomas and their subtype. Adenomatous polyps are histologically categorized as follows: approximately 80-90% are tubular, 5-15% are villous, and 5-10% are tubular/villous. Given the higher risk of a malignant transformation observed in tubular/villous adenomas, patients diagnosed with adenomatous polyposis are at an improved risk of developing CRC. The Wnt/β-catenin pathway plays a key role in the onset of colorectal adenoma; in particular, intestinal cells first acquire loss-of-function mutations in the APC gene that induce the formation of adenomas. METHODS Wnt/β-catenin pathway APC, Wnt3a, Wnt5a, LEF1, and BCL9 genes and protein expression analyses were conducted by qRT-PCR and western blot in 68 colonic samples (polyps and adjacent mucosa) from 41 patients, of which 17 were affected by FAP. Ten normal colonic mucosal samples were collected from 10 healthy donors. RESULTS In this study, both the APC gene and protein were less expressed in the colon tumor compared to the adjacent colonic mucosa. Conversely, the activated β-catenin was more expressed in polyps than in the adjacent mucosa. All results confirmed the literature data on carcinomas. A statistically significant correlation between Wnt3a and BCL9 both in polyps and in the adjacent mucosa underlines that the canonical Wnt pathway is activated in early colon carcinogenesis and that the adjacent mucosa is already altered. CONCLUSION This is the first study analyzing the difference in expression of the Wnt/β-catenin pathway in human colorectal adenomas. Understanding the progression from adenomas to colorectal carcinomas is essential for the development of new therapeutic strategies and improving clinical outcomes with the use of APC and β-catenin as biomarkers.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Fabiana Fantini
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Alessio Ferrone
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Stefano Scaringi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Rosa Valanzano
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Ferdinando Ficari
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Konstantinos Efthymakis
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Matteo Neri
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| |
Collapse
|
3
|
de Brot S, Cobb J, Alibhai AA, Jackson-Oxley J, Haque M, Patke R, Harris AE, Woodcock CL, Lothion-Roy J, Varun D, Thompson R, Gomes C, Kubale V, Dunning MD, Jeyapalan JN, Mongan NP, Rutland CS. Immunohistochemical Investigation into Protein Expression Patterns of FOXO4, IRF8 and LEF1 in Canine Osteosarcoma. Cancers (Basel) 2024; 16:1945. [PMID: 38792023 PMCID: PMC11120020 DOI: 10.3390/cancers16101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Osteosarcoma (OSA) is the most common type of primary bone malignancy in people and dogs. Our previous molecular comparisons of canine OSA against healthy bone resulted in the identification of differentially expressed protein-expressing genes (forkhead box protein O4 (FOXO4), interferon regulatory factor 8 (IRF8), and lymphoid enhancer binding factor 1 (LEF1)). Immunohistochemistry (IHC) and H-scoring provided semi-quantitative assessment of nuclear and cytoplasmic staining alongside qualitative data to contextualise staining (n = 26 patients). FOXO4 was expressed predominantly in the cytoplasm with significantly lower nuclear H-scores. IRF8 H-scores ranged from 0 to 3 throughout the cohort in the nucleus and cytoplasm. LEF1 was expressed in all patients with significantly lower cytoplasmic staining compared to nuclear. No sex or anatomical location differences were observed. While reduced levels of FOXO4 might indicate malignancy, the weak or absent protein expression limits its primary use as diagnostic tumour marker. IRF8 and LEF1 have more potential for prognostic and diagnostic uses and facilitate further understanding of their roles within their respective molecular pathways, including Wnt/beta-catenin/LEF1 signalling and differential regulation of tumour suppressor genes. Deeper understanding of the mechanisms involved in OSA are essential contributions towards the development of novel diagnostic, prognostic, and treatment options in human and veterinary medicine contexts.
Collapse
Affiliation(s)
- Simone de Brot
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Comparative Pathology Platform of the University of Bern (COMPATH), Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland
| | - Jack Cobb
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Aziza A. Alibhai
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jorja Jackson-Oxley
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Maria Haque
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rodhan Patke
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Anna E. Harris
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Corinne L. Woodcock
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Jennifer Lothion-Roy
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Dhruvika Varun
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Rachel Thompson
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Claudia Gomes
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
| | - Valentina Kubale
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mark D. Dunning
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
| | - Jennie N. Jeyapalan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nigel P. Mongan
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Willows Veterinary Centre and Referral Service, Solihull B90 4NH, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10075, USA
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (S.d.B.); (J.C.); (A.A.A.); (J.J.-O.); (M.H.); (R.P.); (A.E.H.); (C.L.W.); (J.L.-R.); (D.V.); (R.T.); (C.G.); (M.D.D.); (J.N.J.)
