1
|
Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, Song T, Sun Y. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med 2025; 57:2451766. [PMID: 39810645 PMCID: PMC11737052 DOI: 10.1080/07853890.2025.2451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
As one of the three major malignant tumors in women, the morbidity of endometrial cancer is second only to that of cervical cancer and is increasing yearly. Its etiological mechanism is not clear, and the risk factors are numerous and common and are closely related to obesity, hypertension, diabetes, etc. The gut microbiota has many strains, which play a considerable part in normal digestion and absorption in the human body and the regulation of the immune response. In the last few years, research on the gut microbiota has been unprecedentedly popular, and it has been confirmed that the gut microbiota closely correlates with the occurrence and development of all kinds of benign and malignant diseases. In this article, the effects of the gut microbiota and its metabolites on the occurrence and development of endometrial cancer is reviewed, and its application in the prevention, diagnosis and treatment of endometrial cancer is explored.
Collapse
Affiliation(s)
- Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixin Chen
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziling Yang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Zhang B, Mohd Sahardi NFN, Di W, Long X, Shafiee MN. The Gut-Endometrium Axis: Exploring the Role of Microbiome in the Pathogenesis and Treatment of Endometrial Cancer-A Narrative Review. Cancers (Basel) 2025; 17:1044. [PMID: 40149377 PMCID: PMC11940670 DOI: 10.3390/cancers17061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Endometrial cancer (EC) is a prevalent gynecological malignancy with an increasing incidence, particularly in developed countries. Recent research has demonstrated the significant involvement of gut and endometrial microbiomes in the pathogenesis and progression of EC. This review provides a comprehensive overview of the existing knowledge on the interactions between these microbial communities and their influence on EC. Methodology: A literature review was conducted using electronic databases including Google Scholar, Scopus, and PUBMED, covering the period from 2017 to 2024. The following keywords were used for the literature search: (1) gut microbiome and endometrial cancer, (2) endometrium microbiome and endometrial cancer, and (3) endometrial cancer and microbial dysbiosis. The selected articles were chosen based on inclusion and exclusion criteria. Scale for Assessment of Narrative Review Articles (SANRA) was used for evaluating and assessing the quality of articles. Results: The gut microbiome modulates systemic inflammation, immune responses, and estrogen metabolism, all of which are crucial factors in EC development. Dysbiosis is an imbalance in the composition of microbes that can cause chronic inflammation and hormonal imbalances, which can contribute to the EC. Similarly, the endometrial microbiome, while less extensively studied, has been implicated in EC through mechanisms involving local immune modulation and the production of harmful metabolites. Probiotics, prebiotics, fecal microbiota transplantation (FMT), and personalized microbiota-based therapies can be used as clinical interventions for EC management. This review emphasizes the need for further research to explore the gut-endometrium axis and its potential for innovative therapeutic approaches. Understanding these complex interactions will become a novel strategy to prevent and treat EC, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | | | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.D.); (X.L.)
| | - Xiaoran Long
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.D.); (X.L.)
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
3
|
Ma C, He Y, Wang J, Zhang J, Hou X, Wang S, Chen L, Shu L. Expression levels of STAT3, and protein levels of IL‑6 and sPD‑L1 in different pathological characteristics of endometrial adenocarcinomas. Oncol Lett 2025; 29:156. [PMID: 39911150 PMCID: PMC11795251 DOI: 10.3892/ol.2025.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/13/2024] [Indexed: 02/07/2025] Open
Abstract
Endometrial cancer is a common type of cancer in women, with endometrial adenocarcinoma (EA) being the most common type. Monitoring the expression levels of signal transducer and activator of transcription 3 (STAT3), the protein levels of interleukin 6 (IL-6) and soluble programmed death ligand 1 (sPD-L1), and their differences in patients with various pathological characteristics is beneficial for accurately evaluating the disease stage and differentiation degree of patients in clinical practice. The aim of the present study was to assess the expression levels of STAT3, and the protein levels of IL-6 and sPD-L1 in EA. In the present retrospective study, data were retrieved from the medical records of 137 patients with EA who received surgical treatment at The First Affiliated Hospital of Hebei North University from January 2017 to December 2022. Of the 137 cases, 90 met the inclusion criteria. The patients with EA were matched with a cohort of 30 patients with atypical endometrial hyperplasia in a ratio of 3:1. Among the 90 patients with EA, 30 patients with well-differentiated EA were matched with 30 patients with moderately differentiated EA and 30 patients with poorly differentiated EA in a 1:1:1 ratio. Expression level of STAT3, and protein levels of IL-6 and sPD-L1 were recorded preoperatively and compared between patients with different pathological characteristics [such as differentiation degree, disease stage, depth of myometrial invasion and lymph node metastasis (LNM)] and prognosis. Levels of IL-6, STAT3 and sPD-L1 in the observation group were significantly higher compared with the control group (P<0.001). Additionally, there were significant differences in IL-6, STAT3 and sPD-L1 levels between patients with different differentiation degrees, disease stages, myometrial invasion and LNM (P<0.001). The increase in IL-6, STAT3 and sPD-L1 levels were significantly associated with the decrease in the differentiation degree and the increase in the disease stage, depth of myometrial invasion and LNM (P<0.001). IL-6, STAT3 and sPD-L1 levels in patients with a poor prognosis were significantly higher compared with patients with good prognoses (P<0.001). Overall, the expression levels of STAT3, and the protein levels of IL-6 and sPD-L1 were increased in patients with EA compared with in those without EA, and their increase is associated with the pathological characteristics of the disease. The levels of these indices may be detected in clinical practices to evaluate the disease and predict the prognosis.
Collapse
Affiliation(s)
- Chunxing Ma
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Ying He
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Jing Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Juan Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xiaoxue Hou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Sisi Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Lihua Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Lisha Shu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
4
|
Kast RE. Potential Benefits of Adding Alendronate, Celecoxib, Itraconazole, Ramelteon, and Simvastatin to Endometrial Cancer Treatment: The EC5 Regimen. Curr Issues Mol Biol 2025; 47:153. [PMID: 40136407 PMCID: PMC11941490 DOI: 10.3390/cimb47030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Metastatic endometrial cancer continues to be a common cause of death as of 2024, even after maximal use of all currently available standard treatments. To address this problem of metastatic cancer generally in 2025, the drug repurposing movement within oncology identifies medicines in common general medical use that have clinical or preclinical experimental data indicating that they interfere with or inhibit a specific growth driving element identified in a given cancer. The drug repurposing movement within oncology also uses data from large scale in vitro screens of thousands of drugs, looking for simple empirical growth inhibition in a given cancer type. This paper outlines the data showing that five drugs from general medical practice meet these evidence criteria for inhibition of endometrial cancer growth, the EC5 regimen. The EC5 regimen uses the osteoporosis treatment drug, alendronate; the analgesic drug, celecoxib; the antifungal drug, itraconazole; the sleep aid, ramelteon; and the cholesterol lowering drug, simvastatin. Side effects seen with these drugs are usually minimal and easily tolerated by patients.
Collapse
|
5
|
Zheng Q, Sun T, Li X, Zhu L. Reproductive tract microbiome dysbiosis associated with gynecological diseases. Front Cell Infect Microbiol 2025; 15:1519690. [PMID: 40041148 PMCID: PMC11876126 DOI: 10.3389/fcimb.2025.1519690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Female health and the microbiota of the reproductive tract are closely associated. The research scope on reproductive tract microbiota extends from the vaginal to the upper reproductive tract and from infectious diseases to various benign and malignant gynecological and obstetrical diseases. The primary focus of this paper was to evaluate the most recent findings about the role of reproductive tract microbiota in gynecological diseases, including endometrial polyps, uterine fibroids, endometriosis, adenomyosis, endometrial hyperplasia, and endometrial carcinoma. Different stages of gynecological diseases have diverse microbiota in the female reproductive tract, and some specific bacteria may help the disease progress. For example, Fusobacterium may exacerbate endometriosis, while treatments that target microbiota, such as antibiotics, probiotics, and flora transplantation, showed some efficacy in the experiment. These findings indicate the wonderful prospect of this field. Additionally, we have discussed how microbiome research can improve our understanding of the interactions between reproductive tract microorganisms and hosts, aid in the screening and diagnosis of gynecological diseases, and direct the development of preventive and therapeutic strategies aimed at maintaining and restoring a healthy reproductive tract microbiota when combined with other technologies like transcriptome and proteome, in vitro cultured cells, and animal models.
Collapse
Affiliation(s)
- Qingyue Zheng
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianshu Sun
- Clinical Biobank, Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaochuan Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan Zhu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Yang C, Qin LH, Li L, Wei QY, Long L, Liao JY. The causal relationship between the gut microbiota and endometrial cancer: a mendelian randomization study. BMC Cancer 2025; 25:248. [PMID: 39939905 PMCID: PMC11823214 DOI: 10.1186/s12885-025-13656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Gut microbiota is associated with endometrial cancer (EC); however, the causal relationship remains unexplored. This study attempted to explore the relationship between gut microbiota and EC using Mendelian randomization (MR) methods. METHODS In this two-sample MR analysis, we used MiBioGen's gut microbiota data as the exposure and three datasets from European populations with EC as the outcome. The EC datasets included general EC, endometrioid histology, and non-endometrioid histology. Single nucleotide polymorphism (SNP) was used as the instrumental variable. Inverse variance weighted (IVW), multiplicative random effects IVW (MRE-IVW), Maximum likelihood (ML), MR Egger, MR-PRESSO, and the weighted median were used to perform MR analysis. Sensitivity analysis was conducted to assess the reliability of the results. RESULTS In this MR analysis of three EC datasets, specific gut microbiota were identified as potentially associated with different pathological types of EC. For general EC (ID: ebi-a-GCST006464), Family.Acidaminococcaceae (OR = 1.23, 95%CI: 1.02-1.48) and genus.Butyrivibrio (OR = 1.08, 95%CI: 1.01-1.16) were identified as risk factors, while genus.Ruminococcaceae UCG014 (OR = 0.82, 95%CI: 0.69-0.98) and genus.Turicibacter (OR = 0.84, 95%CI: 0.73-0.97) appeared to have protective effects. For endometrioid histology EC (ID: ebi-a-GCST006465), Family.Acidaminococcaceae (OR = 1.27, 95%CI: 1.01-1.59) and genus.Butyrivibrio (OR = 1.10, 95%CI: 1.01-1.19) were identified as risk factors, while several microbiota, including Family.Lactobacillaceae, genus.Coprococcus3, genus.Dorea, genus.Flavonifractor, genus.Lactobacillus, genus.Paraprevotella, and genus.Turicibacter, were identified as protective factors. For non-endometrioid histology EC (ID: ebi-a-GCST006466), Family.Rhodospirillaceae (OR = 1.41, 95%CI: 1.01-1.96) and genus.Peptococcus (OR = 1.43, 95%CI: 1.07-1.91) were identified as risk factors, while no significant protective factors were identified. CONCLUSIONS This two-sample MR study has identified gut microbiota with potential causal relationships with EC, varying by pathological type. These findings provide new insights into the pathogenesis of EC and suggest directions for future research on diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Chongze Yang
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lan-Hui Qin
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liwei Li
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiu-Ying Wei
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liling Long
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Jin-Yuan Liao
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| |
Collapse
|
7
|
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. J Xenobiot 2025; 15:26. [PMID: 39997369 PMCID: PMC11856463 DOI: 10.3390/jox15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Infertility affects 8-12% of couples worldwide, and 30-75% of preclinical pregnancy losses are due to a failure during the implantation process. Exposure to endocrine disruptors, like bisphenols, among others, has been associated with the increase in infertility observed in the past decades. An increase in infertility has correlated with exposure to endocrine disruptors like bisphenols. The uterus harbors its own microbiota, and changes in this microbiota have been linked to several gynecological conditions, including reproductive failure. There are no studies on the effects of bisphenols on the uterine-microbiota composition, but some inferences can be gleaned by looking at the gut. Bisphenols can alter the gut microbiota, and the molecular mechanism by which gut microbiota regulates intestinal permeability involves Toll-like receptors (TLRs) and tight junction (TJ) proteins. TJs participate in embryo implantation in the uterus, but bisphenol exposure disrupts the expression and localization of TJ proteins. The aim of this review is to summarize the current knowledge on the microbiota of the female reproductive tract (FRT), its association with different reproductive diseases-particularly reproductive failure-the effects of bisphenols on microbiota composition and reproductive health, and the molecular mechanisms regulating uterine-microbiota interactions crucial for embryo implantation. This review also highlights existing knowledge gaps and outlines research needs for future risk assessments regarding the effects of bisphenols on reproduction.
