1
|
Kaps L, Genc MA, Moehler M, Grabbe S, Schattenberg JM, Schuppan D, Pedersen RS, Karsdal MA, Mildenberger P, Maderer A, Willumsen N. Collagen turnover biomarkers to predict outcome of patients with biliary cancer. BMC Gastroenterol 2025; 25:53. [PMID: 39905306 PMCID: PMC11792424 DOI: 10.1186/s12876-025-03645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/15/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND The collagen-rich tumor stroma plays a crucial role in biliary tract cancer (BTC). Collagen biomarkers of type I collagen (reC1M), type III collagen (PRO-C3), type IV collagen (C4G), type VIII collagen (PRO-C8), type XI collagen (PRO-C11), type XVII collagen (PRO-C17) and type VIII collagen (TUM) may be used as potential non-invasive biomarkers. METHODS We measured the seven biomarkers of collagen turnover in sera of 72 patients with BTC at baseline and after first and second chemotherapy cycle (CTX). Markers were also assessed in sera of 50 healthy controls and compared to levels of patients at baseline. The diagnostic and prognostic value of the markers was evaluated for overall survival (OS) and progression-free survival (PFS). RESULTS Patients had a median age of 65 years (IQR 57-70), while healthy controls were younger, with a median age of 46 years (IQR 38-54). The majority of patients (62%) were diagnosed with intrahepatic bile duct adenocarcinoma. Except C4G, all collagen turnover markers were significantly (p < 0.001) increased in serum from patients with BTC compared to healthy controls. PRO-C3 was the best marker to discriminate between patients with BTC and controls, reaching an area under a receiver operating characteristic (AUROC) of 0.98 (95% CI 0.95; 0.99) with a sensitivity (92%) and specificity (94%) balanced cutoff of 77.3 ng/ml. Patients with high levels (cohort separated by median split) of PRO-C8 (HR 2.85, 95% CI 1.42; 5.73) followed by C3M (HR 2.33, 95% CI 1.2; 4.5), PRO-C3 (HR 3.09, 95% CI 1.5; 6.36) and CA 19-9 (HR 2.52, 95% CI 1.37; 4.64) as reference biomarker had a shorter OS. Notably, only the novel marker PRO-C8 was also predictive of PFS (HR 3.26, 95% CI 1.53; 6.95). Associations with survival outcomes remained significant after adjusting for relevant risk factors (CA 19-9 and CEA at baseline, age, presence of metastases, weight, height and gender). CONCLUSION The collagen turnover markers PRO-C8, C3M, PRO-C3 and the established biomarker CA 19-9 were prognostic for OS in patients with BTC while only PRO-C8 was also predictive for PFS. PRO-C3 showed the best diagnostic performance to discriminate between patients with BTC and controls. TRIAL REGISTRATION Trial registration number and date of registration NCT00661830 (NCT number) 15 April 2008 Trial registry The complete registry can found under: https://clinicaltrials.gov/study/NCT00661830?tab=table#administrative-information (last accessed 01/2025) Principal investigator and study sponsor Markus Moehler, MD Johannes Gutenberg University Mainz.
Collapse
Affiliation(s)
- Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, 55128, Germany.
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, 66421, Germany.
| | - Muhammed A Genc
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Markus Moehler
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, 55128, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, 66421, Germany
| | - Detlef Schuppan
- University Medical Center, Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medican Center, Harvard Medical School, Boston, Mam, USA
| | | | | | - Philipp Mildenberger
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Maderer
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
| | | |
Collapse
|
2
|
Götze J, Meißner K, Pereira-Veiga T, Belloum Y, Schneegans S, Kropidlowski J, Gorgulho J, Busch A, Honselmann KC, Schönrock M, Putscher A, Peine S, Nitschke C, Simon R, Spindler V, Izbicki JR, Hackert T, Bokemeyer C, Pantel K, Uzunoglu FG, Sinn M, Harriet Wikman. Identification and characterization of tumor and stromal derived liquid biopsy analytes in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2025; 44:14. [PMID: 39815324 PMCID: PMC11737273 DOI: 10.1186/s13046-024-03262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The lack of predictive biomarkers contributes notably to the poor outcomes of patients with pancreatic ductal adenocarcinoma (PDAC). Cancer-associated fibroblasts (CAFs) are the key components of the prominent PDAC stroma. Data on clinical relevance of CAFs entering the bloodstream, known as circulating CAFs (cCAFs) are scarce. Here, we developed a combined liquid biopsy assay to detect cCAFs and circulating tumor cells (CTCs) in metastatic PDAC (mPDAC) and other metastatic gastrointestinal malignancies (mGI). In addition, we evaluated plasma hyaluronan (HA) levels as a complementary surrogate biomarker of the stromal extent in patients with PDAC. METHODS A sequential liquid biopsy assay based on a two step-enrichment, combining marker dependent and independent cell enrichment, was established for cCAF and CTC detection and validated in mPDAC and mGI patients. The enriched cells were identified by multiplex immunofluorescence. HA measurement was performed by ELISA on blood samples from healthy blood donors (HD), localized and late-stage PDAC patients. RESULTS cCAFs (≥ 1cCAFs/7.5 mL blood) were detected in 95.4% of mPDAC and in 78.2% of mGI patients, with significantly higher numbers in mPDAC compared to mGI patients (mean number 22.7 vs. 11.0; P = 0.0318). mPDAC patients with ≥ 15 cCAFs/7.5 mL blood had a significant shorter median overall survival (mOS 3.2 months (95% confidence interval (CI) 0.801-5.855) vs. 14.2 months (95% CI 6.055-22.332); P = 0.013), whereby CTC levels were not associated with mOS. In mGI neither cCAFs nor CTCs had a significant impact on OS. HA plasma levels in mPDAC patients were significantly higher compared to HD (mean 123.0 ng/mL vs. 74.45 ng/mL, P = 0.015). High HA in localized and late-stage PDAC were associated with a significantly shorter mOS (mOSlocalized PDAC: 12.6 months vs. 23.5 months (P = 0.008); mOSmPDAC: 1.8 months vs. 5.3 months (P = 0.004)). CONCLUSIONS Our liquid biopsy assay provides robust detection of cCAFs in mPDAC and mGI patients. The measurement of both circulatory stromal parameters, cCAFs and HA, adds valuable clinical information as they are associated with an unfavorable outcome in PDAC. These results highlight that stromal characteristics unique to PDAC could be leveraged to fill the current gap in discovering predictive biomarkers.
Collapse
Affiliation(s)
- Julian Götze
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany.
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany.
| | - Kira Meißner
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Thais Pereira-Veiga
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Yassine Belloum
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Svenja Schneegans
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Jolanthe Kropidlowski
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Alina Busch
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Kim Christin Honselmann
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Martin Schönrock
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Arne Putscher
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Spindler
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Robert Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Faik Güntaç Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Sinn
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany.
| | - Harriet Wikman
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany.
| |
Collapse
|
3
|
Li M, Freeman S, Franco-Barraza J, Cai KQ, Kim A, Jin S, Cukierman E, Ye K. A bioprinted sea-and-island multicellular model for dissecting human pancreatic tumor-stroma reciprocity and adaptive metabolism. Biomaterials 2024; 310:122631. [PMID: 38815457 PMCID: PMC11186049 DOI: 10.1016/j.biomaterials.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFβ) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Ming Li
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sebastian Freeman
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Amy Kim
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA.
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA.
| |
Collapse
|
4
|
Liu Q, Ye J, Liu B, Guo Q, Wang S, Liu Y, He Y, Du Y, Zhang G, Guo Q, Shen Y, Xu J, Liu H, Yang C. Elevated Cancer-Associated Hyaluronan Correlates With Diagnosis and Lymph Node Metastasis of Papillary Thyroid Cancer. J Transl Med 2024; 104:102104. [PMID: 38945481 DOI: 10.1016/j.labinv.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2023] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
The glycosaminoglycan hyaluronan (HA) plays an important role in tumor progression. However, its biological and clinical significance in papillary thyroid cancer (PTC) remains unknown. Immunohistochemistry was performed to examine HA expression in tissues from PTC patients. Two PTC cell lines were treated with HA synthesized inhibitor against HA production to assess its function. Serum HA levels from 107 PTC patients, 30 Hashimoto thyroiditis patients, and 45 normal controls (NC) were measured by chemiluminescence immunoassay. HA levels in fine needle aspiration (FNA) washouts obtained from thyroid nodules and lymph nodes (LNs) were measured by chemiluminescence immunoassay. Area under the curve (AUC) was computed to evaluate HA's clinical value. HA was highly expressed in PTC. Reducing HA production significantly inhibited PTC cell proliferation and invasion. Importantly, serum HA levels in PTC were significantly higher than those in NCs and Hashimoto thyroiditis and allowed distinguishing of thyroid cancers from NCs with high accuracy (AUC = 0.782). Moreover, elevated serum HA levels in PTC correlate with LN metastasis. HA levels in FNA washouts from PTC patients were significantly higher than those in benign controls, with a high AUC value (0.8644) for distinguishing PTC from benign controls. Furthermore, HA levels in FNA washouts from metastatic LN were significantly higher than those in nonmetastatic LN, with a high AUC value (0.8007) for distinguishing metastatic LNs from nonmetastatic LNs. HA levels in serum and FNA washout exhibited a potential significance for PTC diagnosis and an indicator for LN metastasis in patients with PTC.
