1
|
Tu Q, Zhao R, Lu N. Evaluation of the diagnostic utility of immune microenvironment-related biomarkers in endometriosis using multidimensional transcriptomic data. J Assist Reprod Genet 2024; 41:3213-3223. [PMID: 39316330 PMCID: PMC11621284 DOI: 10.1007/s10815-024-03261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE Endometriosis (EMS) is a relatively common gynecological disorder and almost fifty percent of women with EMS suffer from infertility. There are few treatment options for endometriosis, and often recurrences occur following surgery and medication. We aimed to identify potential diagnostic biomarkers for EMS to improve its diagnostic efficiency. METHODS Differential analysis was utilized to choose EMS-associated abnormal miRNAs (DEMIs) and mRNAs (DEMs). ImmuneAI analysis was to evaluate the levels of immune cells in EMS. Next, the weighted gene co-expression network analysis (WGCNA) was utilized to identify the co-expression modules. Random forest and SVM analyses were used to filter the candidate biomarkers and construct the diagnostic model. qRT-PCR was used to test the expression level of the biomarkers. RESULTS Based on the different analyses, we obtained 32 DEMIs and 516 DEMs and selected 9 abnormal immune cells whose abundance is abnormal in EMS. Next, we identified five co-expression modules associated with these abnormal immune cells. Then, 176 candidate genes which are both miRNA targets and associated with immune cells and aberrantly expressed in EMS were filtered. Subsequently, random forest analysis selected 11 genes as the diagnostic biomarkers and constructed a diagnostic model by SVM. Finally, we demonstrated that 8 of the 11 genes aberrantly expressed and with better diagnostic efficiency in EMS. CONCLUSIONS In total, we identified 11 crucial genes regulated by 8 miRNAs that could serve as promising diagnostic biomarkers for EMS, potentially enhancing disease diagnosis with novel factors.
Collapse
Affiliation(s)
- Qing Tu
- Department of Gynecology, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Ruiheng Zhao
- Department of Gynecology, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Ning Lu
- Department of Gynecology, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
2
|
Mehner LM, Munoz-Sagredo L, Sonnentag SJ, Treffert SM, Orian-Rousseau V. Targeting CD44 and other pleiotropic co-receptors as a means for broad inhibition of tumor growth and metastasis. Clin Exp Metastasis 2024; 41:599-611. [PMID: 38761292 PMCID: PMC11499327 DOI: 10.1007/s10585-024-10292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Although progress has been made in the treatment of cancer, particularly for the four major types of cancers affecting the lungs, colon, breast and prostate, resistance to cancer treatment often emerges upon inhibition of major signaling pathways, which leads to the activation of additional pathways as a last-resort survival mechanism by the cancer cells. This signaling plasticity provides cancer cells with a level of operational freedom, reducing treatment efficacy. Plasticity is a characteristic of cancer cells that are not only able to switch signaling pathways but also from one cellular state (differentiated cells to stem cells or vice versa) to another. It seems implausible that the inhibition of one or a few signaling pathways of heterogeneous and plastic tumors can sustain a durable effect. We propose that inhibiting molecules with pleiotropic functions such as cell surface co-receptors can be a key to preventing therapy escape instead of targeting bona fide receptors. Therefore, we ask the question whether co-receptors often considered as "accessory molecules" are an overlooked key to control cancer cell behavior.
