1
|
Fabian A, Buergy D, Weykamp F, Hörner-Rieber J, Bernhardt D, Boda-Heggemann J, Pazos M, Mehrhof N, Kaul D, Bicu AS, Badra EV, Rogers S, Janssen S, Hemmatazad H, Hintelmann K, Gkika E, Lange T, Ferentinos K, Karle H, Brunner T, Wittig A, Nona-Duma M, Blanck O, Krug D. Metastasis-directed stereotactic radiotherapy in patients with breast cancer: results of an international multicenter cohort study. Clin Exp Metastasis 2024; 42:6. [PMID: 39708074 DOI: 10.1007/s10585-024-10326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Metastasis-directed therapy (MDT) for oligometastatic breast cancer (≤ 5 metastases) has shown little effect in specific scenarios of randomized trials. Therefore, we aimed to assess outcomes after metastasis-directed stereotactic radiotherapy (SRT) in various clinical scenarios. We conducted an international retrospective cohort study in thirteen centers including breast cancer patients receiving SRT to any metastatic site. Outcomes included local recurrence (LR), progression-free survival (PFS), and overall survival (OS). Cumulative incidence analysis was used for LR, Kaplan-Meier estimates for PFS and OS. Covariables included patient, disease, and SRT characteristics. We performed univariable and multivariable analyses (MVA). Among 444 patients, 751 metastases were treated with SRT. Of these, 73% were intracranial and 27% extracranial lesions. Oligometastatic disease (OMD) was present in 66% of the patients. LR after two years occurred significantly more often in intracranial (25%) versus extracranial lesions (7%). In MVA of patients with OMD treated for intracranial sites, higher performance status was significantly associated with longer PFS. Further, higher performance status, biologic subtype (HR-pos./HER2-pos.), and MDT to all sites were significantly associated with longer OS. In MVA of oligometastatic patients treated for extracranial sites, biologic subtype (HR-neg./HER2-pos.) and synchronous metastasis were associated with significantly longer PFS, whereas higher grading was associated with significantly shorter PFS. Moreover, biologic subtype (HR-neg./HER2-neg.) was associated with significantly shorter OS. In conclusion, the role of MDT for breast cancer may vary per clinical scenario. Patients with OMD treated for intracranial lesions who had MDT to all sites showed superior OS. Our results should be validated prospectively.
Collapse
Affiliation(s)
- Alexander Fabian
- Department of Radiation Oncology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str.3, 24105, Kiel, Germany.
| | - Daniel Buergy
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Nora Mehrhof
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiation Oncology, Health and Medical University Potsdam, Potsdam, Germany
| | - Alicia S Bicu
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eugenia Vlaskou Badra
- Department of Radiation Oncology, University Hospital & University of Zurich, Zurich, Switzerland
| | - Susanne Rogers
- Radiation Oncology Center KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Stefan Janssen
- Department of Radiation Oncology, University of Lubeck, Lubeck, Germany
- Medical Practice for Radiotherapy and Radiation Oncology, Hannover, Germany
| | - Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katharina Hintelmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tim Lange
- Clinic for Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Konstantinos Ferentinos
- Department of Radiation Oncology, German Oncology Center, European University of Cyprus, Limassol, Cyprus
| | - Heiko Karle
- Department of Radiation Oncology and Radiotherapy, University Medical Center, Mainz, Germany
| | - Thomas Brunner
- Department of Radiation Oncology, University Hospital Graz, Graz, Austria
| | - Andrea Wittig
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Marciana Nona-Duma
- Department of Radiation Oncology, HELIOS Hospital Schwerin, Schwerin, Germany
- Department for Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str.3, 24105, Kiel, Germany