Collapse
Affiliation(s)
- Dafne Castellanos-Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - J. Gerardo Ojeda-Borbolla
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Olga V. Ruiz-García
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Sheila I. Peña-Corona
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Annia A. Martínez-Peña
- División de Ciencias de la Salud, Universidad Intercontinental, A. C., Ciudad de México 14420, Mexico
| | - María Elena Ibarra-Rubio
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Marina Gavilanes-Ruiz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C. Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| |
Collapse
|
8
|
Ece G, Aktaş A, Caner A, Sağlık İ, Kula Atik T, Ulusan Bağcı Ö, Bayındır Bilman F, Demirbakan H, Güdül Havuz S, Kaya E, Koyuncu Özyurt Ö, Yetkin G, Zorbozan O. The Urogenital System Microbiota: Is It a New Gamechanger in Urogenital Cancers? Microorganisms 2025; 13:315. [PMID: 40005682 PMCID: PMC11858393 DOI: 10.3390/microorganisms13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The human microbiome, which encompasses microbial communities and their genetic material, significantly influences health and disease, including cancer. The urogenital microbiota, naturally present in the urinary and genital tracts, interact with factors such as age, lifestyle, and health conditions to affect homeostasis and carcinogenesis. Studies suggest that alterations in this microbiota contribute to the development and progression of genitourinary cancers, emphasizing the concept of oncobiome, which refers to microbial genetic contributions to cancer. Similarly, gut microbiota can influence hormone levels and systemic inflammation, impacting cancers such as cervical and prostate cancer. Advanced studies indicate that microbial communities in genitourinary cancers have distinct profiles that may serve as diagnostic biomarkers or therapeutic targets. Dysbiosis of the urinary microbiota correlates with bladder and kidney cancer. Additionally, gut microbiota influence the effectiveness of cancer treatments. However, further research is necessary to clarify causality, the role of microbial metabolites, and hormonal regulation. The aim of this review is to understand that these dynamics present opportunities for innovative cancer diagnostics and therapies, highlighting the need for integration of microbiology, oncology, and genomics to explore the role of microbiota in genitourinary cancers. For this, a comprehensive search of relevant databases was conducted, applying specific inclusion and exclusion criteria to identify studies examining the association between microbiota and urogenital cancers. Research into the mechanisms by which microbiota influence urogenital cancers may pave the way for new diagnostic and therapeutic approaches, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Gülfem Ece
- Department of Medical Microbiology, İzmir City Hospital, İzmir 35540, Türkiye; (G.E.); (F.B.B.)
| | - Ahmet Aktaş
- İstanbul Provincial Health Directorate, Istanbul Public Health Laboratory No. 2, İstanbul 34524, Türkiye;
| | - Ayse Caner
- Department of Parasitology, Faculty of Medicine, Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir 35100, Türkiye
| | - İmran Sağlık
- Department of Medical Microbiology, Faculty of Medicine, Uludag University, Bursa 16059, Türkiye;
| | - Tuğba Kula Atik
- Department of Microbiology, Faculty of Medicine, Balıkesir University, Balıkesir 10145, Türkiye;
| | - Özlem Ulusan Bağcı
- Department of Parasitology, Faculty of Medicine, Ankara University, Ankara 06230, Türkiye;
| | - Fulya Bayındır Bilman
- Department of Medical Microbiology, İzmir City Hospital, İzmir 35540, Türkiye; (G.E.); (F.B.B.)
| | - Hadiye Demirbakan
- Department of Medical Microbiology, Faculty of Medicine, Sanko University, Gaziantep 27090, Türkiye;
| | - Seda Güdül Havuz
- Samsun Provincial Health Directorate, Samsun Bafra State Hospital, Department of Medical Microbiology, Samsun 55400, Türkiye;
| | - Esra Kaya
- Department of Medical Microbiology, Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaraş 46100, Türkiye;
| | - Özlem Koyuncu Özyurt
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz Univertsity, Antalya 07070, Türkiye;
| | - Gülay Yetkin
- Bakırköy Dr Sadi Konuk Education and Research Hospital, Hamidiye Faculty of Medicine, Health Science University, İstanbul 34140, Türkiye;
| | - Orçun Zorbozan
- Department of Medical Microbiology, Faculty of Medicine, Bakircay University, İzmir 35665, Türkiye;
| |
Collapse
|
9
|
Kuźmycz O, Kowalczyk A, Bolanowska A, Drozdzowska A, Lach J, Wierzbińska W, Kluz T, Stączek P. A comprehensive analysis of the uterine microbiome in endometrial cancer patients - identification of Anaerococcus as a potential biomarker and carcinogenic cofactor. Front Cell Infect Microbiol 2025; 15:1511625. [PMID: 39958933 PMCID: PMC11827426 DOI: 10.3389/fcimb.2025.1511625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Endometrial cancer (EC) is a significant gynecological malignancy with increasing incidence worldwide. Emerging evidence highlights the role of the uterine microbiome in the pathogenesis of EC. This study aims to characterize the uterine microbiome in EC patients and identify potential microbial biomarkers, with a focus on Anaerococcus as a differentiating taxon. Methods The endocervical canal swabs from patients with EC (n=16) and non-cancerous patients (EM, n=13) were collected. The V3-V4 region of the 16S rRNA gene was sequenced using the Illumina platform. Bioinformatic analyses were performed with QIIME2, and statistical comparisons were conducted to assess differences in microbial composition and diversity. In vitro experiments were conducted to assess the functional impact of Anaerococcus on human uterine fibroblasts, including its ability to adhere to the human cells and induce oxidative stress. Results The α-diversity metrics, including Shannon entropy and observed amplicon sequence variants (ASVs), revealed significantly higher microbial diversity in EC samples compared to EM. Anaerococcus was identified as a key taxon differentiating EC from EM groups, showing a higher relative abundance in EC samples. Functional predictions and in vitro assays indicated that Anaerococcus may contribute to carcinogenesis by inducing reactive oxygen species (ROS) production, and has the high ability to adhere to the human endometrial fibroblasts. Discussion The study provides evidence of distinct microbial signatures in EC, with Anaerococcus emerging as a potential biomarker. The in vitro findings suggest its role in endometrial carcinogenesis, underscoring its potential as a target for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Olga Kuźmycz
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| | - Aleksandra Bolanowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
| | - Anna Drozdzowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
| | - Jakub Lach
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
- Biobank Lab, Department of Cancer Biology and Epigenetics, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Wiktoria Wierzbińska
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| |
Collapse
|
10
|
Li M, Wang S, Huang H, Li L. Reliable estrogen-related prognostic signature for uterine corpus endometrial carcinoma. Comput Biol Chem 2024; 113:108216. [PMID: 39326337 DOI: 10.1016/j.compbiolchem.2024.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is a predominant gynecological malignancy worldwide. Overdosed estrogen exposure has been widely known as a crucial risk factor for UCEC patients. The purpose of this work is to explore crucial estrogen-related genes (ERGs) in UCEC. METHODS UCEC scRNA-seq data, bulk RNA data, and ERGs were obtained from GEO, TCGA, and Molecular Signature Database, respectively. Differential expression analysis and cross analysis determined the candidate genes, and optimal genes in risk score were obtained after univariate Cox regression analysis, LASSO Cox regression analysis, and multivariate Cox regression analysis. The functional information was revealed by GO, KEGG, and GSVA enrichment analyses. CCK8 assay was used to detect the drug sensitivity. RESULTS After cross analysis of the differentially expressed genes and the 8734 ERGs, 86 differentially expressed ERGs were identified in UCEC, which were significantly enriched in some immune related pathways and microbiota related pathways. Of them, the most optimal 8 ERGs were obtained to build prognostic risk score, including GAL, PHGDH, SLC7A2, HNMT, CLU, AREG, MACC1, and HMGA1. The risk score could reliably predict patient prognosis, and high-risk patients had worse prognosis. Higher HMGA1 gene expression exhibited higher sensitivity to Osimertinib. CONCLUSIONS Predictive risk score based on 8 ERGs exhibited excellent prognostic value in UCEC patients, and high-risk patients had inferior survival. UCEC patients with distinct prognoses showed different tumor immune microenvironment.
Collapse
Affiliation(s)
- Mojuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 511500, China; Department of Obstetrics and Gynecology, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528000, China
| | - Shuai Wang
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511500, China
| | - Hao Huang
- Department of Obstetrics and Gynecology, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528000, China
| | - Li Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 511500, China; Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511500, China.
| |
Collapse
|
11
|
Stabile G, Doria A, Bruno M, D'Indinosante M, Gallotta V, Fanfani F, Scambia G, Restaino S, Vizzielli G, Carlucci S, Nappi L. The Role of the Endometrial Microbiota in Endometrial Cancer: A Systematic Review of the Literature. J Clin Med 2024; 13:7135. [PMID: 39685594 DOI: 10.3390/jcm13237135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Endometrial cancer is currently the sixth most frequent cancer in women, and scientific research is focusing on the search for particular features of the endometrium that may explain a further predisposition to the onset of endometrial cancer, aimed at improving knowledge of the pathogenetic factors of this disease. The aim of our review is to analyze in detail the results of the literature on the endometrial microbiota in patients with endometrial cancer and to investigate its role. Methods: We performed our research on the Pubmed, Web of Science, and Scopus databases. We searched up to December 2023 and considered manuscripts published from 2000. Only articles in English were included in the search. We excluded studies in which the endometrial microbiota were collected through the vagina or cervical canal. Results: We included in our review a total of five manuscripts at the end of the screening process, and the total number of patients involved was 190. Four studies considered only post-menopausal patients, while one study considered both pre- and post-menopausal patients. In all studies, the microbiota analysis was derived from a post-hysterectomy biopsy. From our review, it emerged that Bacteroidetes, Actinobacteria, Firmicutes, and Proteobacteria are the most represented bacteria in patients with endometrial cancer. These are both Gram-positive and Gram-negative, but predominantly anaerobic bacteria. Conclusions: The reduced microbial diversity and the presence of specific bacteria is often associated with endometrial cancer. Further work on larger population samples, and on healthy women and those affected by endometrial carcinoma, is needed to understand how the endometrial microbiota changes and influences the development of the tumor and whether intervening in the changes in the microbiota will have a therapeutic impact on endometrial carcinoma.