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
4
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
5
|
Thakur D, Sengupta D, Mahapatra E, Das S, Sarkar R, Mukherjee S. Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer-directs the road towards therapy resistance, metastatic progression and recurrence. Cancer Metastasis Rev 2024; 43:481-499. [PMID: 38170347 DOI: 10.1007/s10555-023-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.
Collapse
Affiliation(s)
- Debanjan Thakur
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
6
|
Xia H, Zhu J, Zheng Z, Xiao P, Yu X, Wu M, Xue L, Xu X, Wang X, Guo Y, Zheng C, Ding S, Wang Y, Peng X, Fu S, Li J, Deng X. Amino acids and their roles in tumor immunotherapy of breast cancer. J Gene Med 2024; 26:e3647. [PMID: 38084655 DOI: 10.1002/jgm.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.
Collapse
Affiliation(s)
- Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Jianyu Zhu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Zhuomeng Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Peiyao Xiao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaohui Yu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoning Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
7
|
Zheng C, Guo H, Mo Y, Liu G. Integrating Bioinformatics and Drug Sensitivity Analyses to Identify Molecular Characteristics Associated with Targeting Necroptosis in Breast Cancer and their Clinical Prognostic Significance. Recent Pat Anticancer Drug Discov 2024; 19:681-694. [PMID: 37653627 DOI: 10.2174/1574892819666230831112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Breast cancer accounts for over 1.8 million new cases worldwide annually, and prompt diagnosis and treatment are imperative to prevent mortality. Necroptosis, a form of programmed cell death, is thought to be a critical pathway for cancer cell apoptosis, yet, its relationship with breast cancer progression and molecular mechanisms remains largely unexplored. OBJECTIVES Our study aims to investigate the molecular characteristics and clinical prognostic value of necroptosis-related genes in breast cancer using a comprehensive approach that involves integrated bioinformatics analysis along with drug sensitivity assessment. METHODS Transcriptional, clinical, and tumor mutation burden (TMB) data related to breast cancer from the TCGA and GEO databases were integrated, and the necroptosis gene set was downloaded from the GSEA website for analysis. The screening conditions were set as adjusted p < 0.05 and |log2FC(fold change)| > 0.585 to screen for differential expression genes related to breast cancer necroptosis. Survival prognosis analysis was conducted on breast cancer necroptosis genes. Further analysis was conducted on prognosis-related necroptosis genes, including immune infiltration analysis and GO/KEGG enrichment analysis, to explore the potential biological functions and signaling pathway mechanisms of breast cancer necroptosis genes. Drug sensitivity screening was conducted on the prognosis-related necroptosis to identify potential drugs that target the promotion of necroptosis gene expression, and ultimately, single-gene analysis was performed on the core target genes obtained. RESULTS Through integrated bioinformatics analysis, 29 differentially expressed mRNAs related to BRCA-Necroptosis were identified, including 18 upregulated mRNAs and 11 downregulated mRNAs. In addition, single-factor analysis of differential genes showed that the expression of HSPA4, PLK1, TNFRSF1B, FLT3, and LEF1 was closely related to BRCA survival prognosis. Based on the expression of these genes, a breast cancer prognosis model was constructed, and it was found that the area under the curve (AUC) of the curve of the risk genes for necroptosis was the largest, indicating that these genes have a certain clinical predictive significance for the occurrence and prognosis of BRCA. Additionally, there were significant differences in clinical characteristics of BRCA patients with different necroptosis gene expressions. Furthermore, GSVA and immune infiltration analysis revealed that Necroptosis-DEGs mainly affect the occurrence and progression of BRCA by participating in immune functions such as APC co-inhibition, APC costimulation, CCR, checkpoint, as well as infiltrating immune cells such as B cells naive, plasma cells, and T cells CD8. Moreover, the necroptosis gene group column chart indicated a 1-year survival rate of 0.979, a 3-year survival rate of 0.883, and a 5-year survival rate of 0.774. The necroptosis gene group and column chart are important indicators for evaluating BRCA prognosis. Finally, drug sensitivity screening of BRCA-Necroptosis genes showed that compounds such as A- 770041, AC220, AP-24534, Bexarotene, and BMS-509744 have certain effects as potential targeted drugs for the treatment of BRCA necroptosis genes. CONCLUSION Necroptosis genes are implicated in the pathogenesis and progression of breast cancer and are thought to impact the prognosis and response to drug treatments in individuals with BRCA. Consequently, understanding the role of these genes in breast cancer may aid in identifying more precise and efficacious therapeutic targets.