Collapse
Affiliation(s)
- Qinqing Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Ye
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bohan Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Ultrasonography, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Wang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyue Shen
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hua Liu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cuixia Yang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Ferdous KU, Tesfay MZ, Cios A, Shelton RS, Hartupee C, Urbaniak A, Chamcheu JC, Mavros MN, Giorgakis E, Mustafa B, Simoes CC, Miousse IR, Basnakian AG, Moaven O, Post SR, Cannon MJ, Kelly T, Nagalo BM. Enhancing Neoadjuvant Virotherapy's Effectiveness by Targeting Stroma to Improve Resectability in Pancreatic Cancer. Biomedicines 2024; 12:1596. [PMID: 39062169 PMCID: PMC11275208 DOI: 10.3390/biomedicines12071596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
About one-fourth of patients with pancreatic ductal adenocarcinoma (PDAC) are categorized as borderline resectable (BR) or locally advanced (LA). Chemotherapy and radiation therapy have not yielded the anticipated outcomes in curing patients with BR/LA PDAC. The surgical resection of these tumors presents challenges owing to the unpredictability of the resection margin, involvement of vasculature with the tumor, the likelihood of occult metastasis, a higher ratio of positive lymph nodes, and the relatively larger size of tumor nodules. Oncolytic virotherapy has shown promising activity in preclinical PDAC models. Unfortunately, the desmoplastic stroma within the PDAC tumor microenvironment establishes a barrier, hindering the infiltration of oncolytic viruses and various therapeutic drugs-such as antibodies, adoptive cell therapy agents, and chemotherapeutic agents-in reaching the tumor site. Recently, a growing emphasis has been placed on targeting major acellular components of tumor stroma, such as hyaluronic acid and collagen, to enhance drug penetration. Oncolytic viruses can be engineered to express proteolytic enzymes that cleave hyaluronic acid and collagen into smaller polypeptides, thereby softening the desmoplastic stroma, ultimately leading to increased viral distribution along with increased oncolysis and subsequent tumor size regression. This approach may offer new possibilities to improve the resectability of patients diagnosed with BR and LA PDAC.
Collapse
Affiliation(s)
- Khandoker Usran Ferdous
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Aleksandra Cios
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
| | - Randal S. Shelton
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA 70112, USA; (C.H.); (O.M.)
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.U.); (I.R.M.)
| | - Jean Christopher Chamcheu
- Department of Biological Sciences and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA;
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michail N. Mavros
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Emmanouil Giorgakis
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Bahaa Mustafa
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.U.); (I.R.M.)
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Central Arkansas Veterans Healthcare System, John L. McClellan Memorial VA Hospital, Little Rock, AR 72205, USA
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA 70112, USA; (C.H.); (O.M.)
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA 70112, USA
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Martin J. Cannon
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.U.F.); (M.Z.T.); (A.C.); (C.C.S.); (S.R.P.); (T.K.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.N.M.); (M.J.C.)
| |
Collapse
|
6
|
Pan X, Han T, Zhao Z, Wang X, Fang X. Emerging Nanotechnology in Preclinical Pancreatic Cancer Immunotherapy: Driving Towards Clinical Applications. Int J Nanomedicine 2024; 19:6619-6641. [PMID: 38975321 PMCID: PMC11227336 DOI: 10.2147/ijn.s466459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Accepted: 06/16/2024] [Indexed: 07/09/2024] Open
Abstract
The high malignant degree and poor prognosis of pancreatic cancer (PC) pose severe challenges to the basic research and clinical translation of next-generation therapies. The rise of immunotherapy has improved the treatment of a variety of solid tumors, while the application in PC is highly restricted by the challenge of immunosuppressive tumor microenvironment. The latest progress of nanotechnology as drug delivery platform and immune adjuvant has improved drug delivery in a variety of disease backgrounds and enhanced tumor therapy based on immunotherapy. Based on the immune loop of PC and the status quo of clinical immunotherapy of tumors, this article discussed and critically analyzed the key transformation difficulties of immunotherapy adaptation to the treatment of PC, and then proposed the rational design strategies of new nanocarriers for drug delivery and immune regulation, especially the design of combined immunotherapy. This review also put forward prospective views on future research directions, so as to provide information for the new means of clinical treatment of PC combined with the next generation of nanotechnology and immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Ting Han
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Zixuan Zhao
- The Translational Research Institute for Neurological Disorders of Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Xiaoming Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Xiaosan Fang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| |
Collapse
|
7
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
8
|
Macdonald JK, Clift CL, Saunders J, Zambrzycki SC, Mehta AS, Drake RR, Angel PM. Differential Protease Specificity by Collagenase as a Novel Approach to Serum Proteomics That Includes Identification of Extracellular Matrix Proteins without Enrichment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:487-497. [PMID: 38329320 PMCID: PMC10921462 DOI: 10.1021/jasms.3c00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.
Collapse
Affiliation(s)
- Jade K. Macdonald
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | | | - Stephen C. Zambrzycki
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S. Mehta
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R. Drake
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
9
|
Poulsen VV, Hadi A, Werge MP, Karstensen JG, Novovic S. Circulating Biomarkers Involved in the Development of and Progression to Chronic Pancreatitis-A Literature Review. Biomolecules 2024; 14:239. [PMID: 38397476 PMCID: PMC10887223 DOI: 10.3390/biom14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic pancreatitis (CP) is the end-stage of continuous inflammation and fibrosis in the pancreas evolving from acute- to recurrent acute-, early, and, finally, end-stage CP. Currently, prevention is the only way to reduce disease burden. In this setting, early detection is of great importance. Due to the anatomy and risks associated with direct sampling from pancreatic tissue, most of our information on the human pancreas arises from circulating biomarkers thought to be involved in pancreatic pathophysiology or injury. The present review provides the status of circulating biomarkers involved in the development of and progression to CP.
Collapse
Affiliation(s)
- Valborg Vang Poulsen
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - Amer Hadi
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - Mikkel Parsberg Werge
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - John Gásdal Karstensen
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
- Department of Clinical Medicine, University of Copenhagen, 2000 Copenhagen, Denmark
| | - Srdan Novovic
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
- Department of Clinical Medicine, University of Copenhagen, 2000 Copenhagen, Denmark
| |
Collapse
|
10
|
Genovese F, Gonçalves I, Holm Nielsen S, Karsdal MA, Edsfeldt A, Nilsson J, Shore AC, Natali A, Khan F, Shami A. Plasma levels of PRO-C3, a type III collagen synthesis marker, are associated with arterial stiffness and increased risk of cardiovascular death. Atherosclerosis 2024; 388:117420. [PMID: 38128431 DOI: 10.1016/j.atherosclerosis.2023.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND AIMS The N-terminal propeptide of type III collagen (PRO-C3) assay measures a pro-peptide released during type III collagen synthesis, an important feature of arterial stiffening and atherogenesis. There is a clinical need for improved non-invasive, cheap and easily accessible methods for evaluating individuals at risk of cardiovascular disease (CVD). In this study, we investigate the potential of using circulating levels of PRO-C3 to mark the degree of vascular stenosis and risk of cardiovascular events. METHODS Baseline plasma levels of PRO-C3 were measured by ELISA in subjects belonging to the SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) cohort (N = 1354). Associations between PRO-C3 levels with vascular characteristics, namely stiffness and stenosis, and risk of future cardiovascular events were explored. Subjects were followed up after a median of 35 months (interquartile range 34-36 months), with recorded outcomes cardiovascular death and all-cause mortality. RESULTS We found a correlation between PRO-C3 levels and pulse wave velocity (rho 0.13, p = 0.000009), a measurement of arterial stiffness. Higher PRO-C3 levels were also associated with elevated blood pressure (rho 0.07, p = 0.014), as well as risk of cardiovascular mortality over a three-year follow-up period (OR 1.56, confidence interval 1.008-2.43, p = 0.046). CONCLUSIONS Elevated circulating PRO-C3 levels are associated with arterial stiffness and future cardiovascular death, in the SUMMIT cohort, suggesting a potential value of PRO-C3 as a novel marker for declining vascular health.
Collapse
Affiliation(s)
| | - Isabel Gonçalves
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden; Dept. of Cardiology, Malmö, Skåne University Hospital, Lund University, Carl-Bertil Laurells Gata 9, 214 28, Malmö, Sweden
| | - Signe Holm Nielsen
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark; Biomedicine and Biotechnology, Technical University of Denmark, Søltofts Pl. 221, 2800, Kongens Lyngby, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Andreas Edsfeldt
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden; Dept. of Cardiology, Malmö, Skåne University Hospital, Lund University, Carl-Bertil Laurells Gata 9, 214 28, Malmö, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Klinikgatan 32, 221 84, Lund, Sweden
| | - Jan Nilsson
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden
| | - Angela C Shore
- Diabetes and Vascular Medicine, University of Exeter, Medical School, National Institute for Health Research Exeter Clinical Research Facility, Barrack Road, Exeter, EX2 5AX, UK
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 8, 56100, Pisa, Italy
| | - Faisel Khan
- Division of Systems Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Annelie Shami
- Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Jan Waldenströms Gata 35, 214 28, Malmö, Sweden.
