1
|
Farinella R, Felici A, Peduzzi G, Testoni SGG, Costello E, Aretini P, Blazquez-Encinas R, Oz E, Pastore A, Tacelli M, Otlu B, Campa D, Gentiluomo M. From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction. Semin Cancer Biol 2025; 112:71-92. [PMID: 40147701 DOI: 10.1016/j.semcancer.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized as one of the most lethal malignancies, characterized by late-stage diagnosis and limited therapeutic options. Risk stratification has traditionally been performed using epidemiological studies and genetic analyses, through which key risk factors, including smoking, diabetes, chronic pancreatitis, and inherited predispositions, have been identified. However, the multifactorial nature of PDAC has often been insufficiently addressed by these methods, leading to limited precision in individualized risk assessments. Advances in artificial intelligence (AI) have been proposed as a transformative approach, allowing the integration of diverse datasets-spanning genetic, clinical, lifestyle, and imaging data into dynamic models capable of uncovering novel interactions and risk profiles. In this review, the evolution of PDAC risk stratification is explored, with classical epidemiological frameworks compared to AI-driven methodologies. Genetic insights, including genome-wide association studies and polygenic risk scores, are discussed, alongside AI models such as machine learning, radiomics, and deep learning. Strengths and limitations of these approaches are evaluated, with challenges in clinical translation, such as data scarcity, model interpretability, and external validation, addressed. Finally, future directions are proposed for combining classical and AI-driven methodologies to develop scalable, personalized predictive tools for PDAC, with the goal of improving early detection and patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Sabrina Gloria Giulia Testoni
- Division of Gastroenterology and Gastrointestinal Endoscopy, IRCCS Policlinico San Donato, Vita-Salute San Raffaele University, Milan, Italy
| | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Ricardo Blazquez-Encinas
- Department of Cell Biology, Physiology and Immunology, University of Cordoba / Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elif Oz
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Matteo Tacelli
- Pancreas Translational & Clinical Research Center, Pancreato-Biliary Endoscopy and Endosonography Division, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Burçak Otlu
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|