Collapse
Affiliation(s)
- Lisa-Marie Mehner
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Leonel Munoz-Sagredo
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
- School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Steffen Joachim Sonnentag
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sven Máté Treffert
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Véronique Orian-Rousseau
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
3
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of intracellular communication reveals consistent gene changes associated with early-stage acne skin. Cell Commun Signal 2024; 22:400. [PMID: 39143467 PMCID: PMC11325718 DOI: 10.1186/s12964-024-01725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
- Min Deng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Woodvine O Odhiambo
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Min Qin
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Thao Tam To
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Gregory M Brewer
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Alexander R Kheshvadjian
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Carol Cheng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - George W Agak
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Wei C, Ma Y, Wang M, Wang S, Yu W, Dong S, Deng W, Bie L, Zhang C, Shen W, Xia Q, Luo S, Li N. Tumor-associated macrophage clusters linked to immunotherapy in a pan-cancer census. NPJ Precis Oncol 2024; 8:176. [PMID: 39117688 PMCID: PMC11310399 DOI: 10.1038/s41698-024-00660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Transcriptional heterogeneity of tumor-associated macrophages (TAMs) has been investigated in individual cancers, but the extent to which these states transcend tumor types and represent a general feature of cancer remains unclear. We performed pan-cancer single-cell RNA sequencing analysis across nine cancer types and identified distinct monocyte/TAM composition patterns. Using spatial analysis from clinical study tissues, we assessed TAM functions in shaping the tumor microenvironment (TME) and influencing immunotherapy. Two specific TAM clusters (pro-inflammatory and pro-tumor) and four TME subtypes showed distinct immunological features, genomic profiles, immunotherapy responses, and cancer prognosis. Pro-inflammatory TAMs resided in immune-enriched niches with exhausted CD8+ T cells, while pro-tumor TAMs were restricted to niches associated with a T-cell-excluded phenotype and hypoxia. We developed a machine learning model to predict immune checkpoint blockade response by integrating TAMs and clinical data. Our study comprehensively characterizes the common features of TAMs and highlights their interaction with the TME.
Collapse
Affiliation(s)
- Chen Wei
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yijie Ma
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Mengyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Siyi Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenyue Yu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shuailei Dong
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenying Deng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Bie
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Chi Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wei Shen
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Suxia Luo
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Ning Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
5
|
Kim S, Yang H, Cho S, Jang Y, Han IO, Oh ES. Correlation of syndecan gene amplification with metastatic potential and clinical outcomes in carcinomas. Am J Physiol Cell Physiol 2024; 327:C380-C386. [PMID: 38953842 DOI: 10.1152/ajpcell.00270.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Cell surface receptors play crucial roles in cellular responses to extracellular ligands, helping to modulate the functions of a cell based on information coming from outside the cell. Syndecan refers to a family of cell adhesion receptors that regulate both extracellular and cytosolic events. Alteration of syndecan expression disrupts regulatory mechanisms in a cell type-specific fashion, often leading to serious diseases, notably cancer. Given the multifaceted functions and distinct tissue distributions of syndecan, it will be important to unravel the gene-level intricacies of syndecan expression and thereby further understand its involvement in various carcinogenic processes. Although accumulating evidence indicates that the protein expression patterns of syndecan family members are significantly altered in cancer cells, the underlying gene-level mechanisms remain largely unknown. This review endeavors to explore syndecan gene expression levels across different cancer types by scrutinizing extensive cancer genome datasets using tools such as cBioPortal. Our analysis unveils that somatic mutations in SDC genes are rare occurrences, whereas copy number alterations are frequently observed across diverse cancers, particularly in SDC2 and SDC4. Notably, amplifications of SDC2 and SDC4 correlate with heightened metastatic potential and dismal prognosis. This underscores the recurrent nature of SDC2 and SDC4 amplifications during carcinogenesis and sheds light on their role in promoting cancer activity through augmented protein expression. The identification of these amplifications not only enriches our understanding of carcinogenic mechanisms but also hints at the potential therapeutic avenue of targeting SDC2 and SDC4 to curb cancer cell proliferation and metastasis.
