1
|
Ippen FM, Scherm A, Kessler T, Hau P, Agkatsev S, Baurecht H, Wick W, Knüttel H, Leitzmann MF, Seliger‐Behme C. Targeted agents in patients with progressive glioblastoma-A systematic meta-analysis of randomized clinical trials. Cancer Med 2024; 13:e7362. [PMID: 39618405 PMCID: PMC11192969 DOI: 10.1002/cam4.7362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/26/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most common malignant primary brain tumor in adults and is associated with a poor prognosis. Current treatment guidelines outline the standard of care for patients with newly diagnosed GB; however, there is currently no well-established consensus for the treatment of progressive GB. With this systematic meta-analysis of recently published randomized controlled trials (RCTs), we aim to establish evidence on targeted agents in the treatment of patients with progressive GB. MATERIAL AND METHODS We conducted searches across the Cochrane Library, Pubmed, MEDLINE (Ovid), ClinicalTrials.gov, WHO's International Clinical Trials Registry Platform and Google Scholar, encompassing the time span from 1954 to 2022, aiming to identify RCTs evaluating targeted therapies in patients with progressive GB. In order to perform a random-effects meta-analysis, we extracted hazard ratios (HRs) of overall survival (OS) and progression-free survival (PFS). RESULTS We included 16 RCTs (n = 3025 patients) in the systematic meta-analysis. Formally, regorafenib (RR 0.50; 95% CI 0.33-0.75), Depatux-M + TMZ (RR 0.66; 95% CI 0.47-0.93) and rindopepimut + bevacizumab (RR 0.53; 95% CI 0.32-0.88) were associated with an improved OS compared to the control arm. The combination of bevacizumab + CCNU (RR = 0.49; 95% CI 0.35-0.69) and regorafenib (RR 0.65; 95% CI 0.44-0.95) were formally associated with improved PFS. CONCLUSIONS The aim of this systematic meta-analysis was to establish evidence for the use of targeted therapies in progressive GB. While some studies demonstrated benefits for OS and/or PFS, those results have to be interpreted with caution as most studies had major methodological weaknesses, including potential differences in sample size, trial design, or the initial distribution of prognostic factors.
Collapse
Affiliation(s)
- Franziska Maria Ippen
- Department of Neurology and Neurooncology Program, National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
| | - Angelika Scherm
- Wilhelm Sander‐NeuroOncology Unit and Department of NeurologyUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Kessler
- Department of Neurology and Neurooncology Program, National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Peter Hau
- Wilhelm Sander‐NeuroOncology Unit and Department of NeurologyUniversity Hospital RegensburgRegensburgGermany
| | - Sarina Agkatsev
- Department of NeurologyUniversity Hospital Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| | - Hansjörg Baurecht
- Institute of Epidemiology and Preventive Medicine, University Hospital RegensburgRegensburgGermany
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Helge Knüttel
- University Library, University of RegensburgRegensburgGermany
| | - Michael F. Leitzmann
- Institute of Epidemiology and Preventive Medicine, University Hospital RegensburgRegensburgGermany
| | - Corinna Seliger‐Behme
- Department of Neurology and Neurooncology Program, National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
- Department of NeurologyUniversity Hospital Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| |
Collapse
|
2
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
4
|
Venkataramani V, Winkler F. [Glioblastomas exploit neuronal properties: a key to new forms of treatment?]. DER NERVENARZT 2024; 95:96-103. [PMID: 38157044 DOI: 10.1007/s00115-023-01589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Recent research indicates that glioblastomas exhibit different neural properties that successfully promote tumor growth, colonize the brain and resist standard treatment. This opens up opportunities for new therapeutic strategies giving rise to the new research field of cancer neuroscience at the interface between oncology and neuroscience. It has been observed that glioblastomas as well as other incurable brain tumor entities, form multicellular tumor networks through long cell projections called tumor microtubes that are molecularly controlled by neuronal developmental mechanisms. These networks provide the tumor with efficient communication and resilience to external perturbations and are tumor-intrinsic continuously activated by pacemaker-like tumor cells. In addition, neuron-tumor networks have been discovered that also exploit direct glutamatergic synaptic contacts between nerve cells and tumor cells. These different neuronal mechanisms of the glioblastoma networks contribute to malignancy and resistance, which is why strategies to separate these multicellular networks were developed and are currently being investigated in initial clinical trials with respect to their therapeutic suitability.
Collapse
Affiliation(s)
- Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Deutschland.
| |
Collapse
|
5
|
Heuer S, Burghaus I, Gose M, Kessler T, Sahm F, Vollmuth P, Venkataramani V, Hoffmann D, Schlesner M, Ratliff M, Hopf C, Herrlinger U, Ricklefs F, Bendszus M, Krieg SM, Wick A, Wick W, Winkler F. PerSurge (NOA-30) phase II trial of perampanel treatment around surgery in patients with progressive glioblastoma. BMC Cancer 2024; 24:135. [PMID: 38279087 PMCID: PMC10811925 DOI: 10.1186/s12885-024-11846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION EU-CT number: 2023-503938-52-00 30.11.2023.