Collapse
Affiliation(s)
- Guglielmo Stabile
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| | - Alessandra Doria
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| | - Matteo Bruno
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco D'Indinosante
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Valerio Gallotta
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Fanfani
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento per le Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Restaino
- Department of Medicinal Area (DAME) Clinic of Obstetrics and Gynecology, Santa Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Giuseppe Vizzielli
- Obstetrics and Gynecology Clinic, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Stefania Carlucci
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
12
|
Han X, Zheng J, Zhang L, Zhao Z, Cheng G, Zhang W, Qu P. Endometrial microbial dysbiosis and metabolic alteration promote the development of endometrial cancer. Int J Gynaecol Obstet 2024; 167:810-822. [PMID: 38837368 DOI: 10.1002/ijgo.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Emerging evidence suggests that the endometrial microbiome plays important roles in the development of endometrial cancer (EC). Here, we evaluate stage-specific roles of microbial dysbiosis and metabolic disorders in patients with EC, patients with endometrial hyperplasia (EH), and patients afflicted with benign uterine conditions (CK). METHODS This prospective cohort study included 33 women with EC, 15 women with endometrial EH, and 15 women with benign uterine conditions (CK) from November 2022 to September 2023. Different typical endometrial samples were imaged with a scanning electron microscope and a transmission electron microscope. The endometrial microbiome was assessed by sequencing the V3-V4 region of the 16S rRNA gene and the ITS1 to fill the gap in relation to the study of the uterine fungal microbiome. Moreover, liquid chromatography-mass spectrometry-based metabolomics was used to identify and quantify metabolic changes among these groups. RESULTS The endometrial microbiome revealed that there is a structural microbiome shift and an increase in the α-diversity in the EC and EH cases, distinguishable from the benign cases, especially the fungal community structure. The fungal microbiome from patients with EC and EH was altered relative to controls and dominated by Penicillium sp. By contrast, Sarocladium was more abundant in controls. Significant differences were observed in the composition and content of compounds between benign cases and EC, especially estradiol-like metabolism-related substances. Altered microbiota was correlated with the concentrations of interleukin-6 (IL-6), IL-11, transforming growth factor-beta, and β-glucuronidase activity especially the relative abundance increase of Penicillium sp. CONCLUSIONS This study suggested that the endometrial microbiome is complicit in modulating the development of EC such as estrogen activity and a pro-inflammatory response. Our work provides a new insight into the endometrial microbiome from a perspective of stages, which opens up new avenues for EC prognosis and therapy.
Collapse
Affiliation(s)
- Xinxin Han
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Jia Zheng
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Lizhi Zhang
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Zhongwei Zhao
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Guangyan Cheng
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
13
|
Xing W, Yu J, Cui S, Liu L, Zhi Y, Zhang T, Zhou J. Analysis of the correlation between gut microbiome imbalance and the development of endometrial cancer based on metagenomics. Medicine (Baltimore) 2024; 103:e39596. [PMID: 39287279 PMCID: PMC11404905 DOI: 10.1097/md.0000000000039596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Endometrial cancer (EC) is the most prevalent gynecologic malignancy, with a higher risk in obese women, suggesting the potential involvement of gut microbiota in the progression of EC. However, there is no direct evidence of a connection between EC and the human gut microbiota. Using metagenomic sequencing, we investigated the relationship between gut microbiome imbalance and cancer development in patients with EC. In this prospective case-control study, we included 15 patients with EC based on endometrial biopsy in the case group and 15 women admitted to the hospital for female pelvic floor issues during the same time who did not have endometrial lesions from January 2023 to June 2023 in control group. The microbiota structure of EC cases and controls without benign or malignant endometrial lesions during the same time period was analyzed using metagenomic sequencing technology. We employed Alpha diversity analysis to reflect the richness and diversity of microbial communities. Statistical algorithm Bray-Curtis was utilized to calculate pairwise distances between samples, obtaining a beta diversity distance matrix. Subsequently, hierarchical clustering analysis was conducted based on the distance matrix. The results showed that the composition of bacterial colonies in both groups was dominated by Firmicutes, which had a higher proportion in the control group, followed by Bacteroidetes in the control group and Proteobacteria and Bacteroidetes in the case group. The abundance of Klebsiella (P = .02) was significantly higher, and the abundance of Alistipes (P = .04), Anearobutyricum (P = .01), and bacteria in Firmicutes such as Oscillospira and Catenibacterium was markedly lower in the case group than in the control group. These results demonstrated conclusively that a gut microbiome imbalance was associated with the development of EC.
Collapse
Affiliation(s)
- Wenying Xing
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Yu
- Department of Gynaecology and Obstetrics, Hefei Hospital Affiliated to Anhui Medical University, Anhui, China
| | - Shihong Cui
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Liu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunxiao Zhi
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting Zhang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjie Zhou
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Yuan C, Xie K, Feng L, Gao S, Cai L. The role and challenges of regulating endometrial microbiome in uterine health and diseases. Crit Rev Microbiol 2024; 50:937-954. [PMID: 38488586 DOI: 10.1080/1040841x.2024.2320247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 10/09/2024]
Abstract
The uterine environment provides necessary conditions for the existence of endometrial microbiota, which in turn plays an important role in maintaining the homeostasis of the uterine environment. The endometrial microbiome is highly susceptible to external factors such as age, hormones, menstrual, pregnancy, etc. When the microbiota is imbalanced, it will further promote the occurrence of uterine diseases such as endometritis and endometrial cancer. Regulating the microbiome of the endometrium is of positive significance for promoting uterine health. Among them, antibiotics, probiotics, prebiotics, and microbial transplantation may be important pathways for regulating endometrial microbiota in the future. However, there is currently no unified plan for evaluating the endometrial microbiota. In addition, due to the small sample size, it is easy to be contaminated by exogenous bacterial DNA, which poses great challenges for studying the mechanism of microbial community regulating uterine health. Therefore, there are still many areas worth exploring for the future of endometrial microbiome.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Zhou X, Chen L, Lin W, Zheng W, Zhang H, Zhou F. Diagnostic and prognostic potential of the intra-tumoral microbiota profile in HPV-independent endocervical adenocarcinoma. Front Cell Infect Microbiol 2024; 14:1440017. [PMID: 39220287 PMCID: PMC11362085 DOI: 10.3389/fcimb.2024.1440017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Microbial community dynamics have been involved in numerous diseases, including cancer. The diversity of intertumoral microbiota in human papillomavirus independent endocervical adenocarcinoma (HPVI ECA) is not well-characterized. Objective Our objective is to delineate the intratumoral microbiota profile in HPVI ECA and investigate its potential influence on oncogenesis. Methods We analyzed 45 HPVI ECA cases, comprising 36 gastric-type ECA (GEA) and 9 clear cell carcinomas (CCC). We compared the microbial composition within cancerous and adjacent noncancerous tissue samples using 5R-16S ribosomal DNA sequencing. Further, we investigated the correlation between specific microbes and clinical-pathological metrics as well as patient outcomes. Results Our findings demonstrate notable differences in the microbial spectra between cancerous and adjacent noncancerous tissues. Amongst HPVI ECA subtypes, GEAs exhibit more microbial variations compared to CCCs. Using the Random Forest algorithm, we identified two distinct microbial signatures that could act as predictive biomarkers for HPVI ECA and differentiate between GEA and CCC. Varied microbial abundances was related to clinical characteristics of HPVI ECA patients. In addition, high levels of Micrococcus and low levels of unknown genus75 from the Comamonadaceae family were associated with poorer outcomes in HPVI ECA patients. Similarly, an abundance of Microbacterium correlated with reduced overall survival (OS), and a high presence of Streptococcaceae family microbes was linked to reduced recurrence-free survival (RFS) in GEA patients. Intriguingly, a high abundance of Micrococcus was also associated with a worse OS in GEA patients. Conclusion The study reveals distinct microbial signatures in HPVI ECA, which have potential as biomarkers for disease prognosis. The correlation between these tumor-associated microbiota features and clinicopathological characteristics underscores the possibility of microbiome-based interventions. Our research provides a foundation for more in-depth studies into the cervical microbiome's role in HPVI ECA.
Collapse
Affiliation(s)
- Xin Zhou
- Departments of Pathology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Chen
- Department of Oncology, Zhejiang University School of Medicine Women’s Hospital, Hangzhou, Zhejiang, China
| | - Wanrun Lin
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wenxin Zheng
- Department of Pathology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Harold C. Simon Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Huijuan Zhang
- Departments of Pathology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Feng Zhou
- Departments of Pathology, The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
16
|
de Medeiros Garcia Torres M, Lanza DCF. A Standard Pipeline for Analyzing the Endometrial Microbiome. Reprod Sci 2024; 31:2163-2173. [PMID: 38720154 DOI: 10.1007/s43032-024-01557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/11/2024] [Indexed: 07/31/2024]
Abstract
The endometrial microbiome is a rapidly advancing field of research, particularly in obstetrics and gynecology, as it has been found to be linked with obstetric complications and potential impacts on fertility. The diversity of microorganisms presents in the endometrium, along with their metabolites, can influence reproductive outcomes by modulating the local immune environment of the uterus. However, a major challenge in advancing our understanding of the endometrial microbiota lies in the heterogeneity of available studies, which vary in terms of patient selection, control groups, collection methods and analysis methodologies. In this study, we propose a detailed pipeline for endometrial microbiome analysis, based on the most comprehensive prospective of 64 studies that have investigated the endometrial microbiome up to the present. Additionally, our review suggests that a dominance of Lactobacilli in the endometrium may be associated with improved reproductive prognosis, including higher implantation rates and lower miscarriage rates. By establishing a standardized pipeline, we aim to facilitate future research, enabling better comparison and correlation of bacterial communities with the health status of patients, including fertility-related issues.
Collapse
|
17
|
Zhang H, Zou H, Zhang C, Zhang S. Chronic endometritis and the endometrial microbiota: implications for reproductive success in patients with recurrent implantation failure. Ann Clin Microbiol Antimicrob 2024; 23:49. [PMID: 38816832 PMCID: PMC11140900 DOI: 10.1186/s12941-024-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Chronic endometritis (CE) is associated with poor reproductive outcomes, yet the role of endometrial microbiota in patients with recurrent implantation failure (RIF) and CE remains unclear. This study aims to characterize endometrial microbiota in RIF patients with CE and assess its implications for reproductive outcomes. METHODS In this prospective study, we enrolled RIF patients both with and without CE. Endometrial and cervical samples were collected for 16 S rRNA gene sequencing. Microbiota composition was compared between groups using diversity indices, phylum, and genus-level analysis. Canonical correlation analysis (CCA) and Spearman's correlation coefficients were used to assess relationships between CE, reproductive outcomes, and microbiota. Predictive functional profiling was performed to evaluate metabolic pathways associated with CE. RESULTS Endometrial microbiota in CE patients exhibited greater diversity and evenness compared to non-CE patients. Principal coordinates analysis (PCoA) revealed distinct clustering between CE and non-CE groups. Linear discriminant analysis (LDA) identified Proteobacteria, Aminicenantales, and Chloroflexaceae as characteristic of CE, while Lactobacillus, Acinetobacter, Herbaspirillum, Ralstonia, Shewanela, and Micrococcaceae were associated with non-CE. CCA demonstrated associations between CE, adverse reproductive outcomes, and specific bacterial taxa. Microbial metabolic pathways significantly differed between CE and non-CE groups, with enrichment in pathways related to cofactors, vitamins, secondary metabolites, and the immune system in CE patients. CONCLUSION RIF patients with CE exhibit distinct endometrial microbiota compositions associated with adverse reproductive outcomes. The increased microbial diversity and altered metabolic pathways in CE suggest a potential correlation with reproductive outcomes, although further studies are necessary to elucidate the causal relationship between microbiota alterations and fertility. Modulating the endometrial microbiome may represent a novel therapeutic strategy to improve IVF outcomes in patients with CE.