Collapse
Affiliation(s)
- Sewoon Kim
- Institute of Sensor Technology, Easytem Co., Ltd., Seoul, Republic of Korea
| | - Hyeonju Yang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Subin Cho
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yunjung Jang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Chen A, Wang K, Qi L, Hu W, Zhou B. Development of a novel prognostic signature for colorectal cancer based on angiogenesis-related genes. Heliyon 2024; 10:e33662. [PMID: 39040272 PMCID: PMC11261139 DOI: 10.1016/j.heliyon.2024.e33662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most common malignant tumor worldwide. Angiogenesis is closely related to tumor metastasis, which is the main cause of cancer death. Although several angiogenesis signatures have been proposed in some cancer types, no angiogenic signature has been developed to predict the prognosis and efficacy of antiangiogenic bevacizumab in CRC patients. Methods We developed a novel CRC angiogenic signature by refining seven publicly available angiogenic gene sets using least absolute shrinkage and selection operator (LASSO). Immune and stromal cells within the tumor microenvironment were compared between the high- and low-risk groups in more than 1000 CRC samples classified by calculating the risk score based on the customized angiogenic signature. The correlation of this new gene set with the efficacy of bevacizumab was also compared. Results A new prognostic-associated angiogenesis signature gene set was constructed that can divide CRC patients into two high- and low-risk groups. The high-risk angiogenic group was significantly associated with extracellular matrix organization, epithelial-mesenchymal transition (EMT), and myogenesis. In addition, the high-risk group had higher infiltration of stromal and immune cells and was more resistant to bevacizumab than the low-risk group. Conclusion Briefly, we constructed a novel angiogenic signature that can predict the prognosis of CRC patients and the efficacy of bevacizumab in treating CRC. Our results provide new insights into the relationships among angiogenesis, metastasis, and medication for CRC.
Collapse
Affiliation(s)
- Aiqin Chen
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Kailai Wang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lina Qi
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wangxiong Hu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Biting Zhou
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
7
|
Cao Y, Yi W, Zhu Q. Glycosylation in the tumor immune response: the bitter side of sweetness. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1184-1198. [PMID: 38946426 PMCID: PMC11399423 DOI: 10.3724/abbs.2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuting Cao
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wen Yi
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zhu
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
8
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of Intracellular Communication Reveals Consistent Gene Changes Associated with Early-Stage Acne Skin. RESEARCH SQUARE 2024:rs.3.rs-4402048. [PMID: 38854033 PMCID: PMC11160929 DOI: 10.21203/rs.3.rs-4402048/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
| | | | - Min Qin
- University of California (UCLA)
| | | | | | | | | | | |
Collapse
|
9
|
You L, Dou Y, Zhang Y, Xiao H, Lv H, Wei GH, Xu D. SDC2 Stabilization by USP14 Promotes Gastric Cancer Progression through Co-option of PDK1. Int J Biol Sci 2023; 19:3483-3498. [PMID: 37496999 PMCID: PMC10367555 DOI: 10.7150/ijbs.84331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Gastric cancer (GC) is a common malignancy and remains the fourth-leading cause of cancer-related deaths worldwide. Oncogenic potential of SDC2 has been implicated in multiple types of cancers, yet its role and underlying molecular mechanisms in GC remain unknown. Here, we found that SDC2 was highly expressed in GC and its upregulation correlated with poor prognosis in GC patients. Depletion of SDC2 significantly suppressed the growth and invasive capability of GC cells, while overexpressing SDC2 exerts opposite effects. Combined bioinformatics and experimental analyses substantiated that overexpression of SDC2 activated the AKT signaling pathway in GC, mechanistically through the interaction between SDC2 and PDK1-PH domain, thereby facilitating PDK1 membrane translocation to promote AKT activation. Moreover, SDC2 could also function as a co-receptor for FGF2 and was profoundly involved in the FGF2-AKT signaling axis in GC. Lastly, we revealed a mechanism on the USP14-mediated stabilization of SDC2 that is likely to contribute to SDC2 upregulation in GC tissues. Furthermore, we showed that IU1, a potent USP14 inhibitor, decreased the abundance of SDC2 in GC cells. Our findings indicate that SDC2 functions as a novel GC oncogene and has potential utility as a diagnostic marker and therapeutic target for GC.