| | - David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str.3, 24105, Kiel, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Yu X, Yu Y, Huang X, Jiang Z, Wang Q, Yu X, Song C. Unraveling the causal links and novel molecular classification of Crohn's disease in breast Cancer: a two-sample mendelian randomization and transcriptome analysis with prognostic modeling. BMC Cancer 2024; 24:1134. [PMID: 39261800 PMCID: PMC11389480 DOI: 10.1186/s12885-024-12838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Crohn's disease (CD), a prominent manifestation of chronic gastrointestinal inflammation, and breast cancer (BC), seemingly disparate in the medical domain, exhibit a shared characteristic. This convergence arises from their involvement in chronic inflammation and immune responses, an aspect that has progressively captivated the attention of investigators but remain controversial. METHODS We used two-sample Mendelian Randomization (MR) and transcriptomics to explore the relationship between CD and BC. MR assessed causality of CD on different BC subtypes and reverse causality of BC on CD. We identified CD-related differentially expressed genes and their prognostic impact on BC, and developed a new molecular BC classification based on these key genes. RESULTS MR revealed a causal link between CD and increased BC risk, especially in estrogen receptor-positive (ER+) patients, but not in ER-negative (ER-) cases. BC showed no causal effect on CD. Transcriptomics pinpointed genes like B4GALNT2 and FGF19 that affected BC prognosis in CD patients. A nomogram based on these genes predicted BC outcomes with high accuracy. Using these genes, a new molecular classification of BC patients was proposed. CONCLUSIONS CD is a risk factor for ER + BC but not for ER- BC. BC does not causally affect CD. Our prognostic model and new BC molecular classifications offer insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fu Ma Road, Jinan District, Fuzhou, Fujian Province, 350014, China
| | - Yushuai Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fu Ma Road, Jinan District, Fuzhou, Fujian Province, 350014, China
| | - Xiewei Huang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fu Ma Road, Jinan District, Fuzhou, Fujian Province, 350014, China
| | - Zirong Jiang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fu Ma Road, Jinan District, Fuzhou, Fujian Province, 350014, China
| | - Qing Wang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fu Ma Road, Jinan District, Fuzhou, Fujian Province, 350014, China
| | - Xiaoqin Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fu Ma Road, Jinan District, Fuzhou, Fujian Province, 350014, China
| | - Chuangui Song
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fu Ma Road, Jinan District, Fuzhou, Fujian Province, 350014, China.
| |
Collapse
|
3
|
Brunner TB, Boda-Heggemann J, Bürgy D, Corradini S, Dieckmann UK, Gawish A, Gerum S, Gkika E, Grohmann M, Hörner-Rieber J, Kirste S, Klement RJ, Moustakis C, Nestle U, Niyazi M, Rühle A, Lang ST, Winkler P, Zurl B, Wittig-Sauerwein A, Blanck O. Dose prescription for stereotactic body radiotherapy: general and organ-specific consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther Onkol 2024; 200:737-750. [PMID: 38997440 PMCID: PMC11343978 DOI: 10.1007/s00066-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE AND OBJECTIVE To develop expert consensus statements on multiparametric dose prescriptions for stereotactic body radiotherapy (SBRT) aligning with ICRU report 91. These statements serve as a foundational step towards harmonizing current SBRT practices and refining dose prescription and documentation requirements for clinical trial designs. MATERIALS AND METHODS Based on the results of a literature review by the working group, a two-tier Delphi consensus process was conducted among 24 physicians and physics experts from three European countries. The degree of consensus was predefined for overarching (OA) and organ-specific (OS) statements (≥ 80%, 60-79%, < 60% for high, intermediate, and poor consensus, respectively). Post-first round statements were refined in a live discussion for the second round of the Delphi process. RESULTS Experts consented on a total of 14 OA and 17 OS statements regarding SBRT of primary and secondary lung, liver, pancreatic, adrenal, and kidney tumors regarding dose prescription, target coverage, and organ at risk dose limitations. Degree of consent was ≥ 80% in 79% and 41% of OA and OS statements, respectively, with higher consensus for lung compared to the upper abdomen. In round 2, the degree of consent was ≥ 80 to 100% for OA and 88% in OS statements. No consensus was reached for dose escalation to liver metastases after chemotherapy (47%) or single-fraction SBRT for kidney primaries (13%). In round 2, no statement had 60-79% consensus. CONCLUSION In 29 of 31 statements a high consensus was achieved after a two-tier Delphi process and one statement (kidney) was clearly refused. The Delphi process was able to achieve a high degree of consensus for SBRT dose prescription. In summary, clear recommendations for both OA and OS could be defined. This contributes significantly to harmonization of SBRT practice and facilitates dose prescription and reporting in clinical trials investigating SBRT.
Collapse
Affiliation(s)
- Thomas B Brunner
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria.
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria.