Collapse
Affiliation(s)
- Chang Zheng
- Department of Surgery, Shantou University Medical College, Shantou, 515041, China
| | - Hanbin Guo
- Department of Surgery, Shantou University Medical College, Shantou, 515041, China
| | - Yongpan Mo
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Guowen Liu
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
8
|
Lima BM, de Azevedo ALK, Giner IS, Gomig THB, Ribeiro EMDSF, Cavalli IJ. Biomarker potential of the LEF1/TCF family members in breast cancer: Bioinformatic investigation on expression and clinical significance. Genet Mol Biol 2023; 46:e20220346. [PMID: 38100720 PMCID: PMC10723634 DOI: 10.1590/1678-4685-gmb-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
The LEF1/TCF transcription factor family is related to the development of diverse tissue types, including the mammary tissue, and dysregulation of its expression and function has been described to favor breast tumorigenesis. However, the clinical and biological relevance of this gene family in breast cancer is still poorly understood. Here, we used bioinformatics approaches aiming to reduce this gap. We investigated its expression patterns in molecular and immune breast cancer subtypes; its correlation with immune cell infiltration, and its prognostic values in predicting outcomes. Also, through regulons construction, we determined the genes whose expression is influenced by these transcription factors, and the pathways in which they are involved. We found that LEF1 and TCF3 are over-expressed in breast tumors regarding non-tumor samples, while TCF4 and TCF7 are down-expressed, with the gene's methylation status being associated with its expression dysregulation. All four transcription factors presented significance at the diagnostic and prognostic levels. LEF1, TCF4, and TCF7 presented a significant correlation with immune cell infiltration, being associated with the immune subtypes of less favorable outcomes. Altogether, this research contributes to a more accurate understanding of the expression and clinical and biomarker significance of the LEF1/TCF transcription factors in breast cancer.
Collapse
Affiliation(s)
- Beatriz Miotto Lima
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | - Igor Samesima Giner
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | | | - Iglenir João Cavalli
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| |
Collapse
|
9
|
Nolan E, Kang Y, Malanchi I. Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041326. [PMID: 36987584 PMCID: PMC10626265 DOI: 10.1101/cshperspect.a041326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
10
|
Zhao H, Wang L, Ji X, Zhang L, Li C. Biology of breast cancer brain metastases and novel therapies targeting the blood brain barrier: an updated review. Med Oncol 2023; 40:181. [PMID: 37202575 DOI: 10.1007/s12032-023-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Brain metastasis (BM) is a critical cause of morbidity and mortality in patients with breast cancer (BC). Compared with other cancer cells, BC cells (BCs) exhibit special features in the metastatic process. However, the underlying mechanisms are still unclear, especially the crosstalk between tumour cells and the microenvironment. To date, novel therapies for BM, including targeted therapy and antibody‒drug conjugates, have been developed. Due to an improved understanding of the blood‒brain barrier (BBB) and blood-tumour barrier (BTB), the development and testing of therapeutic agents in clinical phases have substantially increased. However, these therapies face a major challenge due to the low penetration of the BBB or BTB. As a result, researchers have increasingly focused on finding ways to promote drug penetration through these barriers. This review provides an updated overview of breast cancer brain metastases (BCBM) and summarizes the newly developed therapies for BCBM, especially drugs targeting the BBB or BTB.
