1
|
Domínguez M, Alvarez R, Pérez M, Palczewski K, de Lera AR. The role of the 11-cis-retinal ring methyl substituents in visual pigment formation. Chembiochem 2007; 7:1815-25. [PMID: 16941510 DOI: 10.1002/cbic.200600207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Artificial visual pigment formation from ring-demethylated retinals was studied in an effort to understand the effect that methyl groups on the chromophore cyclohexenyl ring have on the visual cycle. The stereoselective synthesis of the 11-cis-ring-demethylated analogues involves thallium-accelerated Suzuki cross-coupling reactions and highly stereocontrolled Wittig reactions to form key bonds. Only 11-cis-1,1,5-trisdemethylretinal (2) failed to form an artificial pigment, whilst variable pigment-formation yields were determined for the remaining analogues, increasing with the number (and location) of the chromophore hydrophobic ring methyl groups. Our results with the monodemethylated analogues 11-cis-5-demethylretinal (4) and 11-cis-1-demethylretinal (5) show that the C1-2-CH(3) groups are more important for pigment formation than the C5-CH(3) substituent. This is reflected in the absorption maxima of the artificial pigments, with values closer to that of native rhodopsin for 4. Docking studies based on a rhodopsin crystal structure, however, predict a lower pigment stability for 4 than for 5. Gas-phase DFT (B3LYP/6-31G*) computations of the free-ligand geometries, conformational searches about the C6--C7 bond, and docking studies revealed that, although the conformation of bound 5 is close to that of the native chromophore, the ligand needs to overcome the energy cost of shifting the unbound favored 6-s-trans conformation to the bound 6-s-cis form. In addition, the presence of an extra methyl group at C18 (11-cis-18-methylretinal, 7) is tolerated well and adds further stability to the complex, most probably due to increased hydrophobic interactions.
Collapse
Affiliation(s)
- Marta Domínguez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
2
|
Kloppmann E, Becker T, Ullmann GM. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra. Proteins 2006; 61:953-65. [PMID: 16247786 DOI: 10.1002/prot.20744] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The color tuning mechanism of the rhodopsin protein family has been in the focus of research for decades. However, the structural basis of the tuning mechanism in general and of the absorption shift between rhodopsins in particular remains under discussion. It is clear that a major determinant for spectral shifts between different rhodopsins are electrostatic interactions between the chromophore retinal and the protein. Based on the Poisson-Boltzmann equation, we computed and compared the electrostatic potential at the retinal of three archaeal rhodopsins: bacteriorhodopsin (BR), halorhodopsin (HR), and sensory rhodopsin II (SRII) for which high-resolution structures are available. These proteins are an excellent test case for understanding the spectral tuning of retinal. The absorption maxima of BR and HR are very similar, whereas the spectrum of SRII is considerably blue shifted--despite the structural similarity between these three proteins. In agreement with their absorption maxima, we find that the electrostatic potential is similar in BR and HR, whereas significant differences are seen for SRII. The decomposition of the electrostatic potential into contributions of individual residues, allowed us to identify seven residues that are responsible for the differences in electrostatic potential between the proteins. Three of these residues are located in the retinal binding pocket and have in fact been shown to account for part of the absorption shift between BR and SRII by mutational studies. One residue is located close to the beta-ionone ring of retinal and the remaining three residues are more than 8 A away from the retinal. These residues have not been discussed before, because they are, partly because of their location, no obvious candidates for the spectral shift among BR, HR, and SRII. However, their contribution to the differences in electrostatic potential is evident. The counterion of the Schiff base, which is frequently discussed to be involved in the spectral tuning, does not contribute to the dissimilarities between the electrostatic potentials.
Collapse
Affiliation(s)
- Edda Kloppmann
- Structural Biology/Bioinformatics, University of Bayreuth, Bayreuth, Germany
| | | | | |
Collapse
|
3
|
Olivucci M, Lami A, Santoro F. A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation. Angew Chem Int Ed Engl 2005; 44:5118-21. [PMID: 16035016 DOI: 10.1002/anie.200501236] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Massimo Olivucci
- Dipartimento di Chimica, Università degli Studi di Siena, via Aldo Moro, 53100 Siena, Italy.
| | | | | |
Collapse
|
4
|
Olivucci M, Lami A, Santoro F. A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Wang Y, Lugtenburg J. Preparation of (all-E)- and (11Z)-12-Haloretinals and (11Z,13Z)- and (13Z)-14-Haloretinals by the C15 + C5 Route ? Exploring the Possibility of Preparing any Retinoid Rationally Chemically Modified at any Position in the Conjugated Tail. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400488] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Abstract
Structure changes of purple membranes during the photocycle were analysed in solution by measurements of the electric dichroism. The D96N-mutant was used to characterize the M-state at neutral pH. The transition from the resting state to 61% photo-stationary M-state is associated with a strong reduction of the dichroism decay time constant by a factor of approximately 2. Because the change of the time constant is independent of the bacteriorhodopsin concentration, the effect is not attributed to light-induced dissociation but to light-induced bending of purple membranes. After termination of light-activation the dichroism decay of the resting state is restored with a time constant close to that of the M-state decay, which is more than two orders of magnitude slower than proton transfer to the bulk. Thus, bending is not due to asymmetric protonation but to the structure of the M-state. A very similar reduction of decay time constants at a corresponding degree of light-activation was found for wild-type bacteriorhodopsin at pH-values 7.8-9.3, where the lifetime of the M-state is extended. Light-induced bending is also reflected in changes of the stationary dichroism, whereas the overall permanent dipole moment remains almost constant, suggesting compensation of changes in molecular and global contributions. Bead model simulations indicate that disks of approximately 1 microm diameter are bent at a degree of photo-activation of 61% to a radius of approximately 0.25 microm, assuming a cylindrical bending modus. The large light-induced bending effect is consistent with light-induced opening of the protein on the cytoplasmic side of the membrane detected by electron crystallography, which is amplified due to coupling of monomers in the membrane. Bending may function as a mechanical signal.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Fujimoto Y, Ishihara J, Maki S, Fujioka N, Wang T, Furuta T, Fishkin N, Borhan B, Berova N, Nakanishi K. On the bioactive conformation of the rhodopsin chromophore: absolute sense of twist around the 6-s-cis bond. Chemistry 2001; 7:4198-204. [PMID: 11686599 DOI: 10.1002/1521-3765(20011001)7:19<4198::aid-chem4198>3.0.co;2-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Incubation of opsin with synthetic 6-s-locked retinoids 2a and 2b only led to pigment formation from the alpha-locked 2a, the CD spectrum of which was similar to that of native rhodopsin (Rh). This establishes that the 6-s-bond of the chromophore in rhodopsin is cis, and that its helicity is negative. Earlier cross-linking studies showed that the 11-cis to all-trans photoisomerization occurring in the batho-Rh to lumi-Rh conversion induces a flip over of the side carrying the ring moiety. The GTP-binding assay of pigment Rh-(2a), incorporating retinal analogue 2a, has shown that its activity is 80% that of the native pigment. That is, the overall conformation around the 6-s bond is retained in the steps leading to G-protein activation.