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Bürgy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ute Karin Dieckmann
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
| | - Ahmed Gawish
- Department of Radiotherapy, University Medical Center Giessen-Marburg, Marburg, Germany
| | - Sabine Gerum
- Department of Radiation Oncology, Paracelsus University Salzburg, Salzburg, Austria
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Maximilian Grohmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - Christos Moustakis
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Stephanie-Tanadini Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Peter Winkler
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | - Brigitte Zurl
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | | | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| |
Collapse
|
4
|
Haisraely O, Weiss I, Jaffe M, Appel S, Person-Kaidar O, Symon Z, Ben-Ayun M, Dubinski S, Lawrence Y. Total dose, fraction dose and respiratory motion management impact adrenal SBRT outcome. Clin Transl Radiat Oncol 2024; 47:100788. [PMID: 38745963 PMCID: PMC11090868 DOI: 10.1016/j.ctro.2024.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose/Objectives Stereotactic body radiotherapy (SBRT) is an effective treatment for oligometastatic disease in multiple sites. However, the optimal radiation dose for long-term local control of adrenal metastases has yet to be determined. The aim of this study is to evaluate outcomes of adrenal SBRT and to evaluate factors that correlate with local control. Materials/Methods After IRB approval, a retrospective data review of patients treated with SBRT for adrenal metastases at a medical center in Israel between 2015 and 2021 was conducted. A biological effective dose was calculated using an alpha beta ratio of 10. Kaplan Meier and Cox regression were calculated using SPSS software to describe the hazard ratio for local control and survival. Results 83 cases of adrenal SBRT were identified. The average age was 67 (range 42-92 years old). Non-small cell lung cancer was the primary site in 44 % of patients. A total of 70 % of the patients had oligometastatic disease (less than five lesions), and the rest were polymetastatic, responding to systemic therapy with oligo progression in the adrenal. The average gross tumor volume (GTV) was 42 ml. Respiratory control was applied in 88 % of cases; 49.3 % used 4-D/ITV, and 38.5 % used breath-hold or continuous positive airway pressure (CPAP) with free breathing. On multivariable analysis, Dose above 75 Gy (biological effective Dose) (HR = 0.41, p = 0.031), Dose above 8 Gy per fraction (HR = 0.53p = 0.038), and breath-holds or CPAP (HR = 0.65, p = 0.047) were significant for local control. From multivariable analysis, we computed a predicted nomogram curve using seven clinical parameters to evaluate local control odds. Conclusion In this single institution series reported to date, we found unilateral adrenal SBRT safe, yet bilateral treatment harbors a risk of adrenal insufficiency. Biological effective Dose > 75 Gy (BED), motion management with breath-hold or CPAP, and Dose per fraction > 8 Gy were the enhanced local controls. We propose a nomogram to help in decision-making regarding total Dose and Dose per fraction when treating adrenal SBRT.
Collapse
Affiliation(s)
- Ory Haisraely
- Sheba Medical Center, Radiation Oncology Unit, Israel
| | - Ilana Weiss
- Sheba Medical Center, Radiation Oncology Unit, Israel
| | - Marcia Jaffe
- University of Nicosia (UNIC) Medical School, Cyprus
| | - Sarit Appel
- Sheba Medical Center, Radiation Oncology Unit, Israel
| | | | - Zvi Symon
- Sheba Medical Center, Radiation Oncology Unit, Israel
| | - Maoz Ben-Ayun
- Sheba Medical Center, Radiation Oncology Unit, Israel
| | | | | |
Collapse
|
5
|
Hoegen-Saßmannshausen P, Jessen I, Buchele C, Schlüter F, Rippke C, Renkamp CK, Weykamp F, Regnery S, Liermann J, Meixner E, Hoeltgen L, Eichkorn T, König L, Debus J, Klüter S, Hörner-Rieber J. Clinical Outcomes of Online Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Adrenal Metastases from a Single Institution. Cancers (Basel) 2024; 16:2273. [PMID: 38927978 PMCID: PMC11201609 DOI: 10.3390/cancers16122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Recent publications foster stereotactic body radiotherapy (SBRT) in patients with adrenal oligometastases or oligoprogression. However, local control (LC) after non-adaptive SBRT shows the potential for improvement. Online adaptive MR-guided SBRT (MRgSBRT) improves tumor coverage and organ-at-risk (OAR) sparing. Long-term results of adaptive MRgSBRT are still sparse. (2) Methods: Adaptive MRgSBRT was performed on a 0.35 T MR-Linac. LC, overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and toxicity were assessed. (3) Results: 35 patients with 40 adrenal metastases were analyzed. The median gross tumor volume was 30.6 cc. The most common regimen was 10 fractions at 5 Gy. The median biologically effective dose (BED10) was 75.0 Gy. Plan adaptation was performed in 98% of all fractions. The median follow-up was 7.9 months. One local failure occurred after 16.6 months, resulting in estimated LC rates of 100% at one year and 90% at two years. ORR was 67.5%. The median OS was 22.4 months, and the median PFS was 5.1 months. No toxicity > CTCAE grade 2 occurred. (4) Conclusions: LC and ORR after adrenal adaptive MRgSBRT were excellent, even in a cohort with comparably large metastases. A BED10 of 75 Gy seems sufficient for improved LC in comparison to non-adaptive SBRT.