Collapse
Affiliation(s)
- Li You
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Hong Lv
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Gong-Hong Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15061794. [PMID: 36980680 PMCID: PMC10046401 DOI: 10.3390/cancers15061794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecans (SDC1 to 4), a family of cell surface heparan sulfate proteoglycans, are frequently expressed in mammalian tissues. SDCs are aberrantly expressed either on tumor or stromal cells, influencing cancer initiation and progression through their pleiotropic role in different signaling pathways relevant to proliferation, cell-matrix adhesion, migration, invasion, metastasis, cancer stemness, and angiogenesis. In this review, we discuss the key roles of SDCs in the pathogenesis of breast cancer, the most common malignancy in females worldwide, focusing on the prognostic significance and molecular regulators of SDC expression and localization in either breast tumor tissue or its microenvironmental cells and the SDC-dependent epithelial–mesenchymal transition program. This review also highlights the molecular mechanisms underlying the roles of SDCs in regulating breast cancer cell behavior via modulation of nuclear hormone receptor signaling, microRNA expression, and exosome biogenesis and functions, as well as summarizing the potential of SDCs as promising candidate targets for therapeutic strategies against breast cancer.
Collapse
|
11
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
12
|
Zeltz C, Navab R, Heljasvaara R, Kusche-Gullberg M, Lu N, Tsao MS, Gullberg D. Integrin α11β1 in tumor fibrosis: more than just another cancer-associated fibroblast biomarker? J Cell Commun Signal 2022; 16:649-660. [PMID: 35378690 PMCID: PMC8978763 DOI: 10.1007/s12079-022-00673-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
There is currently an increased interest in understanding the role of the tumor microenvironment (TME) in tumor growth and progression. In this context the role of integrins in cancer-associated fibroblasts (CAFs) will need to be carefully re-evaluated. Fibroblast-derived cells are not only in the focus in tumors, but also in tissue fibrosis as well as in inflammatory conditions. The recent transcriptional profiling of what has been called "the pan-fibroblast cell lineage" in mouse and human tissues has identified novel transcriptional biomarker mRNAs encoding the secreted ECM proteins dermatopontin and collagen XV as well as the phosphatidylinositol-anchored membrane protein Pi16. Some of the genes identified in these fibroblasts scRNA-seq datasets will be useful for rigorous comparative characterizations of fibroblast-derived cell subpopulations. At the same time, it will be a challenge in the coming years to validate these transcriptional mRNA datasets at the protein-(expression) and at tissue-(distribution) levels and to find useful protein biomarker reagents that will facilitate fibroblast profiling at the cell level. In the current review we will focus on the role of the collagen-binding integrin α11β1 in CAFs, summarizing our own work as well as published datasets with information on α11 mRNA expression in selected tumors. Our experimental data suggest that α11β1 is more than just another biomarker and that it as a functional collagen receptor in the TME is playing a central role in regulating collagen assembly and matrix remodeling, which in turn impact tumor growth and metastasis.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine, Matrix Biology Group, Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Roya Navab
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Marion Kusche-Gullberg
- Department of Biomedicine, Matrix Biology Group, Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Ning Lu
- Department of Biomedicine, Matrix Biology Group, Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Donald Gullberg
- Department of Biomedicine, Matrix Biology Group, Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
13
|
Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers (Basel) 2022; 14:cancers14215415. [PMID: 36358833 PMCID: PMC9655334 DOI: 10.3390/cancers14215415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The glycocalyx is a fluffy sugar coat covering the surface of all mammalian cells. While glycocalyx at endothelial cells is a barrier to tumor cell adhesion and transmigration, glycocalyx at tumor cells promotes tumor metastasis. Angiogenesis at primary tumors and the growth of tumor cells at metastatic sites are all affected by the tumor microenvironment, including the blood vasculature, extracellular matrix (ECM), and fibroblasts. Extracellular vesicles (EVs) secreted by the tumor cells and tumor-associated endothelial cells are also considered to be the components of the tumor microenvironment. They can modify tumor vasculature, ECM, and fibroblasts. But how the EVs are generated, secreted, and up taken by the endothelial and tumor cells in the development of the tumor microenvironment are unclear, especially after anti-angiogenic therapy (AAT). The objective of this short review is to summarize the role of the glycocalyx in EV biogenesis, secretion, and uptake, as well as the modulation of the glycocalyx by the EVs. Abstract Angiogenesis in tumor growth and progression involves a series of complex changes in the tumor microenvironment. Extracellular vesicles (EVs) are important components of the tumor microenvironment, which can be classified as exosomes, apoptotic vesicles, and matrix vesicles according to their origins and properties. The EVs that share many common biological properties are important factors for the microenvironmental modification and play a vital role in tumor growth and progression. For example, vascular endothelial growth factor (VEGF) exosomes, which carry VEGF, participate in the tolerance of anti-angiogenic therapy (AAT). The glycocalyx is a mucopolysaccharide structure consisting of glycoproteins, proteoglycans, and glycosaminoglycans. Both endothelial and tumor cells have glycocalyx at their surfaces. Glycocalyx at both cells mediates the secretion and uptake of EVs. On the other hand, many components carried by EVs can modify the glycocalyx, which finally facilitates the development of the tumor microenvironment. In this short review, we first summarize the role of EVs in the development of the tumor microenvironment. Then we review how the glycocalyx is associated with the tumor microenvironment and how it is modulated by the EVs, and finally, we review the role of the glycocalyx in the synthesis, release, and uptake of EVs that affect tumor microenvironments. This review aims to provide a basis for the mechanistic study of AAT and new clues to address the challenges in AAT tolerance, tumor angiogenesis and metastasis.
Collapse
|
14
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
15
|
Lebeau B, Zhao K, Jangal M, Zhao T, Guerra M, Greenwood CMT, Witcher M. Single base-pair resolution analysis of DNA binding motif with MoMotif reveals an oncogenic function of CTCF zinc-finger 1 mutation. Nucleic Acids Res 2022; 50:8441-8458. [PMID: 35947648 PMCID: PMC9410893 DOI: 10.1093/nar/gkac658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Defining the impact of missense mutations on the recognition of DNA motifs is highly dependent on bioinformatic tools that define DNA binding elements. However, classical motif analysis tools remain limited in their capacity to identify subtle changes in complex binding motifs between distinct conditions. To overcome this limitation, we developed a new tool, MoMotif, that facilitates a sensitive identification, at the single base-pair resolution, of complex, or subtle, alterations to core binding motifs, discerned from ChIP-seq data. We employed MoMotif to define the previously uncharacterized recognition motif of CTCF zinc-finger 1 (ZF1), and to further define the impact of CTCF ZF1 mutation on its association with chromatin. Mutations of CTCF ZF1 are exclusive to breast cancer and are associated with metastasis and therapeutic resistance, but the underlying mechanisms are unclear. Using MoMotif, we identified an extension of the CTCF core binding motif, necessitating a functional ZF1 to bind appropriately. Using a combination of ChIP-Seq and RNA-Seq, we discover that the inability to bind this extended motif drives an altered transcriptional program associated with the oncogenic phenotypes observed clinically. Our study demonstrates that MoMotif is a powerful new tool for comparative ChIP-seq analysis and characterising DNA-protein contacts.