Collapse
Affiliation(s)
- Hong Zhang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Heng Zou
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chanyu Zhang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Joint International Research Lab for Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, 400010, China
| | - Shen Zhang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Joint International Research Lab for Reproduction and Development of Ministry of Education of China, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
18
|
Han M, Wang N, Han W, Liu X, Sun T, Xu J. Highly specific vaginal microbiome signature for gynecological cancers. Open Life Sci 2024; 19:20220850. [PMID: 38633411 PMCID: PMC11022122 DOI: 10.1515/biol-2022-0850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
To investigate the vaginal microbiota signature of patients with gynecologic cancer and evaluate its diagnostic biomarker potential. We incorporated vaginal 16S rRNA-seq data from 529 women and utilized VSEARCH to analyze the raw data. α-Diversity was evaluated utilizing the Chao1, Shannon, and Simpson indices, and β-diversity was evaluated through principal component analysis using Bray-Curtis distances. Linear discriminant analysis effect size (LEfSe) was utilized to determine species differences between groups. A bacterial co-abundance network was constructed utilizing Spearman correlation analysis. A random forest model of gynecologic tumor risk based on genus was constructed and validated to test its diagnostic efficacy. In gynecologic cancer patients, vaginal α-diversity was significantly greater than in controls, and vaginal β-diversity was significantly separated from that of controls; there was no correlation between these characteristics and menopause status among the subject women. Women diagnosed with gynecological cancer exhibited a reduction in the abundance of vaginal Firmicutes and Lactobacillus, while an increase was observed in the proportions of Bacteroidetes, Proteobacteria, Prevotella, Streptococcus, and Anaerococcus. A random forest model constructed based on 56 genus achieved high accuracy (area under the curve = 84.96%) in gynecological cancer risk prediction. Furthermore, there were discrepancies observed in the community complexity of co-abundance networks between gynecologic cancer patients and the control group. Our study provides evidence that women with gynecologic cancer have a unique vaginal flora structure and microorganisms may be involved in the gynecologic carcinogenesis process. A gynecological cancer risk prediction model based on characteristic genera has good diagnostic value.
Collapse
Affiliation(s)
- Mengzhen Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang110000, China
| | - Na Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang110000, China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang110000, China
| | - Xiaolin Liu
- Liaoning Microhealth Biotechnology Co., Ltd, Shanlin Road, Dadong District, Shenyang110000, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning110000, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning110000, China
| |
Collapse
|
19
|
Zhao Y, Liao Y, Xu G, Wang Y. Endometrial microbiota alteration in female patients with endometrial polyps based on 16S rRNA gene sequencing analysis. Front Cell Infect Microbiol 2024; 14:1351329. [PMID: 38655283 PMCID: PMC11035718 DOI: 10.3389/fcimb.2024.1351329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The potential role of the endometrial microbiota in the pathogenesis of endometrial polyps (EPs) warrants further investigation, given the current landscape of limited and inconclusive research findings. We aimed to explore the microecological characteristics of the uterine cavity in patients with EPs and investigate the potential of endometrial microbiota species as novel biomarkers for identifying EPs. Methods Endometrial samples were collected from 225 patients who underwent hysteroscopies, of whom 167 had EPs, whereas 58 had non- hyperproliferative endometrium status. The endometrial microbiota was assessed using 16S rRNA gene sequencing. We characterized the endometrial microbiota and identified microbial biomarkers for predicting EPs. Results The endometrial microbial diversity and composition were significantly different between the EP and control groups. Predictive functional analyses of the endometrial microbiota demonstrated significant alterations in pathways involved in sphingolipid metabolism, steroid hormone biosynthesis, and apoptosis between the two groups. Moreover, a classification model based on endometrial microbial ASV-based biomarkers along with the presence of abnormal uterine bleeding symptoms achieved powerful classification potential in identifying EPs in both the discovery and validation cohorts. Conclusion Our study indicates a potential association between altered endometrial microbiota and EPs. Endometrial microbiota-based biomarkers may prove valuable for the diagnosis of EPs. Clinical trial registration Chinese Clinical Trial Registry (ChiCTR2100052746).
Collapse
Affiliation(s)
- Yu Zhao
- Department of Ambulatory Surgery, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yun Liao
- Department of Ambulatory Surgery, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Gufeng Xu
- Department of Ambulatory Surgery, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yue Wang
- Department of Ambulatory Surgery, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
20
|
Liu J, Qu Y, Li YY, Xu YL, Yan YF, Qin H. Exploring prognostic microbiota markers in patients with endometrial carcinoma: Intratumoral insights. Heliyon 2024; 10:e27879. [PMID: 38515713 PMCID: PMC10955307 DOI: 10.1016/j.heliyon.2024.e27879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Endometrial cancer, a leading gynecological malignancy, is profoundly influenced by the uterine microbiota, a key factor in disease prognosis and treatment. Our study underscores the distinct microbial compositions in endometrial cancer compared to adjacent non-cancerous tissues, revealing a dominant presence of p_Actinobacteria in cancerous tissues as opposed to p_Firmicutes in surrounding areas. Through comprehensive analysis, we identified 485 unique microorganisms in cancer tissues, 26 of which correlate with patient prognosis. Employing univariate Cox regression and LASSO regression analyses, we devised a microbial risk scoring model, effectively stratifying patients into high and low-risk categories, thereby providing predictive insights into their overall survival. We further developed a nomogram that incorporates the microbial risk score along with age, grade, and clinical stage, significantly enhancing the accuracy of our clinical prediction model for endometrial cancer. Moreover, our study delves into the differential immune landscapes of high-risk and low-risk patients. The low-risk group displayed a higher prevalence of activated B cells and increased T cell co-stimulation, indicative of a robust immune response. Conversely, high-risk patients showed elevated tumor immune dysfunction and exclusion scores, suggesting less favorable outcomes in immunotherapy. Notably, the efficacy of IPS-CTLA4 and PD1/PD-L1/PD-L2 blockers was substantially higher in the low-risk group, pointing to a more responsive immunotherapeutic approach. In summary, our research elucidates the unique microbial patterns in endometrial cancer and adjacent tissues, and establishes both a microbial risk score model and a clinical prediction nomogram. These findings highlight the potential of uterine microbiota as a biomarker for customizing treatment strategies, enabling precise interventions for high-risk patients while preventing overtreatment in low-risk cases. This study emphasizes the microbiota's role in tailoring immunotherapy, offering a novel perspective in the treatment and prognosis of endometrial cancer. Significantly, our study's expansive sample analysis from the TCGA-UCEC cohort, employing linear discriminant analysis effect size methodology, not only validates but also enhances our understanding of the microbiota's role in endometrial cancer, paving the way for novel diagnostic and therapeutic approaches in its management.
Collapse
Affiliation(s)
- Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yi Qu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina AI, Kumar R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol Nutr Food Res 2024; 68:e2300688. [PMID: 38342595 DOI: 10.1002/mnfr.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like β-glucuronidases and β-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.
Collapse
Affiliation(s)
- Nikki Kumari
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, 800020, India
| | - Ankita Dua
- Department of Zoology, Shivaji College, University of Delhi, New Delhi, 110027, India
| | - Mona Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roushan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Poonam Singh
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Susan Duyar-Ayerdi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Akinyemi I Ojesina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
22
|
Rokhsartalab Azar P, Karimi S, Haghtalab A, Taram S, Hejazi M, Sadeghpour S, Pashaei MR, Ghasemnejad-Berenji H, Taheri-Anganeh M. The role of the endometrial microbiome in embryo implantation and recurrent implantation failure. J Reprod Immunol 2024; 162:104192. [PMID: 38215650 DOI: 10.1016/j.jri.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
There is a suggested pathophysiology associated with endometrial microbiota in cases where repeated implantation failure of high-quality embryos is observed. However, there is a suspected association between endometrial microbiota and the pathogenesis of implantation failure. However, there is still a lack of agreement on the fundamental composition of the physiological microbiome within the uterine cavity. This is primarily due to various limitations in the studies conducted, including small sample sizes and variations in experimental designs. As a result, the impact of bacterial communities in the endometrium on human reproduction is still a subject of debate. In this discourse, we undertake a comprehensive examination of the existing body of research pertaining to the uterine microbiota and its intricate interplay with the process of embryo implantation.
Collapse
Affiliation(s)
| | - Sarmad Karimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arian Haghtalab
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Saman Taram
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Milad Hejazi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
23
|
Oală IE, Mitranovici MI, Chiorean DM, Irimia T, Crișan AI, Melinte IM, Cotruș T, Tudorache V, Moraru L, Moraru R, Caravia L, Morariu M, Pușcașiu L. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics (Basel) 2024; 14:312. [PMID: 38337827 PMCID: PMC10855755 DOI: 10.3390/diagnostics14030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease, which explains the pain that such patients report. Currently, we are faced with ineffective, non-invasive diagnostic methods and treatments that come with multiple side effects and high recurrence rates for both the disease and pain. These are the reasons why we are exploring the possibility of the involvement of pro-inflammatory and anti-inflammatory molecules in the process of the appearance of endometriosis. Cytokines play an important role in the progression of endometriosis, influencing cell proliferation and differentiation. Pro-inflammatory molecules are found in intrafollicular fluid. They have an impact on the number of mature and optimal-quality oocytes. Endometriosis affects fertility, and the involvement of endometriosis in embryo transfer during in vitro fertilization (IVF) is being investigated in several studies. Furthermore, the reciprocal influence between anti-inflammatory and pro-inflammatory cytokines and their role in the pathogenesis of endometriosis has been assessed. Today, we can affirm that pro-inflammatory and anti-inflammatory cytokines play roles in survival, growth, differentiation, invasion, angiogenesis, and immune escape, which provides a perspective for approaching future clinical implications and can be used as biomarkers or therapy.