Collapse
Affiliation(s)
- Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Inga Jessen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Claudia Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Ocanto A, Torres L, Montijano M, Rincón D, Fernández C, Sevilla B, Gonsalves D, Teja M, Guijarro M, Glaría L, Hernánz R, Zafra-Martin J, Sanmamed N, Kishan A, Alongi F, Moghanaki D, Nagar H, Couñago F. MR-LINAC, a New Partner in Radiation Oncology: Current Landscape. Cancers (Basel) 2024; 16:270. [PMID: 38254760 PMCID: PMC10813892 DOI: 10.3390/cancers16020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Technological advances in radiation oncology are oriented towards improving treatment precision and tumor control. Among these advances, magnetic-resonance-image-guided radiation therapy (MRgRT) stands out, with technological advances to deliver targeted treatments adapted to a tumor's anatomy on the day while minimizing incidental exposure to organs at risk, offering an unprecedented therapeutic advantage compared to X-ray-based IGRT delivery systems. This new technology changes the traditional workflow in radiation oncology and requires an evolution in team coordination to administer more precise treatments. Once implemented, it paves the way for newer indication for radiation therapy to safely deliver higher doses than ever before, with better preservation of healthy tissues to optimize patient outcomes. In this narrative review, we assess the technical aspects of the novel linear accelerators that can deliver MRgRT and summarize the available published experience to date, focusing on oncological results and future challenges.
Collapse
Affiliation(s)
- Abrahams Ocanto
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Lisselott Torres
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Miguel Montijano
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Diego Rincón
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Castalia Fernández
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Beatriz Sevilla
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Daniela Gonsalves
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Macarena Teja
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Marcos Guijarro
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Luis Glaría
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
| | - Raúl Hernánz
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
| | - Juan Zafra-Martin
- Group of Translational Research in Cancer Immunotherapy, Centro de Investigaciones Médico-Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), 29010 Málaga, Spain;
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Noelia Sanmamed
- Department of Radiation Oncology, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Amar Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar, Italy;
- University of Brescia, 25121 Brescia, Italy
| | - Drew Moghanaki
- UCLA Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Himanshu Nagar
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
- GenesisCare, 28043 Madrid, Spain
| |
Collapse
|
7
|
Hoegen P, Katsigiannopulos E, Buchele C, Regnery S, Weykamp F, Sandrini E, Ristau J, Liermann J, Meixner E, Forster T, Renkamp CK, Schlüter F, Rippke C, Debus J, Klüter S, Hörner-Rieber J. Stereotactic magnetic resonance-guided online adaptive radiotherapy of adrenal metastases combines high ablative doses with optimized sparing of organs at risk. Clin Transl Radiat Oncol 2023; 39:100567. [PMID: 36935853 PMCID: PMC10014324 DOI: 10.1016/j.ctro.2022.100567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose/Objective To evaluate the potential of stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) to fulfill dose recommendations for stereotactic body radiotherapy (SBRT) of adrenal metastases and spare organs at risk (OAR). Materials and methods In this subgroup analysis of a prospective registry trial, 22 patients with adrenal metastases were treated on a 0.35 T MR-Linac in 5-12 fractions with fraction doses of 4-10 Gy. Baseline plans were re-calculated to the anatomy of the day. These predicted plans were reoptimized to generate adapted plans. Baseline, predicted and adapted plans were compared with regard to PTV objectives, OAR constraints and published dose recommendations. Results The cohort comprised patients with large GTV (median 36.0 cc) and PTV (median 66.6 cc) and predominantly left-sided metastases. 179 of 181 fractions (98.9 %) were adapted because of PTV and/or OAR violations. Predicted plans frequently violated PTV coverage (99.4 %) and adjacent OAR constraints (bowel: 32.9 %, stomach: 32.8 %, duodenum: 10.4 %, kidneys: 10.8 %). In the predicted plans, the volume exposed to the maximum dose was exceeded up to 16-fold in the duodenum and up to 96-fold in the spinal cord. Adapted plans significantly reduced OAR violations by 96.4 % for the bowel, 98.5 % for the stomach, 85.6 % for the duodenum and 83.3 % for the kidneys. Plan adaptation improved PTV coverage from 82.7 ± 8.1 % to 90.6 ± 4.9 % (p < 0.001). Furthermore, recently established target volume thresholds could easily be fulfilled with SMART. No toxicities > grade II occurred. Conclusion SMART fulfills established GTV and PTV dose recommendations while simultaneously sparing organs at risk even in a challenging cohort.
Collapse
Affiliation(s)
- Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|