| |
Collapse
|
11
|
Li D, Chen X, Dai W, Jin Q, Wang D, Ji J, Tang BZ. Photo-Triggered Cascade Therapy: A NIR-II AIE Luminogen Collaborating with Nitric Oxide Facilitates Efficient Collagen Depletion for Boosting Pancreatic Cancer Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306476. [PMID: 38157423 DOI: 10.1002/adma.202306476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2023] [Revised: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The dense extracellular matrix (ECM) in the pancreatic cancer severely hampers the penetration of nanodrugs, which causes inferior therapeutic efficacy. To address this issue, a multifunctional liposome, namely, Lip-DTI/NO, integrating a type-I photosensitizer DTITBT with glutathione (GSH) or heat-responsive nitric oxide (NO) donor S-nitroso-N-acetyl-D-penicillamine (SNAP) is constructed to deplete the tumor ECM, leading to enhanced drug delivery and consequently improved phototherapy. The loaded DTITBT possesses multiple functions including NIR-II fluorescence imaging, efficient superoxide radical (O2 •- ) generation and excellent photothermal conversion efficiency, making it feasible for precisely pinpointing the tumor in the phototherapy process. Responding to the intracellular overexpressed glutathione or heat produced by photothermal effect of DTITBT, NO can be released from SNAP. Upon 808 nm laser irradiation, Lip-DTI/NO could selectively induce in situ generation of peroxynitrite anion (ONOO- ) in tumor after cascade processes including O2 •- production, GSH or heat-triggered NO release, and rapid reaction between O2 •- and NO. The generated ONOO- could activate the expression of endogenous matrix metalloproteinases which could efficiently digest collagen of tumor ECM, thus facilitating enhanced penetration and accumulation of Lip-DTI/NO in tumor. In vivo evaluation demonstrates the notable therapeutic efficacy via ONOO- -potentiated synergistic photodynamic-photothermal therapies on both subcutaneous and orthotopic pancreatic cancer model.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
12
|
Bhattacharyya M, Jariyal H, Srivastava A. Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr Polym 2023; 317:121081. [PMID: 37364954 DOI: 10.1016/j.carbpol.2023.121081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Hyaluronic acid (HA), also named hyaluronan, is an omnipresent component of the tissue microenvironment. It is extensively used to formulate targeted drug delivery systems for cancer. Although HA itself has pivotal influences in various cancers, its calibers are somewhat neglected when using it as delivering platform to treat cancer. In the last decade, multiple studies revealed roles of HA in cancer cell proliferation, invasion, apoptosis, and dormancy through pathways like mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK/ERK), P38, and nuclear factor kappa-light chain-enhancer of activated B cells (NFκB). A more fascinating fact is that the distinct molecular weight (MW) of HA exerts disparate effects on the same type of cancer. Its overwhelming use in cancer therapy and other therapeutic products make collective research on the sundry impact of it on various types of cancer, an essential aspect to be considered in all of these domains. Even the development of new therapies against cancer needed meticulous studies on HA because of its divergence of activity based on MW. This review will provide painstaking insight into the extracellular and intracellular bioactivity of HA, its modified forms, and its MW in cancers, which may improve the management of cancer.
Collapse
Affiliation(s)
- Medha Bhattacharyya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
13
|
Hasselbalch HC, Junker P, Skov V, Kjær L, Knudsen TA, Larsen MK, Holmström MO, Andersen MH, Jensen C, Karsdal MA, Willumsen N. Revisiting Circulating Extracellular Matrix Fragments as Disease Markers in Myelofibrosis and Related Neoplasms. Cancers (Basel) 2023; 15:4323. [PMID: 37686599 PMCID: PMC10486581 DOI: 10.3390/cancers15174323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) arise due to acquired somatic driver mutations in stem cells and develop over 10-30 years from the earliest cancer stages (essential thrombocythemia, polycythemia vera) towards the advanced myelofibrosis stage with bone marrow failure. The JAK2V617F mutation is the most prevalent driver mutation. Chronic inflammation is considered to be a major pathogenetic player, both as a trigger of MPN development and as a driver of disease progression. Chronic inflammation in MPNs is characterized by persistent connective tissue remodeling, which leads to organ dysfunction and ultimately, organ failure, due to excessive accumulation of extracellular matrix (ECM). Considering that MPNs are acquired clonal stem cell diseases developing in an inflammatory microenvironment in which the hematopoietic cell populations are progressively replaced by stromal proliferation-"a wound that never heals"-we herein aim to provide a comprehensive review of previous promising research in the field of circulating ECM fragments in the diagnosis, treatment and monitoring of MPNs. We address the rationales and highlight new perspectives for the use of circulating ECM protein fragments as biologically plausible, noninvasive disease markers in the management of MPNs.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, 5000 Odense, Denmark;
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Trine A. Knudsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Christina Jensen
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | - Morten A. Karsdal
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | | |
Collapse
|
14
|
Puttock EH, Tyler EJ, Manni M, Maniati E, Butterworth C, Burger Ramos M, Peerani E, Hirani P, Gauthier V, Liu Y, Maniscalco G, Rajeeve V, Cutillas P, Trevisan C, Pozzobon M, Lockley M, Rastrick J, Läubli H, White A, Pearce OMT. Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun 2023; 14:2514. [PMID: 37188691 PMCID: PMC10185550 DOI: 10.1038/s41467-023-38093-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Recent studies have shown that the tumor extracellular matrix (ECM) associates with immunosuppression, and that targeting the ECM can improve immune infiltration and responsiveness to immunotherapy. A question that remains unresolved is whether the ECM directly educates the immune phenotypes seen in tumors. Here, we identify a tumor-associated macrophage (TAM) population associated with poor prognosis, interruption of the cancer immunity cycle, and tumor ECM composition. To investigate whether the ECM was capable of generating this TAM phenotype, we developed a decellularized tissue model that retains the native ECM architecture and composition. Macrophages cultured on decellularized ovarian metastasis shared transcriptional profiles with the TAMs found in human tissue. ECM-educated macrophages have a tissue-remodeling and immunoregulatory phenotype, inducing altered T cell marker expression and proliferation. We conclude that the tumor ECM directly educates this macrophage population found in cancer tissues. Therefore, current and emerging cancer therapies that target the tumor ECM may be tailored to improve macrophage phenotype and their downstream regulation of immunity.
Collapse
Affiliation(s)
- E H Puttock
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E J Tyler
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Manni
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - E Maniati
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Butterworth
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - M Burger Ramos
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - E Peerani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Hirani
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Gauthier
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - Y Liu
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - G Maniscalco
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - V Rajeeve
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - P Cutillas
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - C Trevisan
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Pozzobon
- Department of Women and Children Health, University of Padova and Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - M Lockley
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK
| | - J Rastrick
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - H Läubli
- Department of Biomedicine and Division of Medical Oncology, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - A White
- UCB Pharma Ltd, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - O M T Pearce
- Queen Mary University of London, Barts Cancer Institute, John Vane Science Centre, London, EC1M 6BQ, UK.
| |
Collapse
|
15
|
Jensen C, Drobinski P, Thorlacius-Ussing J, Karsdal MA, Bay-Jensen AC, Willumsen N. Autoreactivity against Denatured Type III Collagen Is Significantly Decreased in Serum from Patients with Cancer Compared to Healthy Controls. Int J Mol Sci 2023; 24:ijms24087067. [PMID: 37108227 PMCID: PMC10139183 DOI: 10.3390/ijms24087067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Autoantibodies have the potential as cancer biomarkers as they may associate with the outcome and immune-related adverse events (irAEs) following immunotherapy. Cancer and other fibroinflammatory diseases, such as rheumatoid arthritis (RA), are associated with excessive collagen turnover leading to collagen triple helix unfolding and denaturation with exposure of immunodominant epitopes. In this study, we aimed to investigate the role of autoreactivity against denatured collagen in cancer. A technically robust assay to quantify autoantibodies against denatured type III collagen products (anti-dCol3) was developed and then measured in pretreatment serum from 223 cancer patients and 33 age-matched controls. Moreover, the association between anti-dCol3 levels and type III collagen degradation (C3M) and formation (PRO-C3) was investigated. Anti-dCol3 levels were significantly lower in patients with bladder (p = 0.0007), breast (p = 0.0002), colorectal (p < 0.0001), head and neck (p = 0.0005), kidney (p = 0.005), liver (p = 0.030), lung (p = 0.0004), melanoma (p < 0.0001), ovarian (p < 0.0001), pancreatic (p < 0.0001), prostate (p < 0.0001), and stomach cancers (p < 0.0001) compared to controls. High anti-dCol3 levels were associated with type III collagen degradation (C3M, p = 0.0002) but not type III collagen formation (PRO-C3, p = 0.26). Cancer patients with different solid tumor types have downregulated levels of circulating autoantibodies against denatured type III collagen compared to controls, suggesting that autoreactivity against unhealthy type III collagen may be important for tumor control and eradication. This autoimmunity biomarker may have the potential for studying the close relationship between autoimmunity and cancer.