Collapse
Affiliation(s)
- Sophie Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ina Burghaus
- Coordination Centre for Clinical Trials (KKS) Heidelberg, 69120, Heidelberg, Germany
| | - Maria Gose
- Coordination Centre for Clinical Trials (KKS) Heidelberg, 69120, Heidelberg, Germany
| | - Tobias Kessler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, INF 224, 69120, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), Geman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Dirk Hoffmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Matthias Schlesner
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Neurosurgery Clinic, University Hospital Mannheim, 68167, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology and Centre of Integrated Oncology, University Hospital Bonn, Bonn, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Hospital Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Tan AK, Henry A, Goffart N, van Logtestijn S, Bours V, Hol EM, Robe PA. Limited Effects of Class II Transactivator-Based Immunotherapy in Murine and Human Glioblastoma. Cancers (Basel) 2023; 16:193. [PMID: 38201622 PMCID: PMC10778432 DOI: 10.3390/cancers16010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The major histocompatibility complex type II is downregulated in glioblastoma (GB) due to the silencing of the major transcriptional regulator class II transactivator (CIITA). We investigated the pro-immunogenic potential of CIITA overexpression in mouse and human GB. METHODS The intracerebral growth of wildtype GL261-WT cells was assessed following contralateral injection of GL261-CIITA cells or flank injections with GL261-WT or GL261-CIITA cells. Splenocytes obtained from mice implanted intracerebrally with GL261-WT, GL261-CIITA cells or phosphate buffered saline (PBS) were transferred to other mice and subsequently implanted intracerebrally with GL261-WT. Human GB cells and (syngeneic) GB-infiltrating immune cells were isolated from surgical samples and co-cultured with GB cells expressing CIITA or not, followed by RT-qPCR assessment of the expression of key immune regulators. RESULTS Intracerebral vaccination of GL261-CIITA significantly reduced the subsequent growth of GL261-WT cells implanted contralaterally. Vaccination with GL261-WT or -CIITA subcutaneously, however, equivalently retarded the intracerebral growth of GL261 cells. Adoptive cell transfer experiments showed a similar antitumor potential of lymphocytes harvested from mice implanted intracerebrally with GL261-WT or -CIITA. Human GB-infiltrating myeloid cells and lymphocytes were not activated when cultured with CIITA-expressing GB cells. Tumor-infiltrating NK cells remained mostly inactivated when in co-culture with GB cells, regardless of CIITA. CONCLUSION these results question the therapeutic potential of CIITA-mediated immunotherapy in glioblastoma.
Collapse
Affiliation(s)
- A. Katherine Tan
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
| | - Aurelie Henry
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
| | - Nicolas Goffart
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
| | - Sofie van Logtestijn
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
| | - Vincent Bours
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
| | - Pierre A. Robe
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
- Department of Neurosurgery, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Chang CT, Chen HH, Chuang CC, Chang SH, Hsiao NW. Ganciclovir as a potential treatment for glioma: a systematic review and meta-analysis. J Neurooncol 2023; 165:399-411. [PMID: 38066255 DOI: 10.1007/s11060-023-04503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Glioma is a challenging malignant tumor with a low survival rate and no effective treatment. Recently, ganciclovir, an antiviral drug, combined with gene therapy and its own antiviral ability, has been proposed as a potential treatment for glioma. However, there are differences in the results of various clinical trials. In this study, we conducted a systematic review and meta-analysis to evaluate the efficacy of ganciclovir in treating glioma. METHODS We searched databases such as PubMed, EMBASE, and Cochrane Library before March 30, 2023. The search terms included glioma, ganciclovir, valganciclovir and treatment. Calculated 1, 2 and 4-year survival rate by risk difference (RD), and overall survival (OS) by odds ratio (OR). RESULTS Five randomized controlled trials (RCTs) with a total of 606 high-grade glioma patients were included. The results showed that ganciclovir can improve 2-yeaer (RD = 0.179, 95% CI 0.012-0.346, P = 0.036) and 4-year survival rate (RD = 0.185, 95% CI 0.069-0.3, P = 0.002) and OS (OR 2.393, 95% CI 1.212-4.728, P = 0.012) compared with the control group. CONCLUSIONS This meta-analysis showed that ganciclovir significantly improved the prognosis of glioma patients. Therefore, we suggest that more cases of ganciclovir as a glioma treatment can be conducted, or a large clinical trial can be designed.
Collapse
Affiliation(s)
- Chun-Tao Chang
- Department of Biology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Hsing-Hui Chen
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Chun-Chao Chuang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, South Dist., Taichung City, 402306, Taiwan
| | - Shao-Hsun Chang
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Nai-Wan Hsiao
- Department of Biology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan.
| |
Collapse
|
8
|
Heuer S, Winkler F. Glioblastoma revisited: from neuronal-like invasion to pacemaking. Trends Cancer 2023; 9:887-896. [PMID: 37586918 DOI: 10.1016/j.trecan.2023.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
In recent years, two developments have helped us to better understand the fundamental biology of glioblastoma: the description of a striking intratumoral heterogeneity including gene expression-based cell states, and the discovery that neuro-cancer interactions and cancer-intrinsic neurodevelopmental mechanisms are fundamental features of glioblastoma. In this opinion article, we aim to integrate both developments. We explain how two key disease features are characterized by different neural mechanisms related to distinct but plastic cancer cell states: first, the single cell-dominated invasive parts and second, the more solid parts which are dominated by communicating cell networks constantly activated by pacemaker-like glioblastoma cells. The resulting integrative roadmap of molecular and functional heterogeneity contributes to the Cancer Neuroscience of glioblastoma and suggests novel therapeutic strategies.
Collapse
Affiliation(s)
- Sophie Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|