Collapse
Affiliation(s)
- Hongfang Zhao
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Xiaolin Ji
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Lijian Zhang
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Postdoctoral Research Station of Neurosurgery, Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| | - Chunhui Li
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| |
Collapse
|
11
|
Wu Q, Zheng S, Lin N, Xie X. Comprehensive research into prognostic and immune signatures of transcription factor family in breast cancer. BMC Med Genomics 2023; 16:87. [PMID: 37098532 PMCID: PMC10127334 DOI: 10.1186/s12920-023-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/15/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the most common malignancy with high morbidity and mortality in women, and transcription factor (TF) is closely related to the occurrence and development of BRCA. This study was designed to identify a prognostic gene signature based on TF family to reveal immune characteristics and prognostic survival of BRCA. METHODS In this study, RNA-sequence with corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and GSE42568. Prognostic differentially expressed transcription factor family genes (TFDEGs) were screened to construct a risk score model, after which BRCA patients were stratified into low-risk and high-risk groups based on their corresponding risk scores. Kaplan-Meier (KM) analysis was applied to evaluate the prognostic implication of risk score model, and a nomogram model was developed and validated with the TCGA and GSE20685. Furthermore, the GSEA revealed pathological processes and signaling pathways enriched in the low-risk and high-risk groups. Finally, analyses regarding levels of immune infiltration, immune checkpoints and chemotactic factors were all completed to investigate the correlation between the risk score and tumor immune microenvironment (TIME). RESULTS A prognostic 9-gene signature based on TFDEGs was selected to establish a risk score model. According to KM analyses, high-risk group witnessed a significantly worse overall survival (OS) than low-risk group in both TCGA-BRCA and GSE20685. Furthermore, the nomogram model proved great possibility in predicting the OS of BRCA patients. As indicted in GSEA analysis, tumor-associated pathological processes and pathways were relatively enriched in high-risk group, and the risk score was negatively correlated with ESTIMATE score, infiltration levels of CD4+ and CD8+T cells, as well as expression levels of immune checkpoints and chemotactic factors. CONCLUSIONS The prognostic model based on TFDEGs could distinguish as a novel biomarker for predicting prognosis of BRCA patients; in addition, it may also be utilized to identify potential benefit population from immunotherapy in different TIME and predict potential drug targets.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Molecule Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Shiyao Zheng
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian, China
| | - Nan Lin
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Gastrointestinal Surgery, The 900th Hospital of Joint Logistics Support Forces of Chinese PLA, Fuzhou, Fujian, China
| | - Xianhe Xie
- Department of Oncology, Molecule Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China.
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
12
|
Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, Dominici C, Rios G, Girard-Riboulleau C, Liu B, Spector DL, Ehmsen S, Renault S, Hego C, Mechta-Grigoriou F, Bidard FC, Terp MG, Egeblad M, Gaggioli C, Albrengues J. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell 2023; 41:757-775.e10. [PMID: 37037615 PMCID: PMC10228050 DOI: 10.1016/j.ccell.2023.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Metastasis is the major cause of cancer death, and the development of therapy resistance is common. The tumor microenvironment can confer chemotherapy resistance (chemoresistance), but little is known about how specific host cells influence therapy outcome. We show that chemotherapy induces neutrophil recruitment and neutrophil extracellular trap (NET) formation, which reduces therapy response in mouse models of breast cancer lung metastasis. We reveal that chemotherapy-treated cancer cells secrete IL-1β, which in turn triggers NET formation. Two NET-associated proteins are required to induce chemoresistance: integrin-αvβ1, which traps latent TGF-β, and matrix metalloproteinase 9, which cleaves and activates the trapped latent TGF-β. TGF-β activation causes cancer cells to undergo epithelial-to-mesenchymal transition and correlates with chemoresistance. Our work demonstrates that NETs regulate the activities of neighboring cells by trapping and activating cytokines and suggests that chemoresistance in the metastatic setting can be reduced or prevented by targeting the IL-1β-NET-TGF-β axis.
Collapse
Affiliation(s)
- Alexandra Mousset
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Enora Lecorgne
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France
| | - Isabelle Bourget
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France
| | - Pascal Lopez
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Kitti Jenovai
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Julien Cherfils-Vicini
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Chloé Dominici
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Géraldine Rios
- University Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Sophia Antipolis, France
| | - Cédric Girard-Riboulleau
- University Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Sophia Antipolis, France
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sidse Ehmsen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Caroline Hego
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, INSERM, U830, PSL Research University, Ligue Nationale Contre le Cancer labeled Team, 26, Rue d'Ulm, 75005, Paris, France
| | - François-Clément Bidard
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France; Department of Medical Oncology, Institut Curie, Saint Cloud, Paris, France; University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Saint Cloud, France
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cédric Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France.