Collapse
Affiliation(s)
- Ioan Emilian Oală
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 331057 Hunedoara, Romania;
| | - Melinda-Ildiko Mitranovici
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 331057 Hunedoara, Romania;
| | - Diana Maria Chiorean
- Department of Pathology, County Clinical Hospital of Targu Mures, 540072 Targu Mures, Romania;
| | - Traian Irimia
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
| | - Andrada Ioana Crișan
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
- Department of 1st Gynecology Clinic, Emergency County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Ioana Marta Melinte
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
| | - Teodora Cotruș
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (T.I.); (A.I.C.); (I.M.M.); (T.C.)
| | - Vlad Tudorache
- Department of 2nd Gynecology Clinic, County Clinical Hospital Targu Mures, 540072 Targu Mures, Romania;
| | - Liviu Moraru
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (L.M.); (R.M.)
| | - Raluca Moraru
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (L.M.); (R.M.)
| | - Laura Caravia
- Department of Morphological Sciences, Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai Morariu
- Department of Obstretics and Gynecology, George Emil Palade University of Medicine and Pharmacies, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (M.M.); (L.P.)
| | - Lucian Pușcașiu
- Department of Obstretics and Gynecology, George Emil Palade University of Medicine and Pharmacies, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (M.M.); (L.P.)
| |
Collapse
|
24
|
Jeon GH. The Associations of Vitamin D with Ovarian Reserve Markers and Depression: A Narrative Literature Review. Nutrients 2023; 16:96. [PMID: 38201927 PMCID: PMC10780911 DOI: 10.3390/nu16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Since the identification of vitamin D receptors in both the female reproductive tract and the central nervous system, further data have shown that vitamin D is involved in the processes of reproductive and mental health. This paper reviews current research on the associations of vitamin D with ovarian reserve markers and depression and discusses the potential role of vitamin D in their relationships. There have been numerous studies reporting that vitamin D was significantly related to ovarian reserve markers and depression in basic or clinical research, but some observational and interventional clinical studies have shown inconsistent results. Nevertheless, recent meta-analyses of interventional studies have provided promising results showing that vitamin D supplementation significantly improves ovarian reserve metrics, especially in a subgroup of women with normal or diminished ovarian reserve, and decreases depressive symptoms and risk. The demonstration of an association of vitamin D with both ovarian reserve and depression could suggest that vitamin D may be another important key in explaining female reproductive depression. Larger-scale studies in standardized settings will be needed in order to gain further insight into the role of vitamin D in female reproduction and depression.
Collapse
Affiliation(s)
- Gyun-Ho Jeon
- Department of Obstetrics and Gynecology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Republic of Korea
| |
Collapse
|
25
|
Morańska K, Englert-Golon M, Durda-Masny M, Sajdak S, Grabowska M, Szwed A. Why Does Your Uterus Become Malignant? The Impact of the Microbiome on Endometrial Carcinogenesis. Life (Basel) 2023; 13:2269. [PMID: 38137870 PMCID: PMC10744771 DOI: 10.3390/life13122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this review was to describe the uterine microbiome composition that has been analyzed so far and describe potential pathways in the carcinogenesis of the endometrium. The microbiome in the uterine environment is involved in apoptosis and proliferation during the menstruation cycle, pregnancy maintenance, and immune system support. However, bacteria in the uterus could stimulate inflammation, which when chronic results in malignancy. An altered gut microbiota initiates an inflammatory response through microorganism-associated molecular patterns, which leads to intensified steroidogenesis in the ovaries and cancers. Moreover, intestinal bacteria secreting the enzyme β-glucuronidase may increase the level of circulating estrogen and, as a result, be influential in gynecological cancers. Both the uterine and the gut microbiota play a pivotal role in immune modulation, which is why there is a demand for further investigation from both the diagnostic and the therapeutic perspectives.
Collapse
Affiliation(s)
- Katarzyna Morańska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Monika Englert-Golon
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Magdalena Durda-Masny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Stefan Sajdak
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marlena Grabowska
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Anita Szwed
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| |
Collapse
|
26
|
Dai D, Wang J, Zhang H, Wu S, Qi G. Uterine microbial communities and their potential role in the regulation of epithelium cell cycle and apoptosis in aged hens. MICROBIOME 2023; 11:251. [PMID: 37951950 PMCID: PMC10638742 DOI: 10.1186/s40168-023-01707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Alterations of the uterine microbiome are closely associated with various intrauterine diseases and physiological conditions, which are well-established in mammals. However, as representative oviparous animals, the research on the uterine microbial ecosystem and its functions with physiological homeostasis is limited in chickens. Additionally, continuous egg-laying disrupts the oviducal immune defenses of aged hens, susceptible to pathogen invasion, causing poor egg quality and food-borne infections in humans. Here, we investigated aging-related changes in the oviduct microbial colonization and transmission from the gut to eggs and their roles in a hen model. RESULTS The results of 16S rDNA sequencing showed significant differences in the oviduct microbial composition between young (38 weeks) and aged (77 weeks) laying hens. SourceTracker analysis further revealed differences in the effects of microbial transmission on the oviducal microbiota between young and aged hens. Enhanced barrier defense with cell apoptosis suppression and cell cycle arrest of the uterus were observed in aged hens reducing microbial transmission from the lower to upper reproductive tract. In addition, a total of 361 significantly differential metabolites were identified using metabolomics in the aged uterine microbiota, especially in products of amino acid metabolism and biosynthesis of various secondary metabolites, which might have essential effects on cell apoptosis by regulating immune responses and cell cycle. Notably, antibiotics disrupted uterine microbiota by dietary intervention and direct perfusion did not retard aging-related physiological changes but further aggravated aging processes by disrupting the cell cycle and apoptosis. CONCLUSIONS The microbiota continuum along the reproductive tract in aged birds differs from that in young birds, especially with a significant shift in the uterus. The aged uterine microbiota probably contributes to the regulation of cell cycle and apoptosis by microbial metabolites primarily involved in amino acid metabolism and biosynthesis of various secondary metabolites. These findings provide new insights into the roles of the reproductive tract microbiota in regulating the cell programming of the aged host, contributing to the exploration of the microbiome as a target for diagnosing aging health status and therapy for gynecological diseases in women. Video Abstract.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China.
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| |
Collapse
|
27
|
Kaluanga Bwanga P, Tremblay-Lemoine PL, Timmermans M, Ravet S, Munaut C, Nisolle M, Henry L. The Endometrial Microbiota: Challenges and Prospects. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1540. [PMID: 37763663 PMCID: PMC10534531 DOI: 10.3390/medicina59091540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Contrary to popular belief, we have known for many years that the endometrium is not a sterile environment and is considered to be a low-biomass milieu compared to the vagina. Numerous trials and studies have attempted to establish a valid sampling method and assess its physiological composition, but no consensus has been reached. Many factors, such as ethnicity, age and inflammation, can influence the microbiome. Moreover, it possesses a higher alpha-diversity and, therefore, contains more diverse bacteria than the vagina. For instance, Lactobacillus has been shown to be a predominant genus in the vaginal microbiome of healthy women. Consequently, even if a majority of scientists postulate that a predominance of Lactobacillus inside the uterus improves reproductive outcomes, vaginal contamination by these bacteria during sampling cannot be ruled out. Certain pathologies, such as chronic endometritis, have been identified as inflammation perpetrators that hinder the embryo implantation process. This pro-inflammatory climate created by dysbiosis of the endometrial microbiota could induce secondary inflammatory mediators via Toll-like receptors, creating an environment conducive to the development of endometriosis and even promoting carcinogenesis. However, studies to this day have focused on small populations. In addition, there is no clearly defined healthy uterine composition yet. At most, only a few taxa have been identified as pathogenic. As sampling and analysis methods become increasingly precise, we can expect the endometrial microbiota to be incorporated into future diagnostic tools and treatments for women's health.
Collapse
Affiliation(s)
| | - Pierre-Luc Tremblay-Lemoine
- Department of Obstetrics and Gynecology, CHU of Liege-Citadelle Site, University of Liège, 4000 Liège, Belgium
| | - Marie Timmermans
- Department of Obstetrics and Gynecology, CHU of Liege-Citadelle Site, University of Liège, 4000 Liège, Belgium
| | - Stéphanie Ravet
- Center for Reproductive Medicine, University of Liège-Citadelle Site, 4000 Liege, Belgium
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, Giga-Cancer, University of Liège, 4000 Liège, Belgium
| | - Michelle Nisolle
- Department of Obstetrics and Gynecology, CHU of Liege-Citadelle Site, University of Liège, 4000 Liège, Belgium
| | - Laurie Henry
- Department of Obstetrics and Gynecology, CHU of Liege-Citadelle Site, University of Liège, 4000 Liège, Belgium
- Center for Reproductive Medicine, University of Liège-Citadelle Site, 4000 Liege, Belgium
| |
Collapse
|
28
|
Liu Z, Hong L, Ling Z. Potential role of intratumor bacteria outside the gastrointestinal tract: More than passengers. Cancer Med 2023; 12:16756-16773. [PMID: 37377377 PMCID: PMC10501248 DOI: 10.1002/cam4.6298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION Tumor-associated bacteria and gut microbiota have gained significant attention in recent years due to their potential role in cancer development and therapeutic response. This review aims to discuss the contributions of intratumor bacteria outside the gastrointestinal tract, in addition to exploring the mechanisms, functions, and implications of these bacteria in cancer therapy. METHODS We reviewed current literature on intratumor bacteria and their impact on tumorigenesis, progression, metastasis, drug resistance, and anti-tumor immune modulation. Additionally, we examined techniques used to detect intratumor bacteria, precautions necessary when handling low microbial biomass tumor samples, and the recent progress in bacterial manipulation for tumor treatment. RESULTS Research indicates that each type of cancer uniquely interacts with its microbiome, and bacteria can be detected even in non-gastrointestinal tumors with low bacterial abundance. Intracellular bacteria have the potential to regulate tumor cells' biological behavior and contribute to critical aspects of tumor development. Furthermore, bacterial-based anti-tumor therapies have shown promising results in cancer treatment. CONCLUSIONS Understanding the complex interactions between intratumor bacteria and tumor cells could lead to the development of more precise cancer treatment strategies. Further research into non-gastrointestinal tumor-associated bacteria is needed to identify new therapeutic approaches and expand our knowledge of the microbiota's role in cancer biology.