Collapse
Affiliation(s)
| | | | - Maika Jangal
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Tiejun Zhao
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Maria Guerra
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Celia M T Greenwood
- Correspondence may also be addressed to Celia Greenwood. Tel: +1 514 340 8222 (Ext 28397);
| | - Michael Witcher
- To whom correspondence should be addressed. Tel: +1 514 340 8222 (Ext 23363);
| |
Collapse
|
16
|
Na Z, Guo W, Song J, Feng D, Fang Y, Li D. Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome. J Ovarian Res 2022; 15:80. [PMID: 35794640 PMCID: PMC9258136 DOI: 10.1186/s13048-022-01013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/25/2022] [Indexed: 02/26/2023] Open
Abstract
Background In this study, we aimed to identify novel biomarkers for polycystic ovary syndrome (PCOS) and analyze their potential roles in immune infiltration during PCOS pathogenesis. Methods Five datasets, namely GSE137684, GSE80432, GSE114419, GSE138518, and GSE155489, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were selected from the train datasets. The least absolute shrinkage and selection operator logistic regression model and support vector machine-recursive feature elimination algorithm were combined to screen potential biomarkers. The test datasets validated the expression levels of these biomarkers, and the area under the curve (AUC) was calculated to analyze their diagnostic value. Quantitative real-time PCR was conducted to verify biomarkers’ expression in clinical samples. CIBERSORT was used to assess differential immune infiltration, and the correlations of biomarkers with infiltrating immune cells were evaluated. Results Herein, 1265 DEGs were identified between PCOS and control groups. The gene sets related to immune response and adaptive immune response were differentially activated in PCOS. The two diagnostic biomarkers of PCOS identified by us were HD domain containing 3 (HDDC3) and syndecan 2 (SDC2; AUC, 0.918 and 0.816, respectively). The validation of hub biomarkers in clinical samples using RT-qPCR was consistent with bioinformatics results. Immune infiltration analysis indicated that decreased activated mast cells (P = 0.033) and increased eosinophils (P = 0.040) may be a part of the pathogenesis of PCOS. HDDC3 was positively correlated with T regulatory cells (P = 0.0064), activated mast cells (P = 0.014), and monocytes (P = 0.024) but negatively correlated with activated memory CD4 T cells (P = 0.016) in PCOS. In addition, SDC2 was positively correlated with activated mast cells (P = 0.0021), plasma cells (P = 0.0051), and M2 macrophages (P = 0.038) but negatively correlated with eosinophils (P = 0.01) and neutrophils (P = 0.031) in PCOS. Conclusion HDDC3 and SDC2 can serve as candidate biomarkers of PCOS and provide new insights into the molecular mechanisms of immune regulation in PCOS. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01013-0.
Collapse
|
17
|
Zhang L, Dong L, Lu C, Huang W, Yang C, Wang Q, Wang Q, Lei R, Sun R, Wan K, Li T, Sun F, Gan T, Lin J, Yin L. Methylation of SDC2/ TFPI2 and Its Diagnostic Value in Colorectal Tumorous Lesions. Front Mol Biosci 2022; 8:706754. [PMID: 35004840 PMCID: PMC8729808 DOI: 10.3389/fmolb.2021.706754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
Background:SDC2 methylation is a feasible biomarker for colorectal cancer detection. Its specificity for colorectal cancer is higher than 90%, but the sensitivity is normally lower than 90%. This study aims to improve the sensitivity of SDC2 detection through finding a high positive target from the false-negative samples of SDC2 detection based on analysis of the bowel subsite difference in methylation. Methods: Hypermethylated TFPI2 was identified in SDC2 hypomethylated colorectal cancer samples retrieved from TCGA database with the methylation level lower than 0.2. The methylation-specific PCR assay was developed and then evaluated using tissue samples (184 cancer and 54 healthy control samples) and stool samples (289 cancer, 190 adenoma, and 217 healthy control samples). Results:TFPI2 was hypermethylated in most SDC2 hypomethylated colorectal cancer samples. When the SDC2/TFPI2-combined PCR assay was performed in stool specimens, the AUC value of cancer vs. control was 0.98, with the specificity of 96.40% and sensitivity of 96.60%, and the AUC value of adenoma vs. control was 0.87, with the specificity of 95.70% and the sensitivity of 80.00%. The improvement in sensitivity was the most momentous in the left colon. As the detection index, the Ct value was better in improving the sensitivity of detection than the methylation level based on the 2−ΔΔCt value. Conclusion:TFPI2 can improve the sensitivity of SDC2 methylation–specific detection of colorectal tumorous lesions while maintaining high specificity, in particular reducing the missed detection of left colon cancer and adenoma.