| | - Jean Albrengues
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
| |
Collapse
|
13
|
Martins-da-Silva A, Baroni M, Salomão KB, das Chagas PF, Bonfim-Silva R, Geron L, Cruzeiro GAV, da Silva WA, Corrêa CAP, Carlotti CG, de Paula Queiroz RG, Marie SKN, Brandalise SR, Yunes JA, Scrideli CA, Valera ET, Tone LG. Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma. Cell Mol Neurobiol 2023; 43:813-826. [PMID: 35366170 DOI: 10.1007/s10571-022-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Bezerra Salomão
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Ferreira das Chagas
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Pediatric Oncology, Harvard Medical School - Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Dai W, Deng Y, Chen X, Huang Y, Hu H, Jin Q, Tang Z, Ji J. A mitochondria-targeted supramolecular nanoplatform for peroxynitrite-potentiated oxidative therapy of orthotopic hepatoma. Biomaterials 2022; 290:121854. [DOI: 10.1016/j.biomaterials.2022.121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
|
15
|
Zhang M, Jin M, Gao Z, Yu W, Zhang W. High COL10A1 expression potentially contributes to poor outcomes in gastric cancer with the help of LEF1 and Wnt2. J Clin Lab Anal 2022; 36:e24612. [PMID: 35929139 PMCID: PMC9459277 DOI: 10.1002/jcla.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background COL10A1 is a secreted, short‐chain collagen found in several types of cancer. Studies have shown that COL10A1 aberrant expression is considered an oncogenic factor. However, its underlying mechanisms and regulation of gastric cancer remain undefined. Methods The data on the expression of COL10A1, clinicopathological characteristics, and outcome of patients with GC were obtained from The Cancer Genome Atlas. The ALGGEN‐PROMO database defined the related transcription factors. Quantitative real‐time reverse transcription‐polymerase chain reaction and western blotting analysis were used to identify the differential expression levels of COL10A1 and related transcription factors. Results We found that high COL10A1 expression is an independent risk factor for gastric cancer. Upregulation of LEF1 and Wnt2 was also observed in gastric cancer, suggesting a potential correlation between LEF1/COL10A1 regulation in the Wnt2 signaling pathway. Conclusion High COL10A1 expression may contribute to poor outcomes via upregulation of LEF1 and Wnt2 in gastric cancer.
Collapse
Affiliation(s)
- Miaozun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhiqiang Gao
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Zhang
- Department of Gastroenterology, The HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
16
|
Epithelial-Mesenchymal Transition-Mediated Tumor Therapeutic Resistance. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154750. [PMID: 35897925 PMCID: PMC9331826 DOI: 10.3390/molecules27154750] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022]
Abstract
Cancer is one of the world’s most burdensome diseases, with increasing prevalence and a high mortality rate threat. Tumor recurrence and metastasis due to treatment resistance are two of the primary reasons that cancers have been so difficult to treat. The epithelial–mesenchymal transition (EMT) is essential for tumor drug resistance. EMT causes tumor cells to produce mesenchymal stem cells and quickly adapt to various injuries, showing a treatment-resistant phenotype. In addition, multiple signaling pathways and regulatory mechanisms are involved in the EMT, resulting in resistance to treatment and hard eradication of the tumors. The purpose of this study is to review the link between EMT, therapeutic resistance, and the molecular process, and to offer a theoretical framework for EMT-based tumor-sensitization therapy.
Collapse
|
17
|
Elwakeel E, Brüggemann M, Wagih J, Lityagina O, Elewa MAF, Han Y, Froemel T, Popp R, Nicolas AM, Schreiber Y, Gradhand E, Thomas D, Nüsing R, Steinmetz-Späh J, Savai R, Fokas E, Fleming I, Greten FR, Zarnack K, Brüne B, Weigert A. Disruption of prostaglandin E2 signaling in cancer-associated fibroblasts limits mammary carcinoma growth but promotes metastasis. Cancer Res 2022; 82:1380-1395. [PMID: 35105690 DOI: 10.1158/0008-5472.can-21-2116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
The activation and differentiation of cancer-associated fibroblasts (CAF) are involved in tumor progression. Here we show that the tumor-promoting lipid mediator prostaglandin E2 (PGE2) plays a paradoxical role in CAF activation and tumor progression. Restricting PGE2 signaling via knockout of microsomal prostaglandin E synthase-1 (mPGES-1) in PyMT mice or of the prostanoid E receptor 3 (EP3) in CAFs stunted mammary carcinoma growth associated with strong CAF proliferation. CAF proliferation upon EP3 inhibition required p38 MAPK signaling. Mechanistically, TGF-β-activated kinase-like protein (TAK1L), which was identified as a negative regulator of p38 MAPK activation, was decreased following ablation of mPGES-1 or EP3. In contrast to its effects on primary tumor growth, disruption of PGE2 signaling in CAFs induced epithelial to mesenchymal transition in cancer organoids and promoted metastasis in mice. Moreover, TAK1L expression in CAFs was associated with decreased CAF activation, reduced metastasis, and prolonged survival in human breast cancer. These data characterize a new pathway of regulating inflammatory CAF activation, which affects breast cancer progression.