Collapse
Affiliation(s)
- Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Lian‐Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Zhi‐Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| |
Collapse
|
29
|
Gao F, Feng Y, Hu X, Zhang X, Li T, Wang Y, Ge S, Wang C, Chi J, Tan X, Wang N. Neutrophils regulate tumor angiogenesis in oral squamous cell carcinoma and the role of Chemerin. Int Immunopharmacol 2023; 121:110540. [PMID: 37354780 DOI: 10.1016/j.intimp.2023.110540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral cavity. Tumor angiogenesis plays a crucial role in tumor progression. Studies have established the correlation between neutrophils and tumor angiogenesis in the tumor microenvironment. A previous study found that overexpression of Chemerin- in OSCC increased the infiltration of neutrophils in tumor tissues. This study aims to investigate the mechanisms underlying the regulation of the development and progression of OSCC, which have great significance in enhancing the postoperative survival of patients with OSCC. This study evaluated the accuracy of neutrophil count combined with MVD in predicting patients' survival time and its relationship with clinicopathological parameters and prognosis. Additionally, the study explored the effects of the Chemerin-neutrophil interaction on the angiogenic function of HUVECs. In OSCC, the overexpression of Chemerin promoted the angiogenesis of HUVECs through neutrophils. Moreover, Chemerin upregulated pro-angiogenic factors (e.g., VEGF-A, MMP-9, MMP-2, and S100A9) in neutrophils by activating MEK/ERK signaling pathway. In vivo experiments demonstrated that Chemerin may promote tumor growth by regulating tumor angiogenesis. In conclusion, the results suggest that neutrophil count and MVD serve as poor prognostic factors for patients with OSCC, and their combination is a more effective factor in predicting the survival time of OSCC patients. Neutrophils potentially contribute to angiogenesis through MEK/ERK signaling pathway via Chemerin and participate in the progression and metastasis of OSCC.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Xiaoyuan Hu
- Biological Therapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunzhou Road No. 519, Kunming, Yunnan Province, China
| | - Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Yueqi Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Chengqin Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Jinghua Chi
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China.
| |
Collapse
|
30
|
Sobstyl A, Chałupnik A, Mertowska P, Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:10920. [PMID: 37446108 DOI: 10.3390/ijms241310920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
31
|
Wang Y, Wang B, Ma X. A novel predictive model based on inflammatory response-related genes for predicting endometrial cancer prognosis and its experimental validation. Aging (Albany NY) 2023; 15:204767. [PMID: 37276865 DOI: 10.18632/aging.204767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Inflammatory response is an important feature of most tumors. Local inflammation promotes tumor cell immune evasion and chemotherapeutic drug resistance. We aimed to build a prognostic model for endometrial cancer patients based on inflammatory response-related genes (IRGs). RNA sequencing and clinical data for uterine corpus endometrial cancer were obtained from TCGA datasets. LASSO-penalized Cox regression was used to obtain the risk formula of the model: the score = esum(corresponding coefficient × each gene's expression). The "ESTIMATE" and "pRRophetic" packages in R were used to evaluate the tumor microenvironment and the sensitivity of patients to chemotherapy drugs. Data sets from IMvigor210 were used to evaluate the efficacy of immunotherapy in cancer patients. For experimental verification, 37 endometrial cancer and 43 normal endometrial tissues samples were collected. The mRNA expression of the IRGs was measured using qRT-PCR. The effects of IRGs on the malignant biological behaviors of endometrial cancer were detected using CCK-8, colony formation, Transwell invasion, and apoptosis assays. We developed a novel prognostic signature comprising 13 IRGs, which is an independent prognostic marker for endometrial cancer. A nomogram was developed to predict patient survival accurately. Three key IRGs (LAMP3, MEP1A, and ROS1) were identified in this model. Furthermore, we verified the expression of the three key IRGs using qRT-PCR. Functional experiments also confirmed the influence of the three key IRGs on the malignant biological behavior of endometrial cancer. Thus, a characteristic model constructed using IRGs can predict the survival, chemotherapeutic drug sensitivity, and immunotherapy response in patients with endometrial cancer.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Tiexi, Shenyang 110000, Liaoning, People’s Republic of China
| |
Collapse
|
32
|
Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and Cervical Microbiota Composition in Patients with Endometrial Cancer. Int J Mol Sci 2023; 24:ijms24098266. [PMID: 37175971 PMCID: PMC10179515 DOI: 10.3390/ijms24098266] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
According to recent data, changes in the vaginal microbiota could affect the risk of gynaecological cancers. Women suffering from endometrial cancer present significant changes in cervicovaginal microbiota composition. The objective of our study was to characterize the cervicovaginal microbiota of women undergoing hysterectomy due to benign disease, atypical hyperplasia, and endometrial cancer; The study included 96 patients, who undergone surgical treatment due to benign uterine disease, precancerous endometrial lesion, and endometrial cancer. Quantitative and qualitative real-time PCR analysis of DNA isolated from vaginal fornix and endocervical canal samples was performed to detect the 19 most commonly identified microorganisms, including different Lactobacillus spp., Atopobium, Bifidobacterium, Chlamydia, and Gardnerella; At least one of the tested microorganisms was identified in 88.5% of vaginal and 83.3% of cervical samples. Lactobacillus iners was significantly more frequent in patients with benign condition, whereas Dialister pneumosintes and Mobiluncus curtisii was more frequent in cancer patients; Mobiluncus curtisi and Dialister pneumosintes, which were identified as significantly more common in endometrial cancer vaginal samples, may be considered as potential endometrial cancer co-factors which promote/stimulate carcinogenesis. However, the exact mechanism of such activity remains unexplained and requires further investigations.
Collapse
Affiliation(s)
- Bartłomiej Barczyński
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Karolina Frąszczak
- 1st Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
33
|
Han M, Wang N, Han W, Ban M, Sun T, Xu J. Vaginal and tumor microbiomes in gynecological cancer (Review). Oncol Lett 2023; 25:153. [PMID: 36936020 PMCID: PMC10018329 DOI: 10.3892/ol.2023.13739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Cervical, ovarian and endometrial cancer are the three most common types of gynecologic cancer. As a hub, the vagina connects the site of gynecological cancer with the external environment. Lactobacilli participate in the formation of a healthy vaginal microenvironment as the first line of defense against pathogen invasion; a dysbiotic vaginal microenvironment loses its original protective function and is associated with the onset, metastasis, poor efficacy and poor prognosis of gynecological cancer. The early diagnosis of cancer is the key to improve the survival time of patients with cancer. The screening of Porphyromonas, Sneathia and Atopobium vaginae, and other microbial markers, can assist the diagnosis of gynecological cancer, and screen out the high-risk population as early as possible. With the in-depth study of the microbes in tumor tissues, reasearchers have analyzed the immunological associations of microorganisms in tumor tissues. Due to the structural-functional interconnection between the organ of gynecological tumorigenesis and the vagina, the present study aims to review the relationship between vaginal and tumor microorganisms and gynecological cancer in terms of occurrence, screening, treatment and prognosis.
Collapse
Affiliation(s)
- Mengzhen Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Na Wang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Wenjie Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Meng Ban
- Liaoning Microhealth Biotechnology Co., Ltd., Shenyang, Liaoning 110000, P.R. China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Junnan Xu
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, P.R. China
- Correspondence to: Professor Junnan Xu, Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110000, P.R. China, E-mail:
| |
Collapse
|
34
|
Di Tucci C, De Vito I, Muzii L. Immune-Onco-Microbiome: A New Revolution for Gynecological Cancers. Biomedicines 2023; 11:biomedicines11030782. [PMID: 36979761 PMCID: PMC10045465 DOI: 10.3390/biomedicines11030782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Despite significant advances in understanding the pathogenetic mechanisms underlying gynaecological cancers, these cancers still remain widespread. Recent research points to a possible link between microbiota and cancer, and the most recent attention is focusing on the relationship between the microbiome, the immune system, and cancer. The microbiome diversity can affect carcinogenesis and the patient’s immune response, modulating the inflammatory cascade and the severity of adverse events. In this review, we presented the recent evidence regarding microbiome alterations in patients with gynaecological tumours to understand if the link that exists between microbiome, immunity, and cancer can guide the prophylactic, diagnostic, and therapeutic management of gynaecological cancers.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
- Correspondence:
| | | | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
35
|
The Female Reproductive Tract Microbiome and Cancerogenesis: A Review Story of Bacteria, Hormones, and Disease. Diagnostics (Basel) 2023; 13:diagnostics13050877. [PMID: 36900020 PMCID: PMC10000484 DOI: 10.3390/diagnostics13050877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
The microbiota is the complex community of microorganisms that populate a particular environment in the human body, whereas the microbiome is defined by the entire habitat-microorganisms and their environment. The most abundant and, therefore, the most studied microbiome is that of the gastrointestinal tract. However, the microbiome of the female reproductive tract is an interesting research avenue, and this article explores its role in disease development. The vagina is the reproductive organ that hosts the largest number of bacteria, with a healthy profile represented mainly by Lactobacillus spp. On the other hand, the female upper reproductive tract (uterus, Fallopian tubes, ovaries) contains only a very small number of bacteria. Previously considered sterile, recent studies have shown the presence of a small microbiota here, but there are still debates on whether this is a physiologic or pathologic occurrence. Of particular note is that estrogen levels significantly influence the composition of the microbiota of the female reproductive tract. More and more studies show a link between the microbiome of the female reproductive tract and the development of gynecological cancers. This article reviews some of these findings.
Collapse
|
36
|
Xue S, Su XM, Ke LN, Huang YG. CXCL9 correlates with antitumor immunity and is predictive of a favorable prognosis in uterine corpus endometrial carcinoma. Front Oncol 2023; 13:1077780. [PMID: 36845675 PMCID: PMC9945585 DOI: 10.3389/fonc.2023.1077780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Background The C-X-C motif chemokine ligand-9 (CXCL9) is related to the progression of multiple neoplasms. Yet, its biological functions in uterine corpus endometrioid carcinoma (UCEC) remain shrouded in confusion. Here, we assessed the prognostic significance and potential mechanism of CXCL9 in UCEC. Methods Firstly, bioinformatics analysis of the public cancer database, including the Cancer Genome Atlas / the Genotype-Tissue Expression project (TCGA+ GTEx, n=552) and Gene Expression Omnibus (GEO): GSE63678 (n=7), were utilized for the CXCL9 expression-related analysis in UCEC. Then, the survival analysis of TCGA-UCEC was performed. Futher, the gene set enrichment analysis (GSEA) was carried out to reveal the potential molecular signaling pathway in UCEC associated with CXCL9 expression. Moreover, the immunohistochemistry (IHC) assay of our validation cohort (n=124) from human specimens were used to demonstrate the latent significance of CXCL9 in UCEC. Results The bioinformatics analysis suggested that CXCL9 expression was significantly upregulated in UCEC patients; and hyper-expression of CXCL9 was related to prolonged survival. the GSEA enrichment analysis showed various immune response-related pathways, including T/NK cell, lymphocyte activation, cytokine-cytokine receptor interaction network, and chemokine signaling pathway, mediated by CXCL9. In addition, the cytotoxic molecules (IFNG, SLAMF7, JCHAIN, NKG7, GBP5, LYZ, GZMA, GZMB, and TNF3F9) and the immunosuppressive genes (including PD-L1) were positively related to the expression of CXCL9. Further, the IHC assay indicated that the CXCL9 protein expression was mainly located in intertumoral and significantly upregulated in the UCEC patients; UCEC with high intertumoral CXCL9 cell abundance harbored an improved prognosis; a higher ratio of anti-tumor immune cells (CD4+, CD8+, and CD56+ cell) and PD-L1 was found in UCEC with CXCL9 high expression. Conclusion Overexpressed CXCL9 correlates with antitumor immunity and is predictive of a favorable prognosis in UCEC. It hinted that CXCL9 may serve as an independent prognostic biomarker or therapeutic target in UCEC patients, which augmented anti-tumor immune effects to furnish survival benefits.
