1
|
Flauto F, De Martino MC, Vitiello C, Pivonello R, Colao A, Damiano V. A Review on Mitotane: A Target Therapy in Adrenocortical Carcinoma. Cancers (Basel) 2024; 16:4061. [PMID: 39682247 DOI: 10.3390/cancers16234061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Adrenocortical carcinomas (ACCs) are rare and aggressive malignancies of adrenal cortex, associated with largely unknown mechanisms of biological development and poor prognosis. Currently, mitotane is the sole approved drug for treating advanced adrenocortical carcinomas (ACCs) and is being utilized more frequently as postoperative adjuvant therapy. Although it is understood that mitotane targets the adrenal cortex and disrupts steroid production, its precise mechanism of action requires further exploration. Additionally, mitotane affects cytochrome P450 enzymes, causes the depolarization of mitochondrial membranes, and leads to an accumulation of free cholesterol, ultimately resulting in cell death. Many patients treated with mitotane develop disease progression over time, underlying the need to understand the mechanisms of primary and acquired resistance. In this manuscript, we provide an overview on the intracellular mechanisms of action of mitotane, exploring data regarding predictive factors of response and evidence associated with the development of primary and acquired resistance mechanisms. In this discussion, mitotane is considered a real target therapy.
Collapse
Affiliation(s)
- Fabiano Flauto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Chiara Vitiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Vincenzo Damiano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Yang N, Jiao M, Zhang Y, Mo S, Wang L, Liang J. Roles and mechanisms of circular RNA in respiratory system cancers. Front Oncol 2024; 14:1430051. [PMID: 39077467 PMCID: PMC11284073 DOI: 10.3389/fonc.2024.1430051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Circular RNAs (circRNAs) constitute a class of endogenous non-coding RNAs (ncRNAs) that lack a 5'-ended cap and 3'-ended poly (A) tail and form a closed ring structure with covalent bonds. Due to its special structure, circRNA is resistant to Exonuclease R (RNaseR), making its distribution in the cytoplasm quite rich. Advanced high-throughput sequencing and bioinformatics methods have revealed that circRNA is highly conserved, stable, and disease- and tissue-specific. Furthermore, increasing research has confirmed that circRNA, as a driver or suppressor, regulates cancer onset and progression by modulating a series of pathophysiological mechanisms. As a result, circRNA has emerged as a clinical biomarker and therapeutic intervention target. This article reviews the biological functions and regulatory mechanisms of circRNA in the context of respiratory cancer onset and progression.
Collapse
Affiliation(s)
- Nan Yang
- School of Basic Medical, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mengwen Jiao
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuewen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shaokang Mo
- Department of Obstetrics and Gynecology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Ling Wang
- Department of Obstetrics and Gynecology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Jianqing Liang
- School of Basic Medical, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Tian Q, Huang J, Zhang Q, Zhao J. N6-methyladenosine methylation on FSCN1 mediated by METTL14/IGF2BP3 contributes to human papillomavirus type 16-infected cervical squamous cell carcinoma. Clin Exp Pharmacol Physiol 2024; 51:e13864. [PMID: 38679464 DOI: 10.1111/1440-1681.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.
Collapse
Affiliation(s)
- Qingqing Tian
- Department of Obstetrics and Gynecology, The 926th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kaiyuan, China
| | - Juqing Huang
- Department of Obstetrics and Gynecology, The 926th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kaiyuan, China
| | - Qin Zhang
- Department of Obstetrics and Gynecology, The 926th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kaiyuan, China
| | - Jufen Zhao
- Department of Obstetrics and Gynecology, The 926th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kaiyuan, China
| |
Collapse
|
5
|
Turpin A, Delliaux C, Parent P, Chevalier H, Escudero-Iriarte C, Bonardi F, Vanpouille N, Flourens A, Querol J, Carnot A, Leroy X, Herranz N, Lanel T, Villers A, Olivier J, Touzet H, de Launoit Y, Tian TV, Duterque-Coquillaud M. Fascin-1 expression is associated with neuroendocrine prostate cancer and directly suppressed by androgen receptor. Br J Cancer 2023; 129:1903-1914. [PMID: 37875732 PMCID: PMC10703930 DOI: 10.1038/s41416-023-02449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer, arising from resistance to androgen-deprivation therapies. However, the molecular mechanisms associated with NEPC development and invasiveness are still poorly understood. Here we investigated the expression and functional significance of Fascin-1 (FSCN1), a pro-metastasis actin-bundling protein associated with poor prognosis of several cancers, in neuroendocrine differentiation of prostate cancer. METHODS Differential expression analyses using Genome Expression Omnibus (GEO) database, clinical samples and cell lines were performed. Androgen or antagonist's cellular treatments and knockdown experiments were used to detect changes in cell morphology, molecular markers, migration properties and in vivo tumour growth. Chromatin immunoprecipitation-sequencing (ChIP-Seq) data and ChIP assays were analysed to decipher androgen receptor (AR) binding. RESULTS We demonstrated that FSCN1 is upregulated during neuroendocrine differentiation of prostate cancer in vitro, leading to phenotypic changes and NEPC marker expression. In human prostate cancer samples, FSCN1 expression is restricted to NEPC tumours. We showed that the androgen-activated AR downregulates FSCN1 expression and works as a transcriptional repressor to directly suppress FSCN1 expression. AR antagonists alleviate this repression. In addition, FSCN1 silencing further impairs in vivo tumour growth. CONCLUSION Collectively, our findings identify FSCN1 as an AR-repressed gene. Particularly, it is involved in NEPC aggressiveness. Our results provide the rationale for the future clinical development of FSCN1 inhibitors in NEPC patients.