Collapse
|
16
|
Nissen NI, Johansen AZ, Chen IM, Jensen C, Madsen EA, Hansen CP, Thorlacius-Ussing J, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Willumsen N. High serum levels of the C-propetide of type V collagen (PRO-C5) are prognostic for short overall survival in patients with pancreatic ductal adenocarcinoma. Front Mol Biosci 2023; 10:1158058. [PMID: 36968276 PMCID: PMC10036831 DOI: 10.3389/fmolb.2023.1158058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a pronounced fibrotic tumor microenvironment, which impairs treatment response. Type I and V collagens are responsible for the densely packed fibrils in the tumor fibrosis environment. While the role of the major type I collagen in cancer is well described, less is known about the minor type V collagen. Quantifying collagen propeptides in serum has been shown to have prognostic and predictive value. In this study, we evaluated the clinical utility of measuring the propeptide of type V collagen (PRO-C5) in serum from a discovery cohort and a validation cohort of patients with PDAC as well as in non-pancreatic solid tumor types to explore the relevance of the PRO-C5 biomarker in cancer.Methods: Serum PRO-C5 was measured in three cohorts: a discovery cohort (19 healthy controls, 12 patients with chronic pancreatitis and 33 patients with PDAC (stage I-IV)), a validation cohort (800 patients with PDAC (stage I-IV)), and a non-pancreatic solid tumor type cohort of 33 healthy controls and 200 patients with 10 different non-pancreatic solid tumor types. The levels of serum PRO-C5 in patients with cancer were compared to levels in healthy controls. The association between PRO-C5 levels and overall survival (OS) was evaluated in patients with PDAC after adjusting for established prognostic factors.Results: PRO-C5 was significantly increased in serum from patients with PDAC compared to healthy controls (p < 0.001). High PRO-C5 levels were significantly associated with short OS in both the discovery- and the validation cohort, especially in early stages of PDAC (validation cohort stage II, HR = 2.0, 95%CI1.2-3.4). The association was independent of other prognostic parameters including stage, performance status and CA19-9. Furthermore, serum levels of PRO-C5 were significantly increased in serum from patients with other non-pancreatic solid tumor types compared to healthy controls.Conclusion: High levels of serum PRO-C5 is prognostic for short OS in patients with PDAC and may provide clinical value in many other tumor types beyond PDAC. This underlines the importance of type V collagen in tumor fibrosis. PRO-C5 could have the potential to be used in several aspects within drug discovery, patient stratification and drug efficacy.
Collapse
Affiliation(s)
- Neel I. Nissen
- Nordic Bioscience A/S, Herlev, Denmark
- *Correspondence: Neel I. Nissen,
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
| | | | | | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | | | | | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Copenhagen University Hospital, Gentofte, Denmark
| | - Hadi M. H. Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N. Jørgensen
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
17
|
Désert R, Giannone F, Schuster C, Baumert TF. Tumor microenvironment-derived serum markers as a new frontier of diagnostic and prognostic assessment in biliary tract cancers. Int J Cancer 2023; 152:804-806. [PMID: 36455586 PMCID: PMC7615303 DOI: 10.1002/ijc.34357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022]
Affiliation(s)
- Romain Désert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
| | - Fabio Giannone
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
- Pole Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut hospitalo-universitaire (IHU), Université de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
- Pole Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut hospitalo-universitaire (IHU), Université de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
18
|
Christensen TD, Jensen C, Larsen O, Leerhøy B, Hansen CP, Madsen K, Høgdall D, Karsdal MA, Chen IM, Nielsen D, Johansen JS, Willumsen N. Blood-based tumor fibrosis markers as diagnostic and prognostic biomarkers in patients with biliary tract cancer. Int J Cancer 2023; 152:1036-1049. [PMID: 36455598 DOI: 10.1002/ijc.34356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Biliary tract cancer (BTC) is characterized by a desmoplastic extracellular matrix (ECM). We tested the diagnostic and prognostic use of seven circulating biomarkers of ECM remodeling: pro-peptides of type III collagen (PRO-C3), VI (PRO-C6) and XI (PRO-C11), matrix metalloprotease (MMP) degraded type III collagen (C3M) and type IV collagen (C4M) fragments, granzyme B degraded type IV collagen fragments (C4G) and MMP degraded and citrullinated vimentin (VICM) a marker of macrophage activation. The study included 269 patients with all stages of BTC and 49 patients with benign biliary tract diseases. Serum samples from BTC patients were collected before surgery, or before first- or second-line chemotherapy. C3M, C4M, PRO-C3, PRO-C6, PRO-C11 and VICM levels were elevated in patients with BTC compared to patients with benign disease. Receiver operating characteristics curve analyses identified PRO-C3 (area under curve [AUC] = 0.87) as the ECM marker with the best diagnostic performance. The ECM biomarkers correlated with inflammation biomarkers (C-reactive protein [CRP], interleukin-6 [IL-6] and YKL-40) but not with CA19-9. To investigate prognostic performance, patients were split into three cohorts (first-line, second-line and surgery). Elevated ECM biomarker levels were associated with short overall survival (OS), but only pretreatment PRO-C3 and PRO-C6 were associated with OS in both the first-line and second-line settings when adjusting for CA19-9, performance status and stage in a multivariate Cox-regression analyses. Our results indicate that collagen remodeling is increased in patients with BTC and associated with survival. The collagen pro-peptides (PRO-C3 and PRO-C6) could be used as novel biomarkers in these patients.
Collapse
Affiliation(s)
- Troels D Christensen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | | | - Ole Larsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Bonna Leerhøy
- Digestive Disease Center, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Carsten P Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kasper Madsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dan Høgdall
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | | | - Inna M Chen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dorte Nielsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | | |
Collapse
|
19
|
Type XXII Collagen Complements Fibrillar Collagens in the Serological Assessment of Tumor Fibrosis and the Outcome in Pancreatic Cancer. Cells 2022; 11:cells11233763. [PMID: 36497023 PMCID: PMC9738409 DOI: 10.3390/cells11233763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Circulating fragments of type III collagen, measured by PRO-C3, has shown promising results as a tumor fibrosis biomarker. However, the fibrotic tumor microenvironment consists of many other collagens with diverse functions and unexplored biomarker potential. One example hereof is type XXII collagen (COL22). In this study, we investigated the biomarker potential of COL22 by measuring this in serum. An ELISA, named PRO-C22, was developed and measured in two serum cohorts consisting of patients with various solid tumors (n = 220) and healthy subjects (n = 33) (Cohort 1), and patients with pancreatic ductal adenocarcinoma (PDAC) (n = 34), and healthy subjects (n = 20) (Cohort 2). In Cohort 1, PRO-C22 was elevated in the serum from patients with solid tumors, compared to healthy subjects (p < 0.01 to p < 0.0001), and the diagnostic accuracy (AUROC) ranged from 0.87 to 0.98, p < 0.0001. In Cohort 2, the high levels of PRO-C22, in patients with PDAC, were predictive of a worse overall survival (HR = 4.52, 95% CI 1.90−10.7, p = 0.0006) and this remained significant after adjusting for PRO-C3 (HR = 4.27, 95% CI 1.24−10.4, p = 0.0013). In conclusion, PRO-C22 has diagnostic biomarker potential in various solid tumor types and prognostic biomarker potential in PDAC. Furthermore, PRO-C22 complemented PRO-C3 in predicting mortality, suggesting an additive prognostic value when quantifying different collagens.
Collapse
|
20
|
Jahedi H, Ramachandran A, Windsor J, Knowlton N, Blenkiron C, Print CG. Clinically Relevant Biology of Hyaluronic Acid in the Desmoplastic Stroma of Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:1092-1104. [PMID: 37078930 DOI: 10.1097/mpa.0000000000002154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 04/21/2023]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor outcome. The presence of a dense desmoplastic stroma is a hallmark of this malignancy, and abundant hyaluronic acid (HA) within this stroma is a common feature of PDAC. At the end of 2019, an HA-targeting drug, after initial promise, failed phase 3 clinical trials in PDAC. This failure in the face of such strong evidence for biological importance forces us to turn back to the research and seek a better understanding of HA biology in PDAC. Therefore, in this review, we reexamine what is known about HA biology, the methods used to detect and quantify HA, and the ability of the biological models in which HA has been investigated to recapitulate an HA-rich desmoplastic tumor stroma. The role of HA in PDAC relies on its complex interplay with a range of HA-associated molecules, which have not been as extensively investigated as HA itself. Therefore, using large genomic data sets, we cataloged the abundance and activity in PDAC of molecules that modulate HA synthesis, degradation, protein interactions, and receptor binding. Based on their association with clinical characteristics and individual patient outcomes, we suggest a small number of HA-associated molecules that warrant further investigation as biomarkers and drug targets.
Collapse
Affiliation(s)
- Hossein Jahedi
- From the Departments of Molecular Medicine and Pathology
| | | | | | | | | | | |
Collapse
|
21
|
Zeng Y, Fan R. Identification and verification of CCNB1 as a potential prognostic biomarker by comprehensive analysis. Sci Rep 2022; 12:16153. [PMID: 36167975 PMCID: PMC9515086 DOI: 10.1038/s41598-022-20615-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
As one of the most common types of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC) is highly invasive and lethal. This study aims to develop biomarkers and targets for the diagnosis and treatment of PDAC. Differentially expressed genes (DEGs) were screened via GEO2R, protein network was constructed through STRING and Cytoscape. Functional enrichment analysis was performed, followed by survival analysis and expression validation. A total of 115 DEGs were identified, including 108 upregulated and 7 downregulated genes. After enrichment, survival analysis, one potential gene, Cyclin B1 (CCNB1), was selected for further expression verification at the mRNA and protein level. Taker together, CCNB1 may act as a potential biomarker which provided new idea for elucidation of the pathogenesis of PDAC.