Collapse
Affiliation(s)
- Shen Xue
- Department of obstetrics and gynecology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-min Su
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Li-na Ke
- Department of obstetrics and gynecology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China,*Correspondence: Yu-gang Huang, ; Li-na Ke,
| | - Yu-gang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China,*Correspondence: Yu-gang Huang, ; Li-na Ke,
| |
Collapse
|
37
|
A Hypoxia Molecular Signature-Based Prognostic Model for Endometrial Cancer Patients. Int J Mol Sci 2023; 24:ijms24021675. [PMID: 36675190 PMCID: PMC9866886 DOI: 10.3390/ijms24021675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Endometrial cancer has the highest incidence of uterine corpus cancer, the sixth most typical cancer in women until 2020. High recurrence rate and frequent adverse events were reported in either standard chemotherapy or combined therapy. Hence, developing precise diagnostic and prognostic approaches for endometrial cancer was on demand. Four hypoxia-related genes were screened for the EC prognostic model by the univariate, LASSO, and multivariate Cox regression analysis from the TCGA dataset. QT-PCR and functional annotation analysis were performed. Associations between predicted risk and immunotherapy and chemotherapy responses were investigated by evaluating expressions of immune checkpoint inhibitors, infiltrated immune cells, m6a regulators, and drug sensitivity. The ROC curve and calibration plot indicated a fair predictability of our prognostic nomogram model. NR3C1 amplification, along with IL-6 and SRPX suppressions, were detected in tumor. High stromal score and enriched infiltrated aDCs and B cells in the high-risk group supported the hypothesis of immune-deserted tumor. Hypoxia-related molecular subtypes of EC were then identified via the gene signature. Cluster 2 patients showed a significant sensitivity to Vinblastine. In summary, our hypoxia signature model accurately predicted the survival outcome of EC patients and assessed translational and transcriptional dysregulations to explore targets for precise medical treatment.
Collapse
|
38
|
Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol 2022; 12:1059825. [PMID: 36590579 PMCID: PMC9800796 DOI: 10.3389/fcimb.2022.1059825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Every year, millions of women are affected by genital tract disorders, such as bacterial vaginosis (BV), endometrial cancer, polycystic ovary syndrome (PCOS), endometriosis, and uterine fibroids (UFs). These disorders pose a significant economic burden on healthcare systems and have serious implications for health and fertility outcomes. This review explores the relationships between gut, vaginal, and uterine dysbiosis and the pathogenesis of various diseases of the female genital tract. In recent years, reproductive health clinicians and scientists have focused on the microbiome to investigate its role in the pathogenesis and prevention of such diseases. Recent studies of the gut, vaginal, and uterine microbiomes have identified patterns in bacterial composition and changes across individuals' lives associated with specific healthy and diseased states, particularly regarding the effects of the estrogen-gut microbiome axis on estrogen-driven disorders (such as endometrial cancer, endometriosis, and UFs) and disorders associated with estrogen deficiency (such as PCOS). Furthermore, this review discusses the contribution of vitamin D deficiency to gut dysbiosis and altered estrogen metabolism as well as how these changes play key roles in the pathogenesis of UFs. More research on the microbiome influences on reproductive health and fertility is vital.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, Egyptian Drug Authority [EDA; formerly The National Organization for Drug Control and Research (NODCAR)], Cairo, Egypt
| | - Melinique Walls
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | - Nahed Ismail
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Rai R, Nahar M, Jat D, Gupta N, Mishra SK. A systematic assessment of stress insomnia as the high-risk factor for cervical cancer and interplay of cervicovaginal microbiome. Front Cell Infect Microbiol 2022; 12:1042663. [PMID: 36560927 PMCID: PMC9763463 DOI: 10.3389/fcimb.2022.1042663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is a dreaded form of cancer in women, the fourth most common cancer, with around 0.3 million females suffering from this disease worldwide. Over the past several decades, global researches have focused on the mitigation of cervical lesions and cancers and have explored the impact of physiological and psychological stress and insomnia on cervical pathogenesis. Furthermore, disruption of the cervicovaginal microbiome profiles is identified as an added high-risk factor for the occurrence of cervical cancer. The physiological regulation of stress has an underlying mechanism controlled via hypothalamic pituitary adrenal (HPA) and sympatho-adrenal medullary (SAM) axes. Disruptions in these axes have been identified as the factors responsible for maintaining the homeostasis balance. Recent studies on microbiomes have offered novel ways to combat cervical cancer and cervix infection by exploring the interplay of the cervicovaginal microbiome. Moreover, the integration of various immune cells and microbiome diversity is known to act as an effective strategy to decipher the cervix biological activity. Cytokine profiling and the related immune competence, and physiological stress and insomnia impart to the regulatory networks underlying the mechanism which may be helpful in designing mitigation strategies. This review addressed the current progress in the research on cervical cancer, HPV infection, immune cell interaction, and physiological stress and insomnia with the cervicovaginal microbiome to decipher the disease occurrence and therapeutic management.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Manisha Nahar
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India,*Correspondence: Siddhartha Kumar Mishra, ; Deepali Jat,
| | - Neelima Gupta
- Vice-Chancellor, Dr. Harisinsgh Gour Central University, Sagar, India
| | - Siddhartha Kumar Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India,*Correspondence: Siddhartha Kumar Mishra, ; Deepali Jat,
| |
Collapse
|
40
|
Terrón-Camero LC, Gordillo-González F, Salas-Espejo E, Andrés-León E. Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice. Genes (Basel) 2022; 13:2280. [PMID: 36553546 PMCID: PMC9777648 DOI: 10.3390/genes13122280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The study of microorganisms is a field of great interest due to their environmental (e.g., soil contamination) and biomedical (e.g., parasitic diseases, autism) importance. The advent of revolutionary next-generation sequencing techniques, and their application to the hypervariable regions of the 16S, 18S or 23S ribosomal subunits, have allowed the research of a large variety of organisms more in-depth, including bacteria, archaea, eukaryotes and fungi. Additionally, together with the development of analysis software, the creation of specific databases (e.g., SILVA or RDP) has boosted the enormous growth of these studies. As the cost of sequencing per sample has continuously decreased, new protocols have also emerged, such as shotgun sequencing, which allows the profiling of all taxonomic domains in a sample. The sequencing of hypervariable regions and shotgun sequencing are technologies that enable the taxonomic classification of microorganisms from the DNA present in microbial communities. However, they are not capable of measuring what is actively expressed. Conversely, we advocate that metatranscriptomics is a "new" technology that makes the identification of the mRNAs of a microbial community possible, quantifying gene expression levels and active biological pathways. Furthermore, it can be also used to characterise symbiotic interactions between the host and its microbiome. In this manuscript, we examine the three technologies above, and discuss the implementation of different software and databases, which greatly impact the obtaining of reliable results. Finally, we have developed two easy-to-use pipelines leveraging Nextflow technology. These aim to provide everything required for an average user to perform a metagenomic analysis of marker genes with QIMME2 and a metatranscriptomic study using Kraken2/Bracken.
Collapse
Affiliation(s)
- Laura C. Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Fernando Gordillo-González
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| |
Collapse
|
41
|
Zang Y, Li H, Liu S, Zhao R, Zhang K, Zang Y, Wang Y, Xue F. The roles and clinical applications of interleukins in endometrial carcinoma. Front Oncol 2022; 12:1001693. [PMID: 36531027 PMCID: PMC9748080 DOI: 10.3389/fonc.2022.1001693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
As a common malignant tumor of the female reproductive system, endometrial carcinoma (EC) seriously endangers women's health with an increasing incidence. The oncogenesis and progression of cancer are closely linked with immune microenvironment, of which interleukins are the important components. In order to illustrate the roles and clinical applications of interleukins in EC, literature of interleukins and EC were reviewed. Based on the present studies, interleukins play crucial roles in the oncogenesis and development of EC via regulating the proliferation, migration, invasion, angiogenesis, apoptosis, pyroptosis and autophagy of EC as well as the immune function against EC. And some of the interleukins seems to have prospective clinical applications in EC, such as evaluating the risk of tumorigenesis, discriminating the malignancy from benign disorders or normal condition, indicating cancer aggressiveness, predicting the prognosis of patients and serving as the novel therapy. However, there is still a long way to go before the clinical applications of interleukins in EC come into reality. Nevertheless, it is certain that the exploration of interleukins will definitely be of great benefit to the screening, diagnosis and treatment of EC in the future.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaiwen Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqi Zang
- Hangzhou College of Preschool Teacher Education, Zhejiang Normal University, Hangzhou, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
42
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
43
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol 2022; 12:1063100. [PMID: 36505811 PMCID: PMC9730887 DOI: 10.3389/fonc.2022.1063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Sona Ciernikova,
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
44
|
Chao A, Chao AS, Lin CY, Weng C, Wu RC, Yeh YM, Huang SS, Lee YS, Lai CH, Huang HJ, Tang YH, Lin YS, Wang CJ, Wu KY. Analysis of endometrial lavage microbiota reveals an increased relative abundance of the plastic-degrading bacteria Bacillus pseudofirmus and Stenotrophomonas rhizophila in women with endometrial cancer/endometrial hyperplasia. Front Cell Infect Microbiol 2022; 12:1031967. [PMID: 36439209 PMCID: PMC9682088 DOI: 10.3389/fcimb.2022.1031967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The pathogenic influences of uterine bacteria on endometrial carcinogenesis remain unclear. The aim of this pilot study was to compare the microbiota composition of endometrial lavage samples obtained from women with either endometrial hyperplasia (EH) or endometrial cancer (EC) versus those with benign uterine conditions. We hypothesized that specific microbiota signatures would distinguish between the two groups, possibly leading to the identification of bacterial species associated with endometrial tumorigenesis. A total of 35 endometrial lavage specimens (EH, n = 18; EC, n = 7; metastatic EC, n = 2; benign endometrial lesions, n = 8) were collected from 32 women who had undergone office hysteroscopy. Microbiota composition was determined by sequencing the V3−V4 region of 16S rRNA genes and results were validated by real-time qPCR in 46 patients with EC/EH and 13 control women. Surprisingly, we found that Bacillus pseudofirmus and Stenotrophomonas rhizophila – two plastic-degrading bacterial species – were over-represented in endometrial lavage specimens collected from patients with EC/EH. Using computational analysis, we found that the functional profile of endometrial microbiota in EC/EH was associated with fatty acid and amino acid metabolism. In summary, our hypothesis-generating data indicate that the plastic-degrading bacteria Bacillus pseudofirmus and Stenotrophomonas rhizophila are over-represented within the endometrial lavage microbiota of women with EC/EH living in Taiwan. Whether this may be related to plastic pollution deserves further investigation.
Collapse
Affiliation(s)
- Angel Chao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cindy Hsuan Weng
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Yuan-Ming Yeh
- Department of Pathology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shih-Sin Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huei-Jean Huang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Shan Lin
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei Municipal Tu Cheng Hospital, New Taipei City, Taiwan
| | - Chin-Jung Wang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai-Yun Wu
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Correspondence: Kai-Yun Wu,
| |
Collapse
|
45
|
Wang L, Yang J, Su H, Shi L, Chen B, Zhang S. Endometrial microbiota from endometrial cancer and paired pericancer tissues in postmenopausal women: differences and clinical relevance. Menopause 2022; 29:1168-1175. [PMID: 36150116 PMCID: PMC9512232 DOI: 10.1097/gme.0000000000002053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The incidence of postmenopausal endometrial cancer (EC) is rising, and the uterine microbiota has recently been suggested to be an etiology of EC. However, the differences in microbiota profiles in paired EC and the adjacent non-EC endometrium, and the functional microbiota of clinical relevance remain largely unknown. Therefore, we examined the differences in microbiota profiles between EC and non-EC endometrium and investigated their clinical relevance to EC. METHODS Twenty-eight EC-affected postmenopausal women undergoing hysterectomy were enrolled. Endometrial microbiome from paired EC and adjacent non-EC tissue samples were detected using 16S rRNA sequencing, and the data were analyzed using R language software. RESULTS The α diversity and evenness of the endometrial bacterial community significantly increased in EC tissues than those in pericancer tissues ( P < 0.05 for all variables). Lactobacillus and Gardnerella were the main bacterial genera present in both EC and adjacent non-EC-invading endometrium, whereas Prevotella , Atopobium , Anaerococcus , Dialister , Porphyromonas , and Peptoniphilus were more commonly enriched in the EC endometrium (corrected P < 0.05 for all variables). Finally, the abundance of some observed endometrial bacteria was associated with clinical aspects, particularly the vaginal pH, vaginal Lactobacillus abundance, and EC clinical stage. CONCLUSIONS Paired EC and adjacent non-EC endometrium harbor different endometrial microbiota, and the functional bacteria residing in the endometrium are clinically relevant but require further investigation.