Collapse
Affiliation(s)
- Lianglu Zhang
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, China.,Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China.,Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lanlan Dong
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Changming Lu
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Colorectal and Anal Surgery, The Eighth Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| | - Qian Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruixue Lei
- Department of Pathology, The Fourth Affiliated Hospital of Henan University of Science and Technology (Anyang Tumor Hospital), Anyang, China
| | - Rui Sun
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangkang Wan
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Tingting Li
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Fan Sun
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Tian Gan
- Wuhan Ammunition Life-tech Company, Ltd., Wuhan, China
| | - Jun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Yin
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
19
|
Santos NJ, Barquilha CN, Barbosa IC, Macedo RT, Lima FO, Justulin LA, Barbosa GO, Carvalho HF, Felisbino SL. Syndecan Family Gene and Protein Expression and Their Prognostic Values for Prostate Cancer. Int J Mol Sci 2021; 22:ijms22168669. [PMID: 34445387 PMCID: PMC8395474 DOI: 10.3390/ijms22168669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer-associated mortality in men, and new biomarkers are still needed. The expression pattern and protein tissue localization of proteoglycans of the syndecan family (SDC 1-4) and syntenin-1 (SDCBP) were determined in normal and prostatic tumor tissue from two genetically engineered mouse models and human prostate tumors. Studies were validated using SDC 1-4 and SDCBP mRNA levels and patient survival data from The Cancer Genome Atlas and CamCAP databases. RNAseq showed increased expression of Sdc1 in Pb-Cre4/Ptenf/f mouse Pca and upregulation of Sdc3 expression and downregulation of Sdc2 and Sdc4 when compared to the normal prostatic tissue in Pb-Cre4/Trp53f/f-;Rb1f/f mouse tumors. These changes were confirmed by immunohistochemistry. In human PCa, SDC 1-4 and SDCBP immunostaining showed variable localization. Furthermore, Kaplan-Meier analysis showed that patients expressing SDC3 had shorter prostate-specific survival than those without SDC3 expression (log-rank test, p = 0.0047). Analysis of the MSKCC-derived expression showed that SDC1 and SDC3 overexpression is predictive of decreased biochemical recurrence-free survival (p = 0.0099 and p = 0.045, respectively), and SDC4 overexpression is predictive of increased biochemical recurrence-free survival (p = 0.035). SDC4 overexpression was associated with a better prognosis, while SDC1 and SDC3 were associated with more aggressive tumors and a worse prognosis.
Collapse
Affiliation(s)
- Nilton José Santos
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Caroline Nascimento Barquilha
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Isabela Correa Barbosa
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Rodrigo Tavares Macedo
- Botucatu School of Medicine (FMB), São Paulo State University, Botucatu 01049-010, SP, Brazil; (R.T.M.); (F.O.L.)
| | - Flávio Oliveira Lima
- Botucatu School of Medicine (FMB), São Paulo State University, Botucatu 01049-010, SP, Brazil; (R.T.M.); (F.O.L.)
| | - Luis Antônio Justulin
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
| | - Guilherme Oliveira Barbosa
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Sérgio Luis Felisbino
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Correspondence:
| |
Collapse
|
20
|
Gangapuram M, Mazzio EA, Redda KK, Soliman KFA. Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel. Int J Mol Sci 2021; 22:ijms22147694. [PMID: 34299315 PMCID: PMC8306781 DOI: 10.3390/ijms22147694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