Collapse
Affiliation(s)
- Yinzhen Zeng
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Rong Fan
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China. .,Central Laboratory, Tianjin Xiqing Hospital, Xiqing Road 403rd, Tianjin, 300380, People's Republic of China.
| |
Collapse
|
22
|
Pedersen RS, Nissen NI, Jensen C, Thorlacius-Ussing J, Manon-Jensen T, Olesen ML, Langholm LL, Diab HMH, Jorgensen LN, Hansen CP, Chen IM, Johansen JS, Karsdal MA, Willumsen N. Plasma Kallikrein-Activated TGF-β Is Prognostic for Poor Overall Survival in Patients with Pancreatic Ductal Adenocarcinoma and Associates with Increased Fibrogenesis. Biomolecules 2022; 12:biom12091315. [PMID: 36139154 PMCID: PMC9496221 DOI: 10.3390/biom12091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a hard-to-treat cancer due to the collagen-rich (fibrotic) and immune-suppressed microenvironment. A major driver of this phenomenon is transforming growth factor beta (TGF-β). TGF-β is produced in an inactive complex with a latency-associated protein (LAP) that can be cleaved by plasma kallikrein (PLK), hereby releasing active TGF-β. The aim of this study was to evaluate LAP cleaved by PLK as a non-invasive biomarker for PDAC and tumor fibrosis. An ELISA was developed for the quantification of PLK-cleaved LAP-TGF-β in the serum of 34 patients with PDAC (stage 1−4) and 20 healthy individuals. Biomarker levels were correlated with overall survival (OS) and compared to serum type III collagen (PRO-C3) and type VI collagen (PRO-C6) pro-peptides. PLK-cleaved LAP-TGF-β was higher in patients with PDAC compared to healthy individuals (p < 0.0001). High levels (>median) of PLK-cleaved LAP-TGF-β were associated with poor OS in patients with PDAC independent of age and stage (HR 2.57, 95% CI: 1.22−5.44, p = 0.0135). High levels of PLK-cleaved LAP-TGF-β were associated with high PRO-C3 and PRO-C6, indicating a relationship between the PLK-cleaved LAP-TGF-β fragment, TGF-β activity, and tumor fibrosis. If these preliminary results are validated, circulating PLK-cleaved LAP-TGF-β may be a biomarker for future clinical trials.
Collapse
Affiliation(s)
- Rasmus S. Pedersen
- Nordic Bioscience, 2730 Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | | | | | | | | | | | | | - Hadi M. H. Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Lars N. Jorgensen
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Inna M. Chen
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Julia S. Johansen
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | |
Collapse
|
23
|
Collagen Remodeling along Cancer Progression Providing a Novel Opportunity for Cancer Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms231810509. [PMID: 36142424 PMCID: PMC9502421 DOI: 10.3390/ijms231810509] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a significant factor in cancer progression. Collagens, as the main component of the ECM, are greatly remodeled alongside cancer development. More and more studies have confirmed that collagens changed from a barrier to providing assistance in cancer development. In this course, collagens cause remodeling alongside cancer progression, which in turn, promotes cancer development. The interaction between collagens and tumor cells is complex with biochemical and mechanical signals intervention through activating diverse signal pathways. As the mechanism gradually clears, it becomes a new target to find opportunities to diagnose and treat cancer. In this review, we investigated the process of collagen remodeling in cancer progression and discussed the interaction between collagens and cancer cells. Several typical effects associated with collagens were highlighted in the review, such as fibrillation in precancerous lesions, enhancing ECM stiffness, promoting angiogenesis, and guiding invasion. Then, the values of cancer diagnosis and prognosis were focused on. It is worth noting that several generated fragments in serum were reported to be able to be biomarkers for cancer diagnosis and prognosis, which is beneficial for clinic detection. At a glance, a variety of reported biomarkers were summarized. Many collagen-associated targets and drugs have been reported for cancer treatment in recent years. The new targets and related drugs were discussed in the review. The mass data were collected and classified by mechanism. Overall, the interaction of collagens and tumor cells is complicated, in which the mechanisms are not completely clear. A lot of collagen-associated biomarkers are excavated for cancer diagnosis. However, new therapeutic targets and related drugs are almost in clinical trials, with merely a few in clinical applications. So, more efforts are needed in collagens-associated studies and drug development for cancer research and treatment.
Collapse
|
24
|
Small fragments of hyaluronan are increased in individuals with obesity and contribute to low-grade inflammation through TLR-mediated activation of innate immune cells. Int J Obes (Lond) 2022; 46:1960-1969. [PMID: 35896710 PMCID: PMC9584819 DOI: 10.1038/s41366-022-01187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/19/2021] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Background and aim Extracellular matrix (ECM) components released during excessive fat mass expansion are considered potential endogenous danger/alarm signals contributing to innate immune system activation. The aim of the current study was to specifically measure plasma levels of low molecular weight (LMW) hyaluronan (HA) and to evaluate its role as pro-inflammatory damage-associated molecular pattern (DAMP) on leukocyte response in the context of human obesity. Subjects and methods Participants were selected according to their body mass index (BMI, kg/m2) as non-obese (BMI < 29.9, n = 18) and obese (BMI > 29.9, n = 33). Plasma samples were size-dependent fractionated using ion-exchange chromatography to specifically obtain LMW HA fractions that were subsequently quantified by ELISA. Cell incubation experiments with synthetic HA molecules were performed on freshly Ficoll-isolated neutrophils (PMN) and peripheral blood monocytes (PBMC). Leukocyte and adipose tissue gene expression was assessed by real-time PCR and NF-κB activation by western blot. Plasma cytokine levels were measured by fluorescent bead-based (Luminex) immunoassay. Results We observed a statistically significant increase in the circulating levels of HA fragments of LMW in individuals with obesity which were consistent with significant up-regulated expression of the LMW HA synthesizing enzyme hyaluronan synthase-1 (HAS-1) in obese adipose tissue. Gene expression assessment of HA receptors revealed up-regulated levels for TLR2 in both obese PMN and PBMC. Synthetic HA molecules of different sizes were tested on leukocytes from healthy donors. LMW HA fragments (15–40 kDa) and not those from intermediate molecular sizes (75–350 kDa) induced a significant up-regulation of the expression of major pro-inflammatory cytokines such as IL-1β, MCP-1 and IL-8 in PBMC. Importantly, LMW HA was able to induce the phosphorylation of IKK α/β complex supporting its pro-inflammatory role through NF-κB activation. Conclusion Circulating LMW HA molecules are elevated in obesity and may play an important role in triggering low-grade inflammation and the development of metabolic complications.
Collapse
|
25
|
Götze J, Nitschke C, Uzunoglu FG, Pantel K, Sinn M, Wikman H. Tumor-Stroma Interaction in PDAC as a New Approach for Liquid Biopsy and its Potential Clinical Implications. Front Cell Dev Biol 2022; 10:918795. [PMID: 35712663 PMCID: PMC9197075 DOI: 10.3389/fcell.2022.918795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
The extremely poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) has remained unchanged for decades. As a hallmark of PDAC histology, the distinct desmoplastic response in the tumor microenvironment is considered a key factor exerting pro- and antitumor effects. Increasing emphasis has been placed on cancer-associated fibroblasts (CAFs), whose heterogeneity and functional diversity is reflected in the numerous subtypes. The myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs) and antigen presenting CAFs (apCAFs) are functionally divergent CAF subtypes with tumor promoting as well as repressing effects. Precise knowledge of the underlying interactions is the basis for a variety of treatment approaches, which are subsumed under the term antistromal therapy. Clinical implementation is still pending due to the lack of benefit-as well as paradoxical preclinical findings. While the prominent significance of CAFs in the immediate environment of the tumor is becoming clear, less is known about the circulating (c)CAFs. cCAFs are of particular interest as they seem not only to be potential new liquid biopsy biomarkers but also to support the survival of circulating tumor cells (CTC) in the bloodstream. In PDAC, CTCs correlate with an unfavorable outcome and can also be employed to monitor treatment response, but the current clinical relevance is limited. In this review, we discuss CTCs, cCAFs, secretomes that include EVs or fragments of collagen turnover as liquid biopsy biomarkers, and clinical approaches to target tumor stroma in PDAC.
Collapse
Affiliation(s)
- Julian Götze
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, Hamburg, Germany.,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Sinn
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Abstract
Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.
Collapse
|
27
|
Willumsen N, Jensen C, Green G, Nissen NI, Neely J, Nelson DM, Pedersen RS, Frederiksen P, Chen IM, Boisen MK, Johansen AZ, Madsen DH, Svane IM, Lipton A, Leitzel K, Ali SM, Erler JT, Hurkmans DP, Mathijssen RHJ, Aerts J, Eslam M, George J, Christiansen C, Bissel MJ, Karsdal MA. Fibrotic activity quantified in serum by measurements of type III collagen pro-peptides can be used for prognosis across different solid tumor types. Cell Mol Life Sci 2022; 79:204. [PMID: 35332383 PMCID: PMC8948122 DOI: 10.1007/s00018-022-04226-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
Due to activation of fibroblast into cancer-associated fibroblasts, there is often an increased deposition of extracellular matrix and fibrillar collagens, e.g. type III collagen, in the tumor microenvironment (TME) that leads to tumor fibrosis (desmoplasia). Tumor fibrosis is closely associated with treatment response and poor prognosis for patients with solid tumors. To assure that the best possible treatment option is provided for patients, there is medical need for identifying patients with high (or low) fibrotic activity in the TME. Measuring unique collagen fragments such as the pro-peptides released into the bloodstream during fibrillar collagen deposition in the TME can provide a non-invasive measure of the fibrotic activity. Based on data from 8 previously published cohorts, this review provides insight into the prognostic value of quantifying tumor fibrosis by measuring the pro-peptide of type III collagen in serum of a total of 1692 patients with different solid tumor types and discusses the importance of tumor fibrosis for understanding prognosis and for potentially guiding future drug development efforts that aim at overcoming the poor outcome associated with a fibrotic TME.