Collapse
Affiliation(s)
- Eiman Elwakeel
- Faculty of Medicine/Institute of Biochemistry I, Goethe University Frankfurt
| | - Mirko Brüggemann
- Computational RNA Biology, Buchmann Institute for Molecular Life Sciences (BMLS) and Faculty of Biological Sciences, Goethe University Frankfurt
| | - Jessica Wagih
- Institute of Biochemistry I, Goethe University Frankfurt
| | - Olga Lityagina
- Institute of Biochemistry I, Goethe University Frankfurt
| | | | - Yingying Han
- Institute of Biochemistry I, Goethe University Frankfurt
| | | | - Rüdiger Popp
- Insitute of Vascular Signalling, Goethe University Frankfurt
| | - Adele M Nicolas
- Institute for Tumor Biology and Experimental Therapy, Georg Speyer Haus
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt
| | - Elise Gradhand
- Senckenbergisches Institut für Pathologie, Goethe University Frankfurt
| | | | - Rolf Nüsing
- Institute of Clinical Pharmacology, Goethe University
| | - Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospita
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Max Planck Institute for Heart and Lung Research
| | - Emmanouil Fokas
- Radiation Therapy and Oncology, Goethe University Frankfurt am Main
| | | | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy Paul-Ehrlich-Str
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Faculty of Biological Sciences, Goethe University Frankfurt
| | | | | |
Collapse
|
18
|
Hong K, Zhang Y, Yao L, Zhang J, Sheng X, Guo Y. Tumor microenvironment-related multigene prognostic prediction model for breast cancer. Aging (Albany NY) 2022; 14:845-868. [PMID: 35060926 PMCID: PMC8833129 DOI: 10.18632/aging.203845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Breast cancer is an invasive disease with complex molecular mechanisms. Prognosis-related biomarkers are still urgently needed to predict outcomes of breast cancer patients. METHODS Original data were download from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The analyses were performed using perl-5.32 and R-x64-4.1.1. RESULTS In this study, 1086 differentially expressed genes (DEGs) were identified in the TCGA cohort; 523 shared DEGs were identified in the TCGA and GSE10886 cohorts. Eight subtypes were estimated using non-negative matrix factorization clustering with significant differences seen in overall survival (OS) and progression-free survival (PFS) (P < 0.01). Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed to develop a related risk score related to the 17 DEGs; this score separated breast cancer into low- and high-risk groups with significant differences in survival (P < 0.01) and showed powerful effectiveness (TCGA all group: 1-year area under the curve [AUC] = 0.729, 3-year AUC = 0.778, 5-year AUC = 0.781). A nomogram prediction model was constructed using non-negative matrix factorization clustering, the risk score, and clinical characteristics. Our model was confirmed to be related with tumor microenvironment. Furthermore, DEGs in high-risk breast cancer were enriched in histidine metabolism (normalized enrichment score [NES] = 1.49, P < 0.05), protein export (NES = 1.58, P < 0.05), and steroid hormone biosynthesis signaling pathways (NES = 1.56, P < 0.05). CONCLUSIONS We established a comprehensive model that can predict prognosis and guide treatment.
Collapse
Affiliation(s)
- Kai Hong
- Medicine School, Ningbo University, Jiangbei, Ningbo 315211, Zhejiang, China
| | - Yingjue Zhang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565–0871, Japan
| | - Lingli Yao
- Medicine School, Ningbo University, Jiangbei, Ningbo 315211, Zhejiang, China
| | - Jiabo Zhang
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| | - Xianneng Sheng
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| | - Yu Guo
- Department of Thyroid and Breast Surgery, Ningbo City First Hospital, Haishu, Ningbo 315010, Zhejiang, China
| |
Collapse
|
19
|
Ni Q, Li M, Yu S. Research Progress of Epithelial-mesenchymal Transition Treatment and Drug Resistance in Colorectal Cancer. Technol Cancer Res Treat 2022; 21:15330338221081219. [PMID: 35435774 PMCID: PMC9019367 DOI: 10.1177/15330338221081219] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world that seriously affects human health. Activation of epithelial-mesenchymal transition (EMT) is a physiological phenomenon during embryonic development that is essential for cell metastasis. EMT participates in various biological processes associated with trauma repair, organ fibrosis, migration, metastasis, and infiltration of tumor cells. EMT is a new therapeutic target for CRC; however, some patients with CRC develop resistance to some drugs due to EMT. This review focuses specifically on the status of treatments that target the EMT process and its role in the therapeutic resistance observed in patients with CRC.
