1
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Boottanun P, Nagai-Okatani C, Nagai M, Ungkulpasvich U, Yamane S, Yamada M, Kuno A. An improved evanescent fluorescence scanner suitable for high-resolution glycome mapping of formalin-fixed paraffin-embedded tissue sections. Anal Bioanal Chem 2023; 415:6975-6984. [PMID: 37395746 DOI: 10.1007/s00216-023-04824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Lectin microarray (LMA) is a high-throughput platform that enables the rapid and sensitive analysis of N- and O-glycans attached to glycoproteins in biological samples, including formalin-fixed paraffin-embedded (FFPE) tissue sections. Here, we evaluated the sensitivity of the advanced scanner based on the evanescent-field fluorescence principle, which is equipped with a 1× infinity correction optical system and a high-end complementary metal-oxide semiconductor (CMOS) image sensor in digital binning mode. Using various glycoprotein samples, we estimated that the mGSR1200-CMOS scanner has at least fourfold higher sensitivity for the lower limit of linearity range than that of a previous charge-coupled device scanner (mGSR1200). A subsequent sensitivity test using HEK293T cell lysates demonstrated that cell glycomic profiling could be performed with only three cells, which has the potential for the glycomic profiling of cell subpopulations. Thus, we examined its application in tissue glycome mapping, as indicated in the online LM-GlycomeAtlas database. To achieve fine glycome mapping, we refined the laser microdissection-assisted LMA procedure to analyze FFPE tissue sections. In this protocol, it was sufficient to collect 0.1 mm2 of each of the tissue fragments from 5-μm-thick sections, which differentiated the glycomic profile between the glomerulus and renal tubules of a normal mouse kidney. In conclusion, the improved LMA enables high-resolution spatial analysis, which expands the possibilities of its application classifying cell subpopulations in clinical FFPE tissue specimens. This will be used in the discovery phase for the development of novel glyco-biomarkers and therapeutic targets, and to expand the range of target diseases.
Collapse
Affiliation(s)
- Patcharaporn Boottanun
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Chiaki Nagai-Okatani
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| | - Misugi Nagai
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Umbhorn Ungkulpasvich
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Shinjiro Yamane
- GlycoTechnica Ltd, 101 Hiranobiru3, 5-28-6 Utsukushigaoka, Aoba-Ku, Yokohama, Kanagawa, 225-0002, Japan
| | - Masao Yamada
- EMUKK LLC, 2-21-19, Matsunoki, Kuwana, Mie, 511-0902, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
3
|
Kuwatani M, Sakamoto N. Promising Highly Targeted Therapies for Cholangiocarcinoma: A Review and Future Perspectives. Cancers (Basel) 2023; 15:3686. [PMID: 37509347 PMCID: PMC10378186 DOI: 10.3390/cancers15143686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
To overcome the poor prognosis of cholangiocarcinoma (CCA), highly targeted therapies, such as antibody-drug conjugates (ADCs), photodynamic therapy (PDT) with/without systemic chemotherapy, and experimental photoimmunotherapy (PIT), have been developed. Three preclinical trials have investigated the use of ADCs targeting specific antigens, namely HER2, MUC1, and glypican-1 (GPC1), for CCA. Trastuzumab emtansine demonstrated higher antiproliferative activity in CCA cells expressing higher levels of HER2. Similarly, "staphylococcal enterotoxin A-MUC1 antibody" and "anti-GPC1 antibody-monomethyl auristatin F" conjugates showed anticancer activity. PDT is effective in areas where appropriate photosensitizers and light coexist. Its mechanism involves photosensitizer excitation and subsequent reactive oxygen species production in cancer cells upon irradiation. Hematoporphyrin derivatives, temoporfin, phthalocyanine-4, talaporfin, and chlorine e6 derivatives have mainly been used clinically and preclinically in bile duct cancer. Currently, new forms of photosensitizers with nanotechnology and novel irradiation catheters are being developed. PIT is the most novel anti-cancer therapy developed in 2011 that selectively kills targeted cancer cells using a unique photosensitizer called "IR700" conjugated with an antibody specific for cancer cells. PIT is currently in the early stages of development for identifying appropriate CCA cell targets and irradiation devices. Future human and artificial intelligence collaboration has potential for overcoming challenges related to identifying universal CCA cell targets. This could pave the way for highly targeted therapies for CCA, such as ADC, PDT, and PIT.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| |
Collapse
|
4
|
Shi Y, Mathis BJ, He Y, Yang X. The Current Progress and Future Options of Multiple Therapy and Potential Biomarkers for Muscle-Invasive Bladder Cancer. Biomedicines 2023; 11:biomedicines11020539. [PMID: 36831075 PMCID: PMC9953154 DOI: 10.3390/biomedicines11020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Bladder cancer is a common disease in men and the elderly. Current treatment paradigms include radical resection of the bladder and lymph nodes or transurethral resection, both supported by chemotherapy and/or radiation. New modalities, such as illumination-based therapies are also being translationally pursued. However, while survival rates have increased due to combined therapies (particularly chemotherapy, radiation, immune checkpoint inhibitors, and surgery), a lack of diagnostic markers leads clinical professionals to rely on frequently invasive and expensive means of monitoring, such as magnetic resonance imaging or bladder cystoscopy. To improve real-time diagnostic capabilities, biomarkers that reflect both the metabolic and metastatic potential of tumor cells are needed. Furthermore, indicators of therapy resistance would allow for rapid changes in treatment to optimize survival outcomes. Fortunately, the presence of nanoscale extracellular vesicles in the blood, urine, and other peripheral fluids allow for proteomic, genomic, and transcriptomic analyses while limiting the invasiveness of frequent sampling. This review provides an overview of the pathogenesis and progression of bladder cancer, standard treatments and outcomes, some novel treatment studies, and the current status of biomarker and therapy development featuring exosome-based analysis and engineering.
Collapse
Affiliation(s)
- Ying Shi
- Department of Urology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan
| | - Yayun He
- Department of Urology, The Second Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan 430082, China
| | - Xiong Yang
- Department of Urology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|