Collapse
Affiliation(s)
| | - Christina Jensen
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | | | - Neel I Nissen
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | | | | | | | | | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Allan Lipton
- Penn State Hershey Medical Center, Hershey, PA, USA
| | - Kim Leitzel
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Daan P Hurkmans
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Joachim Aerts
- Department of Pulmonology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | | | - Mina J Bissel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morten A Karsdal
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| |
Collapse
|
28
|
Nissen NI, Johansen AZ, Chen I, Johansen JS, Pedersen RS, Hansen CP, Karsdal MA, Willumsen N. Collagen Biomarkers Quantify Fibroblast Activity In Vitro and Predict Survival in Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:819. [PMID: 35159087 PMCID: PMC8833921 DOI: 10.3390/cancers14030819] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
The use of novel tools to understand tumour-fibrosis in pancreatic ductal adenocarcinoma (PDAC) and novel anti-fibrotic treatments are highly needed. We established a pseudo-3D in vitro model including humane pancreatic fibroblasts (PFs) and pancreatic cancer-associated fibroblasts (CAFs) in combination with clinical collagen biomarkers, as a translational anti-fibrotic drug screening tool. Furthermore, we investigated the prognostic potential of serum collagen biomarkers in 810 patients with PDAC. PFs and CAFs were cultured in Ficoll-media. Cells were treated w/wo TGF-ß1 and the anti-fibrotic compound ALK5i. Biomarkers measuring the formation of type III (PRO-C3) and VI (PRO-C6) collagens were measured by ELISA in supernatant at days 3, 6, 9, and 12. PRO-C3 and PRO-C6, and their association with overall survival (OS), were evaluated in serum with PDAC (n = 810). PRO-C3 and PRO-C6 were upregulated in CAFs compared to PFs (p < 0.0001.). TGF-ß1 increased PRO-C3 in both PFs and CAFs (p < 0.0001). The anti-fibrotic compound ALK5i inhibited both PRO-C3 and PRO-C6 (p < 0.0001). High serum levels of PRO-C3 and PRO-C6 in patients with PDAC were associated with short OS (PRO-C3: HR = 1.48, 95%CI: 1.29-1.71, p < 0.0001 and PRO-C6: HR = 1.31, 95%CI: 1.14-1.50, p = 0.0002). PRO-C3 and PRO-C6 have the potential to be used both pre-clinically and clinically as a measure of tumor fibrosis and CAF activity.
Collapse
Affiliation(s)
- Neel I. Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
| | - Inna Chen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
- Department of Medicine, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rasmus S. Pedersen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
- Department of Biomedical Science, University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Morten A. Karsdal
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| |
Collapse
|
29
|
Friedman SL, Pinzani M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology 2022; 75:473-488. [PMID: 34923653 DOI: 10.1002/hep.32285] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Steady progress over four decades toward understanding the pathogenesis and clinical consequences of hepatic fibrosis has led to the expectation of effective antifibrotic drugs, yet none has been approved. Thus, an assessment of the field is timely, to clarify priorities and accelerate progress. Here, we highlight the successes to date but, more importantly, identify gaps and unmet needs, both experimentally and clinically. These include the need to better define cell-cell interactions and etiology-specific elements of fibrogenesis and their link to disease-specific drivers of portal hypertension. Success in treating viral hepatitis has revealed the remarkable capacity of the liver to degrade scar in reversing fibrosis, yet we know little of the mechanisms underlying this response. Thus, there is an exigent need to clarify the cellular and molecular mechanisms of fibrosis regression in order for therapeutics to mimic the liver's endogenous capacity. Better refined and more predictive in vitro and animal models will hasten drug development. From a clinical perspective, current diagnostics are improving but not always biologically plausible or sufficiently accurate to supplant biopsy. More urgently, digital pathology methods that leverage machine learning and artificial intelligence must be validated in order to capture more prognostic information from liver biopsies and better quantify the response to therapies. For more refined treatment of NASH, orthogonal approaches that integrate genetic, clinical, and pathological data sets may yield treatments for specific subphenotypes of the disease. Collectively, these and other advances will strengthen and streamline clinical trials and better link histologic responses to clinical outcomes.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Massimo Pinzani
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| |
Collapse
|
30
|
Yang Y, Shi XQ, Chen G, Zhou XN, Qian LX. Contrast-enhanced ultrasound for evaluating response to pulsed-wave high-intensity focused ultrasound therapy in advanced pancreatic cancer. Clin Hemorheol Microcirc 2022; 81:57-67. [PMID: 35001881 DOI: 10.3233/ch-211342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To examine whether contrast-enhanced ultrasound (CEUS) parameters in patients with advanced pancreatic cancer could be used to assess response to treatment with pulsed-wave high intensity focused ultrasound (PW-HIFU). METHODS We prospectively recorded the pretreatment and posttreatment CEUS related parameters, CA19-9, pain scores of 30 patients with advanced pancreatic cancer treated with PW-HIFU treatment. Correlation of clinical parameters, tumor characteristics, and PW-HIFU treatment energy with CEUS parameters were analyzed. RESULTS Pain score decreased after treatment (from 4.80±2.14 to 3.28±1.93, p = 0.001). CA19-9 dropped in RT decreased group, 4 weeks after one session PW-HIFU, compared with prolonged group (p = 0.013). According to the display of blood vessels in the mass by CEUS, tumors were classified by vessel grade (VG), VG1: no vessel can be seen; VG 2: vessels diameter < 5 mm; VG 3: vessels diameter > 5 mm. VGs were different between increased and decreased relative rise intensity (rRI) groups (p = 0.008). VG1 group shown a decreased rRI after treatment, while VG3 group showed the opposite trend (p = 0.006). CONCLUSIONS CEUS can evaluating response to PW-HIFU in advanced pancreatic cancer. Quantitative analysis may help to assess the short-term efficacy of patients and help for individualized treatment.
Collapse
Affiliation(s)
- Yu Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xian-Quan Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guang Chen
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Na Zhou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin-Xue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
32
|
Díaz M, Pibuel M, Paglilla N, Poodts D, Álvarez E, Papademetrio DL, Hajos SE, Lompardía SL. 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines. Life Sci 2021; 287:120065. [PMID: 34678263 DOI: 10.1016/j.lfs.2021.120065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
AIMS Despite continuous improvement in the treatment of acute leukemia, new therapies are still needed to overcome resistance and reduce adverse effects. The aim of this work was to study the tumor-suppressive effects of 4-methylumbelliferone (4MU) in human acute leukemia cell lines. In addition, we aimed to address the extent of these effects in relation to the inhibition of hyaluronic acid (HA) synthesis. MAIN METHODS HA levels were measured by an ELISA-like assay. Human acute leukemia cell lines were treated with 4MU, HA or their combination. Cell proliferation was assessed by the [3H]-Tdr uptake assay, metabolic activity by the XTT assay and cell death was determined by DAPI, AO/EB and AnnexinV-PE/7-AAD staining. Senescence induction was evaluated by SA-β-Gal and C12FDG staining. Total and surface RHAMM expression levels were assessed by flow cytometry and fluorescence microscopy. KEY FINDINGS 4MU reduced metabolic activity and inhibited cell proliferation in all leukemia cells, and these effects were explained by the induction of senescence or cell death depending on the cell line evaluated. Exogenous HA failed to prevent most of the tumor-suppressive effects observed. Results from this work suggest that the tumor-suppressive effects exerted by 4MU would be explained by HA-synthesis-independent mechanisms. SIGNIFICANCE These findings broaden the knowledge of 4MU as a potential treatment in acute leukemia. We report for the first time the existence of tumor-suppressive effects of 4MU on human acute leukemia cell lines that are independent of its role as HA-synthesis inhibitor.
Collapse
Affiliation(s)
- Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Matías Pibuel
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nadia Paglilla
- Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Poodts
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Elida Álvarez
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela L Papademetrio
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia E Hajos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina L Lompardía
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
33
|
Yang M, Zhang CY. Diagnostic biomarkers for pancreatic cancer: An update. World J Gastroenterol 2021; 27:7862-7865. [PMID: 34963749 PMCID: PMC8661384 DOI: 10.3748/wjg.v27.i45.7862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma accounts for the primary type of pancreatic cancer (PC) with a 5-year survival rate of only about 10% in the United States. Early diagnosis will improve chances for curative treatment. To date, a broadly used serum marker for PC diagnosis is carbohydrate antigen 19-9, which is the only approved biomarker currently by the United States Food and Drug Administration. However, it has low specificity; therefore, development of novel biomarkers is urgently needed. Clinical trials are ongoing to evaluate candidate biomarkers for PC diagnosis, and the use of a multi-biomarker panel with current PC diagnostic biomarkers appears promising.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
34
|
Maneshi P, Mason J, Dongre M, Öhlund D. Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Front Cell Dev Biol 2021; 9:787485. [PMID: 34901028 PMCID: PMC8656238 DOI: 10.3389/fcell.2021.787485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst outcomes among cancers with a 5-years survival rate of below 10%. This is a result of late diagnosis and the lack of effective treatments. The tumor is characterized by a highly fibrotic stroma containing distinct cellular components, embedded within an extracellular matrix (ECM). This ECM-abundant tumor microenvironment (TME) in PDAC plays a pivotal role in tumor progression and resistance to treatment. Cancer-associated fibroblasts (CAFs), being a dominant cell type of the stroma, are in fact functionally heterogeneous populations of cells within the TME. Certain subtypes of CAFs are the main producer of the ECM components of the stroma, with the most abundant one being the collagen family of proteins. Collagens are large macromolecules that upon deposition into the ECM form supramolecular fibrillar structures which provide a mechanical framework to the TME. They not only bring structure to the tissue by being the main structural proteins but also contain binding domains that interact with surface receptors on the cancer cells. These interactions can induce various responses in the cancer cells and activate signaling pathways leading to epithelial-to-mesenchymal transition (EMT) and ultimately metastasis. In addition, collagens are one of the main contributors to building up mechanical forces in the tumor. These forces influence the signaling pathways that are involved in cell motility and tumor progression and affect tumor microstructure and tissue stiffness by exerting solid stress and interstitial fluid pressure on the cells. Taken together, the TME is subjected to various types of mechanical forces and interactions that affect tumor progression, metastasis, and drug response. In this review article, we aim to summarize and contextualize the recent knowledge of components of the PDAC stroma, especially the role of different collagens and mechanical traits on tumor progression. We furthermore discuss different experimental models available for studying tumor-stromal interactions and finally discuss potential therapeutic targets within the stroma.