Collapse
Affiliation(s)
- Qianyang Ni
- Department of Gastrointestinal Surgery, 74725The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Gastrointestinal Surgery, 74725The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, China.,Meng Li has become the co-first author due to his outstanding contribution
| | - Suyang Yu
- Department of Gastrointestinal Surgery, 74725The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Cheng X, Zhao JX, Dong F, Cao XC. ARID1A Mutation in Metastatic Breast Cancer: A Potential Therapeutic Target. Front Oncol 2021; 11:759577. [PMID: 34804958 PMCID: PMC8599951 DOI: 10.3389/fonc.2021.759577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Distant metastasis is the principal cause of mortality for breast cancer patients. Targeting specific mutations that have been acquired during the evolution process of advanced breast cancer is a potential means of enhancing the clinical efficacy of treatment strategies. In metastatic breast cancer, ARID1A is the most prevalent mutation of the SWI/SNF complex, which regulates DNA repair, recombination, and gene transcription. The low expression of ARID1A is associated with poor disease-free survival and overall survival of patients with luminal A or HER2-rich breast cancer. In addition, ARID1A plays a prominent role in maintaining luminal characteristics and has an advantage for identifying responses to treatment, including endocrine therapies, HDAC inhibitors and CDK4/6 inhibitors. The therapeutic vulnerabilities initiated by ARID1A alterations encourage us to explore new approaches to cope with ARID1A mutant-related drug resistance or metastasis. In this review, we describe the mutation profiles of ARID1A in metastatic breast cancer and the structure and function of ARID1A and the SWI/SNF complex as well as discuss the potential mechanisms of ARID1A-mediated endocrine resistance and therapeutic potential.
Collapse
Affiliation(s)
- Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jian-Xiong Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
21
|
Xiao L, Zhang C, Li X, Jia C, Chen L, Yuan Y, Gao Q, Lu Z, Feng Y, Zhao R, Zhao X, Cheng S, Shu Z, Xu J, Duan W, Nie G, Hou Y. LEF1 Enhances the Progression of Colonic Adenocarcinoma via Remodeling the Cell Motility Associated Structures. Int J Mol Sci 2021; 22:ijms221910870. [PMID: 34639214 PMCID: PMC8509209 DOI: 10.3390/ijms221910870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023] Open
Abstract
Lymphoid enhancer-binding factor 1 (LEF1) is a key transcription factor mediating the Wnt signaling pathway. LEF1 is a regulator that is closely associated with tumor malignancy and is usually upregulated in cancers, including colonic adenocarcinoma. The underlying molecular mechanisms of LEF1 regulation for colonic adenocarcinoma progression remain unknown. To explore it, the LEF1 expression in caco2 cells was inhibited using an shRNA approach. The results showed that downregulation of LEF1 inhibited the malignancy and motility associated microstructures, such as polymerization of F-actin, β-tubulin, and Lamin B1 in caco2 cells. LEF1 inhibition suppressed the expression of epithelial/endothelial-mesenchymal transition (EMT) relevant genes. Overall, the current results demonstrated that LEF1 plays a pivotal role in maintaining the malignancy of colonic adenocarcinoma by remodeling motility correlated microstructures and suppressing the expression of EMT-relevant genes. Our study provided evidence of the roles LEF1 played in colonic adenocarcinoma progression, and suggest LEF1 as a potential target for colonic adenocarcinoma therapy.
Collapse
Affiliation(s)
- Li Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Caixia Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Xinyao Li
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Chenshuang Jia
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Lirong Chen
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Yue Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Qian Gao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Zheng Lu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Yang Feng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Ruixia Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Xuewei Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Sinan Cheng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Zhan Shu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Jie Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia;
| | - Guochao Nie
- Ukraine Joint Research Center for Nano Carbon Black, Yulin 537000, China
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resource Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (G.N.); (Y.H.)
| | - Yingchun Hou
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (L.X.); (C.Z.); (X.L.); (C.J.); (L.C.); (Y.Y.); (Q.G.); (Z.L.); (Y.F.); (R.Z.); (X.Z.); (S.C.); (Z.S.); (J.X.)
- Correspondence: (G.N.); (Y.H.)
| |
Collapse
|
22
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
23
|
Breast cancer brain metastasis: insight into molecular mechanisms and therapeutic strategies. Br J Cancer 2021; 125:1056-1067. [PMID: 34226684 DOI: 10.1038/s41416-021-01424-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is one of the most prevalent malignancies in women worldwide. Early-stage breast cancer is considered a curable disease; however, once distant metastasis occurs, the 5-year overall survival rate of patients becomes significantly reduced. There are four distinct metastatic patterns in breast cancer: bone, lung, liver and brain. Among these, breast cancer brain metastasis (BCBM) is the leading cause of death; it is highly associated with impaired quality of life and poor prognosis due to the limited permeability of the blood-brain barrier and consequent lack of effective treatments. Although the sequence of events in BCBM is universally accepted, the underlying mechanisms have not yet been fully elucidated. In this review, we outline progress surrounding the molecular mechanisms involved in BCBM as well as experimental methods and research models to better understand the process. We further discuss the challenges in the management of brain metastases, as well as providing an overview of current therapies and highlighting innovative research towards developing novel efficacious targeted therapies.