The absence of chemotherapeutic target hormone receptors in breast cancer is descriptive of the commonly known triple-negative breast cancer (TNBC) subtype. TNBC remains one of the most aggressive invasive breast cancers, with the highest mortality rates in African American women. Therefore, new drug therapies are continually being explored. Microtubule-targeting agents such as paclitaxel (Taxol) interfere with microtubules dynamics, induce mitotic arrest, and remain a first-in-class adjunct drug to treat TNBC. Recently, we synthesized a series of small molecules of substituted tetrahydroisoquinolines (THIQs). The lead compound of this series, with the most potent cytostatic effect, was identified as 4-Ethyl-N-(7-hydroxy-3,4-dihydroisoquinolin-2(1H)-yl) benzamide (GM-4-53). In our previous work, GM-4-53 was similar to paclitaxel in its capacity to completely abrogate cell cycle in MDA-MB-231 TNBC cells, with the former not impairing tubulin depolymerization. Given that GM-4-53 is a cytostatic agent, and little is known about its mechanism of action, here, we elucidate differences and similarities to paclitaxel by evaluating whole-transcriptome microarray data in MDA-MB-231 cells. The data obtained show that both drugs were cytostatic at non-toxic concentrations and caused deformed morphological cytoskeletal enlargement in 2D cultures. In 3D cultures, the data show greater core penetration, observed by GM-4-53, than paclitaxel. In concentrations where the drugs entirely blocked the cell cycle, the transcriptome profile of the 48,226 genes analyzed (selection criteria: (p-value, FDR p-value < 0.05, fold change −2< and >2)), paclitaxel evoked 153 differentially expressed genes (DEGs), GM-4-53 evoked 243 DEGs, and, of these changes, 52/153 paclitaxel DEGs were also observed by GM-4-53, constituting a 34% overlap. The 52 DEGS analysis by String database indicates that these changes involve transcripts that influence microtubule spindle formation, chromosome segregation, mitosis/cell cycle, and transforming growth factor-β (TGF-β) signaling. Of interest, both drugs effectively downregulated “inhibitor of DNA binding, dominant negative helix-loop-helix” (ID) transcripts; ID1, ID3 and ID4, and amphiregulin (AREG) and epiregulin (EREG) transcripts, which play a formidable role in cell division. Given the efficient solubility of GM-4-53, its low molecular weight (MW; 296), and capacity to penetrate a small solid tumor mass and effectively block the cell cycle, this drug may have future therapeutic value in treating TNBC or other cancers. Future studies will be required to evaluate this drug in preclinical models.
Collapse
|
21
|
Loftus PG, Watson L, Deedigan LM, Camarillo‐Retamosa E, Dwyer RM, O'Flynn L, Alagesan S, Griffin M, O'Brien T, Kerin MJ, Elliman SJ, Barkley LR. Targeting stromal cell Syndecan-2 reduces breast tumour growth, metastasis and limits immune evasion. Int J Cancer 2021; 148:1245-1259. [PMID: 33152121 PMCID: PMC7839764 DOI: 10.1002/ijc.33383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023]
Abstract
Tumour stromal cells support tumourigenesis. We report that Syndecan-2 (SDC2) is expressed on a nonepithelial, nonhaematopoietic, nonendothelial stromal cell population within breast cancer tissue. In vitro, syndecan-2 modulated TGFβ signalling (SMAD7, PAI-1), migration and immunosuppression of patient-derived tumour-associated stromal cells (TASCs). In an orthotopic immunocompromised breast cancer model, overexpression of syndecan-2 in TASCs significantly enhanced TGFβ signalling (SMAD7, PAI-1), tumour growth and metastasis, whereas reducing levels of SDC2 in TASCs attenuated TGFβ signalling (SMAD7, PAI-1, CXCR4), tumour growth and metastasis. To explore the potential for therapeutic application, a syndecan-2-peptide was generated that inhibited the migratory and immunosuppressive properties of TASCs in association with reduced expression of TGFβ-regulated immunosuppressive genes, such as CXCR4 and PD-L1. Moreover, using an orthotopic syngeneic breast cancer model, overexpression of syndecan-2-peptide in TASCs reduced tumour growth and immunosuppression within the TME. These data provide evidence that targeting stromal syndecan-2 within the TME inhibits tumour growth and metastasis due to decreased TGFβ signalling and increased immune control.
Collapse
Affiliation(s)
- Paul G. Loftus
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
- Orbsen TherapeuticsNational University of IrelandGalwayIreland
| | - Luke Watson
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | | | | | - Róisín M. Dwyer
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Lisa O'Flynn
- Orbsen TherapeuticsNational University of IrelandGalwayIreland
- Lisa O'Flynn, Avectas Ltd, Maynooth UniversityCo KildareIreland
| | | | - Matthew Griffin
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Timothy O'Brien
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Michael J. Kerin
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | | | - Laura R. Barkley
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| |
Collapse
|