Collapse
Affiliation(s)
- Parniyan Maneshi
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mitesh Dongre
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Jia M, Zhang D, Zhang C, Li C. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy. J Nanobiotechnology 2021; 19:384. [PMID: 34809634 PMCID: PMC8607729 DOI: 10.1186/s12951-021-01134-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant tumors with a low survival rate, partly because the tumor microenvironment (TME), which consists of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), immune cells, and vascular systems, prevents effective drug delivery and chemoradiotherapy. Thus, modulating the microenvironment of pancreatic cancer is considered a promising therapeutic approach. Since nanoparticles are one of the most effective cancer treatment strategies, several nano-delivery platforms have been developed to regulate the TME and enhance treatment. Here, we summarize the latest advances in nano-delivery systems that alter the TME in pancreatic cancer by depleting ECM, inhibiting CAFs, reversing immunosuppression, promoting angiogenesis, or improving the hypoxic environment. We also discuss promising new targets for such systems. This review is expected to improve our understanding of how to modulate the pancreatic cancer microenvironment and guide the development of new therapies.
Collapse
Affiliation(s)
- Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Dan Zhang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
36
|
Jensen C, Nissen NI, Von Arenstorff CS, Karsdal MA, Willumsen N. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:326. [PMID: 34656158 PMCID: PMC8520279 DOI: 10.1186/s13046-021-02133-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Despite the overall clinical success of immune checkpoint inhibitors (ICIs) for treating patients with solid tumors, a large number of patients do not benefit from this approach. Consequently, there is a need for predictive biomarkers. The most prevalent biomarkers such as PD-L1 expression and tumor mutational burden (TMB) do not reliably predict response to ICIs across different solid tumor types suggesting that a broader view of regulating factors in the tumor microenvironment is needed. Emerging evidence indicates that one central common denominator of resistance to ICIs may be fibrotic activity characterized by extracellular matrix (ECM) and collagen production by cancer-associated fibroblasts (CAFs). A fibroblast-and collagen-rich stroma attenuates immunotherapy response by contributing to inhibition and exclusion of T cells. Here we review opportunities and limitations in the utilization of the most prevalent biomarkers for ICIs and elaborate on the unique opportunities with biomarkers originating from the activated fibroblasts producing an impermeable ECM. We propose that ECM and collagen biomarkers measured non-invasively may be a novel and practical approach to optimize treatment strategies and improve patient selection for ICI therapy.
Collapse
Affiliation(s)
- Christina Jensen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark.
| | - Neel I Nissen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
37
|
Nissen NI, Kehlet S, Johansen AZ, Chen IM, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Sun S, Manon-Jensen T, He Y, Langholm L, Willumsen N. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int J Cancer 2021; 149:228-238. [PMID: 33687786 DOI: 10.1002/ijc.33551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
Type XI collagen has been associated with tumor fibrosis and aggressiveness in patients with pancreatic ductal adenocarcinoma (PDAC). The propeptide on Type XI collagen is released into the circulation after proteolytic processing at either amino acid 253 or 511. This allows for a noninvasive biomarker approach to quantify Type XI collagen production. We developed two ELISA-based biomarkers, targeting the two enzymatic cleavage sites (PRO-C11-253 and PRO-C11-511). In a discovery cohort including serum from patients with PDAC (n = 39, Stages 1-4), chronic pancreatitis (CP, n = 12) and healthy controls (n = 20), PRO-C11-511, but not PRO-C11-253, was significantly upregulated in patients with PDAC and CP compared to healthy controls. Furthermore, PRO-C11-511 levels >75th percentile were associated with poor overall survival (OS) (HR, 95% CI: 3.40, 1.48-7.83). The PRO-C11-511 biomarker potential was validated in serum from 686 patients with PDAC. Again, high levels of PRO-C11-511 (>75th percentile) were associated with poor OS (HR, 95% CI: 1.68, 1.40-2.02). Furthermore, PRO-C11-511 remained significant after adjusting for clinical risk factors (HR, 95% CI: 1.50, 1.22-1.86). In conclusion, quantifying serum levels of Type XI collagen with PRO-C11-511 predicts poor OS in patients with PDAC. This supports that Type XI collagen is important for PDAC biology and that PRO-C11-511 has prognostic noninvasive biomarker potential for patients with PDAC.
Collapse
Affiliation(s)
- Neel Ingemann Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hadi M H Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shu Sun
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Yi He
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Lasse Langholm
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | |
Collapse
|
38
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
39
|
Liu H, Shi Y, Qian F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Adv Drug Deliv Rev 2021; 172:37-51. [PMID: 33705881 DOI: 10.1016/j.addr.2021.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
A dense desmoplastic stroma formed by abundant extracellular matrix and stromal cells, including cancer-associated fibroblasts (CAFs) and immune cells, is a feature of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancer types. As the dominant cellular component of the PDAC stroma, CAFs orchestrate intensive and biologically diverse crosstalk with pancreatic cancer cells and immune cells and contribute to a unique PDAC tumor microenvironment promoting cancer proliferation, metastasis, and resistance against both chemo- and immunotherapies. Therefore, CAFs and CAF-related mechanisms have emerged as promising targets for PDAC therapy. However, several clinical setbacks and accumulating knowledge of the PDAC stroma have revealed the heterogeneity and multifaceted biological roles of CAFs, and concerns regarding "what to deliver" and "how to deliver" have arisen when designing CAF-targeted drug delivery systems to specifically inhibit tumor-supporting CAFs without impairing tumor-restricting CAFs. In this review, we will discuss the complexity of CAFs in the PDAC stroma as well as the potential opportunities and common misconceptions regarding drug delivery efforts targeting PDAC CAFs.
Collapse
Affiliation(s)
- Huiqin Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
40
|
Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers (Basel) 2021; 13:cancers13040895. [PMID: 33672734 PMCID: PMC7924365 DOI: 10.3390/cancers13040895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer has a poor prognosis, which is largely due to resistance to treatment. Tumor heterogeneity is a known cause for treatment failure and has been studied at the molecular level. Morphological heterogeneity is common but has not been investigated, despite the fact that pathology examination is an integral part of clinical diagnostics. This study assessed whether morphological heterogeneity reflects structural and functional diversity in key cancer biological processes. Using archival tissues from resected pancreatic cancer, we selected four common and distinct morphological phenotypes and demonstrated that these differed significantly for a panel of 26 structural and functional features of the cancer-cell and stromal compartments. The strong link between these features and morphological phenotypes allowed prediction of the latter based on the results for the panel of features. The findings of this study indicate that morphological heterogeneity reflects biological diversity and that its assessment may potentially provide clinically relevant information. Abstract Inter- and intratumor heterogeneity is an important cause of treatment failure. In human pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic and transcriptional level. Morphological heterogeneity, though prominent and potentially easily assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating that morphological heterogeneity reflects structural and functional divergence. From the wide morphological spectrum of conventional PC, four common and distinctive patterns were investigated in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount, composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen, collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As such, histopathology has the potential to inform on the operationality of key biological processes in individual tumors.
Collapse
|
41
|
Martins Cavaco AC, Dâmaso S, Casimiro S, Costa L. Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev 2021; 39:603-623. [PMID: 32447477 DOI: 10.1007/s10555-020-09888-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Progression through dissemination to tumor-surrounding tissues and metastasis development is a hallmark of cancer that requires continuous cell-to-cell interactions and tissue remodeling. In fact, metastization can be regarded as a tissue disease orchestrated by cancer cells, leading to neoplastic colonization of new organs. Collagen is a major component of the extracellular matrix (ECM), and increasing evidence suggests that it has an important role in cancer progression and metastasis. Desmoplasia and collagen biomarkers have been associated with relapse and death in cancer patients. Despite the increasing interest in ECM and in the desmoplastic process in tumor microenvironment as prognostic factors and therapeutic targets in cancer, further research is required for a better understanding of these aspects of cancer biology. In this review, published evidence correlating collagen with cancer prognosis is retrieved and analyzed, and the role of collagen and its fragments in cancer pathophysiology is discussed.
Collapse
Affiliation(s)
- Ana C Martins Cavaco
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Sara Dâmaso
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Luís Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal.