Collapse
Affiliation(s)
- Lili Wang
- From the Department of Gynaecology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaolin Yang
- From the Department of Gynaecology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huancheng Su
- From the Department of Gynaecology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Liuming Shi
- Department of Vascular Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bangtao Chen
- Department of Dermatology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sanyuan Zhang
- From the Department of Gynaecology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
46
|
Gholiof M, Adamson-De Luca E, Wessels JM. The female reproductive tract microbiotas, inflammation, and gynecological conditions. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:963752. [PMID: 36303679 PMCID: PMC9580710 DOI: 10.3389/frph.2022.963752] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The intricate interactions between the host cells, bacteria, and immune components that reside in the female reproductive tract (FRT) are essential in maintaining reproductive tract homeostasis. Much of our current knowledge surrounding the FRT microbiota relates to the vaginal microbiota, where ‘health’ has long been associated with low bacterial diversity and Lactobacillus dominance. This concept has recently been challenged as women can have a diverse vaginal microbial composition in the absence of symptomatic disease. The structures of the upper FRT (the endocervix, uterus, Fallopian tubes, and ovaries) have distinct, lower biomass microbiotas than the vagina; however, the existence of permanent microbiotas at these sites is disputed. During homeostasis, a balance exists between the FRT bacteria and the immune system that maintains immune quiescence. Alterations in the bacteria, immune system, or local environment may result in perturbances to the FRT microbiota, defined as dysbiosis. The inflammatory signature of a perturbed or “dysbiotic” FRT microbiota is characterized by elevated concentrations of pro-inflammatory cytokines in cervical and vaginal fluid. It appears that vaginal homeostasis can be disrupted by two different mechanisms: first, a shift toward increased bacterial diversity can trigger vaginal inflammation, and second, local immunity is altered in some manner, which disrupts the microbiota in response to an environmental change. FRT dysbiosis can have negative effects on reproductive health. This review will examine the increasing evidence for the involvement of the FRT microbiotas and inflammation in gynecologic conditions such as endometriosis, infertility, and endometrial and ovarian cancer; however, the precise mechanisms by which bacteria are involved in these conditions remains speculative at present. While only in their infancy, the use of antibiotics and probiotics to therapeutically alter the FRT microbiota is being studied and is discussed herein. Our current understanding of the intimate relationship between immunity and the FRT microbiota is in its early days, and more research is needed to deepen our mechanistic understanding of this relationship and to assess how our present knowledge can be harnessed to assist in diagnosis and treatment of gynecologic conditions.
Collapse
Affiliation(s)
- Mahsa Gholiof
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Emma Adamson-De Luca
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- AIMA Laboratories Inc., Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- AIMA Laboratories Inc., Hamilton, ON, Canada
- *Correspondence: Jocelyn M. Wessels
| |
Collapse
|
47
|
Hakimjavadi H, George SH, Taub M, Dodds LV, Sanchez-Covarrubias AP, Huang M, Pearson JM, Slomovitz BM, Kobetz EN, Gharaibeh R, Sowamber R, Pinto A, Chamala S, Schlumbrecht MP. The vaginal microbiome is associated with endometrial cancer grade and histology. CANCER RESEARCH COMMUNICATIONS 2022; 2:447-455. [PMID: 35928983 PMCID: PMC9345414 DOI: 10.1158/2767-9764.crc-22-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The human microbiome has been strongly correlated with disease pathology and outcomes, yet remains relatively underexplored in patients with malignant endometrial disease. In this study, vaginal microbiome samples were prospectively collected at the time of hysterectomy from 61 racially and ethnically diverse patients from three disease conditions: 1) benign gynecologic disease (controls, n=11), 2) low-grade endometrial carcinoma (n=30), and 3) high-grade endometrial carcinoma (n=20). Extracted DNA underwent shotgun metagenomics sequencing, and microbial α and β diversities were calculated. Hierarchical clustering was used to describe community state types (CST), which were then compared by microbial diversity and grade. Differential abundance was calculated, and machine learning utilized to assess the predictive value of bacterial abundance to distinguish grade and histology. Both α- and β-diversity were associated with patient tumor grade. Four vaginal CST were identified that associated with grade of disease. Different histologies also demonstrated variation in CST within tumor grades. Using supervised clustering algorithms, critical microbiome markers at the species level were used to build models that predicted benign vs carcinoma, high-grade carcinoma versus benign, and high-grade versus low-grade carcinoma with high accuracy. These results confirm that the vaginal microbiome segregates not just benign disease from endometrial cancer, but is predictive of histology and grade. Further characterization of these findings in large, prospective studies is needed to elucidate their potential clinical applications.
Collapse
Affiliation(s)
- Hesamedin Hakimjavadi
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, California
| | - Sophia H. George
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael Taub
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Leah V. Dodds
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Alex P. Sanchez-Covarrubias
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - J. Matt Pearson
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Brian M. Slomovitz
- Department of Obstetrics and Gynecology, Mount Sinai Medical Center, Miami, Florida
| | - Erin N. Kobetz
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Raad Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Andre Pinto
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Srikar Chamala
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, California
| | - Matthew P. Schlumbrecht
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
48
|
Ravegnini G, Fosso B, Ricci R, Gorini F, Turroni S, Serrano C, Pilco-Janeta DF, Zhang Q, Zanotti F, De Robertis M, Nannini M, Pantaleo MA, Hrelia P, Angelini S. Analysis of microbiome in GISTs: looking for different players in tumorigenesis and novel therapeutic options. Cancer Sci 2022; 113:2590-2599. [PMID: 35633186 PMCID: PMC9357631 DOI: 10.1111/cas.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Preclinical forms of gastrointestinal stromal tumor (GIST), small asymptomatic lesions, called microGIST, are detected in approximately 30% of the general population. Gastrointestinal stromal tumor driver mutation can be already detected in microGISTs, even if they do not progress into malignant cancer; these mutations are necessary, but insufficient events to foster tumor progression. Here we profiled the tissue microbiota of 60 gastrointestinal specimens in three different patient cohorts—micro, low‐risk, and high‐risk or metastatic GIST—exploring the compositional structure, predicted function, and microbial networks, with the aim of providing a complete overview of microbial ecology in GIST and its preclinical form. Comparing microGISTs and GISTs, both weighted and unweighted UniFrac and Bray–Curtis dissimilarities showed significant community‐level separation between them and a pronounced difference in Proteobacteria, Firmicutes, and Bacteroidota was observed. Through the LEfSe tool, potential microbial biomarkers associated with a specific type of lesion were identified. In particular, GIST samples were significantly enriched in the phylum Proteobacteria compared to microGISTs. Several pathways involved in sugar metabolism were also highlighted in GISTs; this was expected as cancer usually displays high aerobic glycolysis in place of oxidative phosphorylation and rise of glucose flux to promote anabolic request. Our results highlight that specific differences do exist in the tissue microbiome community between GIST and benign lesions and that microbiome restructuration can drive the carcinogenesis process.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bruno Fosso
- National Research Council, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics (DBBB), University of Bari "A. Moro", Bari, Italy
| | - Riccardo Ricci
- UOC di Anatomia Patologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cesar Serrano
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Daniel F Pilco-Janeta
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qianqian Zhang
- UOC di Anatomia Patologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Federica Zanotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics (DBBB), University of Bari "A. Moro", Bari, Italy
| | - Margherita Nannini
- Department of Experimental, Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Sobstyl M, Brecht P, Sobstyl A, Mertowska P, Grywalska E. The Role of Microbiota in the Immunopathogenesis of Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23105756. [PMID: 35628566 PMCID: PMC9143279 DOI: 10.3390/ijms23105756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract hosts a specific microbiome, which plays a crucial role in sustaining equilibrium and good health. In the majority of reproductive women, the microbiota (all bacteria, viruses, fungi, and other single-celled organisms within the human body) of the vaginal and cervical microenvironment are dominated by Lactobacillus species, which benefit the host through symbiotic relationships, in comparison to the uterus, fallopian tubes, and ovaries, which may contain a low-biomass microbiome with a diverse mixture of microorganisms. Although disruption to the balance of the microbiota develops, the altered immune and metabolic signaling may cause an impact on diseases such as cancer. These pathophysiological modifications in the gut–uterus axis may spark gynecological cancers. New information displays that gynecological and gastrointestinal tract dysbiosis (disruption of the microbiota homeostasis) can play an active role in the advancement and metastasis of gynecological neoplasms, such as cervical, endometrial, and ovarian cancers. Understanding the relationship between microbiota and endometrial cancer is critical for prognosis, diagnosis, prevention, and the development of innovative treatments. Identifying a specific microbiome may become an effective method for characterization of the specific microbiota involved in endometrial carcinogenesis. The aim of this study was to summarize the current state of knowledge that describes the correlation of microbiota with endometrial cancer with regard to the formation of immunological pathologies.
Collapse
Affiliation(s)
- Małgorzata Sobstyl
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, 20-037 Lublin, Poland;
| | - Peet Brecht
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
| | - Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
- Correspondence: (P.M.); (E.G.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.B.); (A.S.)
- Correspondence: (P.M.); (E.G.)
| |
Collapse
|
50
|
Anipindi M, Bitetto D. Diagnostic and Therapeutic Uses of the Microbiome in the Field of Oncology. Cureus 2022; 14:e24890. [PMID: 35698690 PMCID: PMC9184241 DOI: 10.7759/cureus.24890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a leading cause of death worldwide and it can affect almost every part of the human body. Effective screening and early diagnosis of cancers is extremely difficult due to the multifactorial etiology of the disease and delayed presentation of the patients. The available treatments are usually not specific to the affected organ system, leading to intolerable systemic side effects and early withdrawal from therapies. In vivo and in vitro studies have revealed an association of specific microbiome signatures with individual cancers. The cancer-related human microbiome has also been shown to affect the response of tissues to chemotherapy, immunotherapy, and radiation. This is an excellent opportunity for us to design specific screening markers using the microbiome to prevent cancers and diagnose them early. We can also develop precise treatments that can target cancer-affected specific organ systems and probably use a lesser dose of chemotherapy or radiation for the same effect. This prevents adverse effects and early cessation of treatments. However, we need further studies to exactly clarify and characterize these associations. In this review article, we focus on the association of the microbiome with individual cancers and highlight its future role in cancer screenings, diagnosis, prognosis, and treatments.
Collapse
Affiliation(s)
- Manasa Anipindi
- Internal Medicine, Einstein Medical Center Philadelphia, East Norriton, USA
| | - Daniel Bitetto
- Internal Medicine, Einstein Medical Center Philadelphia, East Norriton, USA
| |
Collapse
|