Collapse
Affiliation(s)
- Anthony Turpin
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Medical Oncology, Lille University Hospital, F-59000, Lille, France
| | - Carine Delliaux
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Pauline Parent
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Medical Oncology, Lille University Hospital, F-59000, Lille, France
| | - Hortense Chevalier
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Medical Oncology, Centre Oscar Lambret, 3, rue Frederic Combemale, 59000, Lille, France
| | | | - Franck Bonardi
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | - Nathalie Vanpouille
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Anne Flourens
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Aurélien Carnot
- Department of Medical Oncology, Centre Oscar Lambret, 3, rue Frederic Combemale, 59000, Lille, France
| | - Xavier Leroy
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Institut de Pathologie, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | - Nicolás Herranz
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Tristan Lanel
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Institut de Pathologie, CHU Lille, Avenue Oscar Lambret, F-59000, Lille, France
| | - Arnauld Villers
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France
| | - Jonathan Olivier
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France
| | - Hélène Touzet
- University Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France
| | - Yvan de Launoit
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Martine Duterque-Coquillaud
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
| |
Collapse
|
6
|
Schneider G, Ruggiero C, Renault L, Doghman-Bouguerra M, Durand N, Hingrai G, Dijoud F, Plotton I, Lalli E. ACTH and prolactin synergistically and selectively regulate CYP17 expression and adrenal androgen production in human foetal adrenal organ cultures. Eur J Endocrinol 2023; 189:327-335. [PMID: 37638769 DOI: 10.1093/ejendo/lvad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE The essential role of ACTH on the growth and function of the human foetal adrenal (HFA) has long been recognized. In addition, many studies have suggested a role of the pituitary hormone prolactin (PRL) in the regulation of the HFA, but the effects of this hormone on steroidogenesis and gene expression are still unknown. Our objective was to investigate the effect of ACTH and PRL on the steroidogenic capacities of the HFA. DESIGN In vitro/ex vivo experimental study. METHODS We used a hanging drop in vitro organ culture system. First trimester HFA samples were cultured for 14 days in basal conditions or treated with ACTH, PRL, or a combination of the 2 (3 to 11 replicates depending on the experiment). Steroids were measured by liquid chromatography/tandem mass spectrometry or immunoassay, gene expression by RT-qPCR, and protein expression by immunoblot. RESULTS ACTH significantly increased corticosterone, cortisol, and cortisone production, both by itself and when used together with PRL. PRL stimulation by itself had no effect. Combined stimulation with ACTH + PRL synergistically and selectively increased adrenal androgen (DHEAS and Δ4-androstenedione) production and CYP17A1 expression in the HFA, while treatment with each single hormone had no significant effect on those steroids. CONCLUSIONS These results have important implications for our understanding of the hormonal cues regulating adrenal steroidogenesis in the HFA during the first trimester in physiological and pathological conditions and warrant further studies to characterize the molecular mechanisms of converging ACTH and PRL signalling to regulate CYP17A1 expression.
Collapse
Affiliation(s)
- Grégoire Schneider
- Department of Pediatric Surgery, University Hospital of Lyon, 69002 Lyon, France
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
| | - Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Lucie Renault
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Reproductive Medicine and Biology, University Hospital of Lyon, 69002 Lyon, France
| | - Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Guillaume Hingrai
- Orthogenics Department, University Hospital of Lyon, 69002 Lyon, France
| | - Frédérique Dijoud
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Inserm U1208, 69675 Bron, France
- Department of Pathology, University Hospital of Lyon, 69002 Lyon, France
| | - Ingrid Plotton
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Reproductive Medicine and Biology, University Hospital of Lyon, 69002 Lyon, France
- Inserm U1208, 69675 Bron, France
- Department of Clinical Biochemistry, University Hospital of Lyon, 69002 Lyon, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
- Inserm, 06560 Valbonne, France
| |
Collapse
|