- Serviço de Oncologia, Hospital de Santa Maria-CHULN, 1649-028, Lisboa, Portugal.
| |
Collapse
|
42
|
Wang S, Bager CL, Karsdal MA, Chondros D, Taverna D, Willumsen N. Blood-based extracellular matrix biomarkers as predictors of survival in patients with metastatic pancreatic ductal adenocarcinoma receiving pegvorhyaluronidase alfa. J Transl Med 2021; 19:39. [PMID: 33478521 PMCID: PMC7819178 DOI: 10.1186/s12967-021-02701-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Extensive extracellular matrix (ECM) remodeling is a hallmark of metastatic pancreatic ductal adenocarcinoma (mPDA). We investigated fragments of collagen types III (C3M, PRO-C3), VI (PRO-C6), and VIII (C8-C), and versican (VCANM) in plasma as biomarkers for predicting progression-free survival (PFS) and overall survival (OS) in patients with mPDA treated with pegvorhyaluronidase alfa, a biologic that degrades the ECM component hyaluronan (HA), in a randomized phase 2 study (HALO109-202). Methods HALO109-202 comprised a discovery cohort (Stage 1, n = 94) and a validation cohort (Stage 2, n = 95). Plasma ECM biomarkers were analyzed by ELISAs. Univariate Cox regression analysis and Kaplan–Meier plots evaluated predictive associations between biomarkers, PFS and OS in patients treated with pegvorhyaluronidase alfa plus nab-paclitaxel/gemcitabine (PAG) versus nab-paclitaxel/gemcitabine (AG) alone. Results PFS was improved with PAG vs. AG in Stage 1 patients with high C3M/PRO-C3 ratio (median cut-off): median PFS (mPFS) 8.0 vs. 5.3 months, P = 0.031; HR = 0.40; 95% CI 0.17–0.92). High C3M/PRO-C3 ratio was validated in Stage 2 patients by predicting a PFS benefit of PAG vs. AG (mPFS: 8.8 vs. 3.4 months, P = 0.046; HR = 0.46; 95% CI 0.21–0.98). OS was also improved in patients with high C3M/PRO-C3 ratio treated with PAG vs. AG (mOS 13.8 vs 8.5 months, P = 0.009; HR = 0.35; 95% CI 0.16–0.77). Interestingly, high C3M/PRO-C3 ratio predicted for a PFS benefit to PAG vs. AG both in patients with HA-low tumors (HR = 0.36; 95% CI 0.17–0.79) and HA-high tumors (HR = 0.20; 95% CI 0.06–0.69). Conclusions The C3M/PRO-C3 ratio measuring type III collagen turnover in plasma has potential as a blood-based predictive biomarker in patients with mPDA and provides additional value to a HA biopsy when applied for patient selection. Trial registration: NCT01839487. Registered 25 April 2016
Collapse
Affiliation(s)
- Song Wang
- Halozyme Therapeutics, Inc., San Diego, CA, USA
| | - Cecilie L Bager
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
43
|
Nissen NI, Kehlet S, Boisen MK, Liljefors M, Jensen C, Johansen AZ, Johansen JS, Erler JT, Karsdal M, Mortensen JH, Høye A, Willumsen N. Prognostic value of blood-based fibrosis biomarkers in patients with metastatic colorectal cancer receiving chemotherapy and bevacizumab. Sci Rep 2021; 11:865. [PMID: 33441622 PMCID: PMC7806753 DOI: 10.1038/s41598-020-79608-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
A desmoplastic colorectal cancer stroma, characterized by excess turnover of the cancer-associated fibroblast derived collagens type III and VI, can lead to reduced drug-uptake and poor treatment response. We investigated the association between biomarkers of collagen type III and VI and overall survival (OS) in patients with metastatic colorectal cancer (mCRC). Serum samples were collected from 252 patients with mCRC prior to treatment with bevacizumab and chemotherapy. Serum concentrations of biomarkers reflecting formation of collagen type III (PRO-C3) and VI (PRO-C6) and degradation of collagen type VI (C6M and C6Mα3) were determined by ELISA. The biomarkers were evaluated for associations with OS, individually, combined, and after adjusting for carcinoembryonic antigen (CEA), lactate dehydrogenase (LDH) and performance status (PS). High baseline levels (> median) of each collagen biomarker were significantly associated with shorter OS (PRO-C3: HR = 2.0, 95%CI = 1.54-2.63; PRO-C6: HR = 1.6, 95%CI = 1.24-2.11; C6M: HR = 1.4, 95%CI = 1.05-1.78; C6Mα3: HR = 1.6, 95%CI = 1.16-2.07). PRO-C3 and PRO-C6 remained significant after adjustment for CEA, LDH and PS. Weak correlations were seen between the collagen biomarkers (r = 0.03-0.59) and combining all improved prognostic capacity (HR = 3.6, 95%CI = 2.30-5.76). Collagen biomarkers were predictive of shorter OS in patients with mCRC. This supports that collagen- and CAF biology is important in CRC.
Collapse
Affiliation(s)
- Neel I Nissen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark.
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| | - Stephanie Kehlet
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Liljefors
- Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christina Jensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Joachim H Mortensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Anette Høye
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Nicholas Willumsen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| |
Collapse
|
44
|
Serum Type XIX Collagen is Significantly Elevated in Non-Small Cell Lung Cancer: A Preliminary Study on Biomarker Potential. Cancers (Basel) 2020; 12:cancers12061510. [PMID: 32527017 PMCID: PMC7352985 DOI: 10.3390/cancers12061510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Type XIX collagen is a poorly characterized collagen associated with the basement membrane. It is abnormally regulated during breast cancer progression and the NC1 (XIX) domain has anti-tumorigenic signaling properties. However, little is known about the biomarker potential of collagen XIX in cancer. In this study, we describe a competitive ELISA, named PRO-C19, targeting the C-terminus of collagen XIX using a monoclonal antibody. PRO-C19 was measured in serum of patients with a range of cancer types and was elevated in non-small cell lung cancer (NSCLC) (p < 0.0001), small cell lung cancer (p = 0.0081), breast (p = 0.0005) and ovarian cancer (p < 0.0001) compared to healthy controls. In a separate NSCLC cohort, PRO-C19 was elevated compared to controls when evaluating adenocarcinoma (AD) (p = 0.0003) and squamous cell carcinoma (SCC) (p < 0.0001) patients but was not elevated in chronic obstructive pulmonary disease patients. SCC also had higher PRO-C19 levels than AD (p = 0.0457). PRO-C19 could discriminate between NSCLC and healthy controls (AUROC:0.749 and 0.826 for AD and SCC, respectively) and maintained discriminatory performance in patients of tumor stages I+II (AUROC:0.733 and 0.818 for AD and SCC, respectively). Lastly, we confirmed the elevated type XIX collagen levels using gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) initiatives. In conclusion, type XIX collagen is released into circulation and is significantly elevated in the serum of cancer patients and PRO-C19 shows promise as a cancer biomarker.
Collapse
|
45
|
Willumsen N, Ali SM, Leitzel K, Drabick JJ, Yee N, Polimera HV, Nagabhairu V, Krecko L, Ali A, Maddukuri A, Moku P, Ali A, Poulose J, Menon H, Pancholy N, Costa L, Karsdal MA, Lipton A. Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci Rep 2019; 9:19761. [PMID: 31875000 PMCID: PMC6930304 DOI: 10.1038/s41598-019-56268-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have poor prognosis and poor response to treatment. This is largely due to PDAC being associated with a dense and active stroma and tumor fibrosis (desmoplasia). Desmoplasia is characterized by excessive degradation and formation of the extracellular matrix (ECM) generating collagen fragments that are released into circulation. We evaluated the association of specific collagen fragments measured in pre-treatment serum with outcome in patients with PDAC. Matrix metalloprotease (MMP)-degraded type I collagen (C1M), type III collagen (C3M), type IV collagen (C4M) and a pro-peptide of type III collagen (PRO-C3) were measured by ELISA in pre-treatment serum from a randomized phase 3 clinical trial of patients with stage III/IV PDAC treated with 5-fluorouracil based therapy (n = 176). The collagen fragments were evaluated for their correlation (r, Spearman) with serum CA19-9 and for their association with overall survival (OS) based on Cox-regression analyses. In this phase 3 PDAC trial, pre-treatment serum collagen fragment levels were above the reference range for 67%-98% of patients, with median values in PDAC approximately two-fold higher than reference levels. Collagen fragment levels did not correlate with CA19-9 (r = 0.049–0.141, p = ns). On a continuous basis, higher levels of all collagen fragments were associated with significantly shorter OS. When evaluating degradation (C3M) and formation (PRO-C3) of type III collagen further, higher PRO-C3 was associated with poor OS (>25th percentile cut-point, HR = 2.01, 95%CI = 1.33–3.05) and higher C3M/PRO-C3 ratio was associated with improved OS (>25th percentile cut-point, HR = 0.53, 95%CI = 0.34–0.80). When adjusting for CA19–9 and clinical covariates, PRO-C3 remained significant (HR = 1.65, 95%CI = 1.09–2.48). In conclusion, collagen remodeling quantified in pre-treatment serum as a surrogate measure of desmoplasia was significantly associated with OS in a phase 3 clinical PDAC trial, supporting the link between desmoplasia, tumorigenesis, and response to treatment. If validated, these biomarkers may have prognostic and/or predictive potential in future PDAC trials.
Collapse
Affiliation(s)
| | - Suhail M Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA.,Lebanon VA Medical Center, Lebanon, PA, USA
| | - Kim Leitzel
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Joseph J Drabick
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Nelson Yee
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Hyma V Polimera
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Vinod Nagabhairu
- Pinnacle Health System, University of Pittsburgh Medical Center, Harrisburg, PA, USA
| | - Laura Krecko
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Ayesha Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Ashok Maddukuri
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Prashanth Moku
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Aamnah Ali
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Joyson Poulose
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Harry Menon
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Neha Pancholy
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Luis Costa
- Oncology division, Hospital de Santa Maria, Lisboa, Portugal.,Clinical Translational Oncology Research Unit, Institute of Molecular Medicine, Lisboa, Portugal
| | | | - Allan Lipton
- Division of Hematology/Oncology, Penn State Health Milton S Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|