Collapse
|
24
|
Cutruzzolà F, Bouzidi A, Liberati FR, Spizzichino S, Boumis G, Macone A, Rinaldo S, Giardina G, Paone A. The Emerging Role of Amino Acids of the Brain Microenvironment in the Process of Metastasis Formation. Cancers (Basel) 2021; 13:2891. [PMID: 34207731 PMCID: PMC8227515 DOI: 10.3390/cancers13122891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment. In this review, we analyzed what makes the brain a suitable site for the development of metastases and how this microenvironment, through the continuous release of neurotransmitters and amino acids in the extracellular milieu, is able to support the metabolic needs of metastasizing cells. We also suggested a possible role for amino acids released by the brain through the endothelial cells of the blood-brain barrier into the bloodstream in triggering the process of extravasation/invasion of the brain parenchyma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alessio Paone
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (A.B.); (F.R.L.); (S.S.); (G.B.); (A.M.); (S.R.); (G.G.)
| |
Collapse
|
25
|
Sulaiman A, McGarry S, El‐Sahli S, Li L, Chambers J, Phan A, Al‐Kadi E, Kahiel Z, Farah E, Ji G, Lee S, Inampudi KK, Alain T, Li X, Liu S, Han X, Zheng P, Liu Z, Gadde S, Wang L. Nanoparticles Loaded with Wnt and YAP/Mevalonate Inhibitors in Combination with Paclitaxel Stop the Growth of TNBC Patient‐Derived Xenografts and Diminish Tumorigenesis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrew Sulaiman
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Sarah McGarry
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Sara El‐Sahli
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Li Li
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Jason Chambers
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Alexandra Phan
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Emil Al‐Kadi
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Zaina Kahiel
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Eliya Farah
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Guang Ji
- Institute of Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Seung‐Hwan Lee
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Krishna K. Inampudi
- Department of Biophysics All India Institute of Medical Sciences New Delhi 110029 India
| | - Tommy Alain
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Children Hospital of Eastern Ontario Research Institute Ottawa Ontario K1H 8L1 Canada
| | - Xuguang Li
- Centre for Biologics Evaluation Biologics and Genetic Therapies Directorate Health Canada Sir Frederick G. Banting Research Centre Ottawa Ontario K1Y 0M1 Canada
| | - Sheng Liu
- Institute of Chinese Traditional Surgery Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Peiyong Zheng
- Institute of Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Suresh Gadde
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Lisheng Wang
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Regenerative Medicine Program Ottawa Hospital Research Institute Ottawa Ontario K1H 8L6 Canada
| |
Collapse
|
26
|
Cinobufagin Suppresses Melanoma Cell Growth by Inhibiting LEF1. Int J Mol Sci 2020; 21:ijms21186706. [PMID: 32933177 PMCID: PMC7554883 DOI: 10.3390/ijms21186706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Constitutive activation of the β-catenin dependent canonical Wnt signaling pathway, which enhances tumor growth and progression in multiple types of cancer, is commonly observed in melanoma. LEF1 activates β-catenin/TCF4 transcriptional activity, promoting tumor growth and progression. Although several reports have shown that LEF1 is highly expressed in melanoma, the functional role of LEF1 in melanoma growth is not fully understood. While A375, A2058, and G361 melanoma cells exhibit abnormally high LEF1 expression, lung cancer cells express lower LEF1 levels. A luciferase assay-based high throughput screening (HTS) with a natural compound library showed that cinobufagin suppressed β-catenin/TCF4 transcriptional activity by inhibiting LEF1 expression. Cinobufagin decreases LEF1 expression in a dose-dependent manner and Wnt/β-catenin target genes such as Axin-2, cyclin D1, and c-Myc in melanoma cell lines. Cinobufagin sensitively attenuates cell viability and induces apoptosis in LEF1 expressing melanoma cells compared to LEF1-low expressing lung cancer cells. In addition, ectopic LEF1 expression is sufficient to attenuate cinobufagin-induced apoptosis and cell growth retardation in melanoma cells. Thus, we suggest that cinobufagin is a potential anti-melanoma drug that suppresses tumor-promoting Wnt/β-catenin signaling via LEF1 inhibition.
Collapse
|