Collapse
Affiliation(s)
- Y Fujimoto
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Verhoeven MA, Creemers AF, Bovee-Geurts PH, De Grip WJ, Lugtenburg J, de Groot HJ. Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein receptor target in the natural membrane environment: electronic structure of the retinylidene chromophore in rhodopsin. Biochemistry 2001; 40:3282-8. [PMID: 11258947 DOI: 10.1021/bi0023798] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
11-Z-[8,9,10,11,12,13,14,15,19,20-(13)C10]Retinal prepared by total synthesis is reconstituted with opsin to form rhodopsin in the natural lipid membrane environment. The 13C shifts are assigned with magic angle spinning NMR dipolar correlation spectroscopy in a single experiment and compared with data of singly labeled retinylidene ligands in detergent-solubilized rhodopsin. The use of multispin labeling in combination with 2-D correlation spectroscopy improves the relative accuracy of the shift measurements. We have used the chemical shift data to analyze the electronic structure of the retinylidene ligand at three levels of understanding: (i) by specifying interactions between the 13C-labeled ligand and the G-protein-coupled receptor target, (ii) by making a charge assessment of the protonation of the Schiff base in rhodopsin, and (iii) by evaluating the total charge on the carbons of the retinylidene chromophore. In this way it is shown that a conjugation defect is the predominant ground-state property governing the molecular electronics of the retinylidene chromophore in rhodopsin. The cumulative chemical shifts at the odd-numbered carbons (Delta(sigma)odd) of 11-Z-protonated Schiff base models relative to the unprotonated Schiff base can be used to measure the extent of delocalization of positive charge into the polyene. For a series of 11-Z-protonated Schiff base models and rhodopsin, Delta(sigma)odd appears to correlate linearly with the frequency of maximum visible absorption. Since rhodopsin has the largest value of Delta(sigma)odd, the data contribute to existing and converging spectroscopic evidence for a complex counterion stabilizing the protonated Schiff base in the binding pocket.
Collapse
Affiliation(s)
- M A Verhoeven
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, NL-2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The basis of the duplex theory of vision is examined in view of the dazzling array of data on visual pigment sequences and the pigments they form, on the microspectrophotometry measurements of single photoreceptor cells, on the kinds of photoreceptor cascade enzymes, and on the electrophysiological properties of photoreceptors. The implications of the existence of five distinct visual pigment families are explored, especially with regard to what pigments are in what types of photoreceptors, if there are different phototransduction enzymes associated with different types of photoreceptors, and if there are electrophysiological differences between different types of cones.
Collapse
Affiliation(s)
- T Ebrey
- University of Washington, Seattle 98195, USA
| | | |
Collapse
|
10
|
Abstract
CASSCF and GAUSSIAN CIS calculations were performed on ground and excited states of different conformations of 11-cis-retinal protonated Schiff bases, the chromophore of rhodopsin, in order to study their chiroptical properties and attempt a correlation between absolute conformation and CD-spectral data. Geometries were taken from molecular models, from published rhodopsin models, and from retinal conformations obtained from molecular dynamics with geometry restraints. In all the cases studied we find that a positive sense of twist about the C12-C13 bond correlates with a calculated positive CD of the long wavelength absorption band; the twist of the C6-C7 bond modulates this primary contribution of the C12-C13 bond. The correlation of the beta-band with structural features is not straightforward. Calculations on bathorhodopsin lend support to the idea that this intermediate is a highly twisted all-trans-conformation.
Collapse
Affiliation(s)
- V Buss
- Institut für Physikalische und Theoretische Chemie der Gerhard-Mercator-Universität, D47048 Duisburg, Germany.
| |
Collapse
|
11
|
Khatib S, Tal S, Godsi O, Peskin U, Eichen Y. Site Selective Processes: A Combined Theoretical and Experimental Investigation of Thermally Activated Tautomerization Processes in 2(2,4-Dinitrobenzyl) Pyridine Derivatives. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00497-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Degrip W, Rothschild K. Chapter 1 Structure and mechanism of vertebrate visual pigments. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
|
14
|
Verdegem PJ, Bovee-Geurts PH, de Grip WJ, Lugtenburg J, de Groot HJ. Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. Biochemistry 1999; 38:11316-24. [PMID: 10471281 DOI: 10.1021/bi983014e] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin is the G-protein coupled photoreceptor that initiates the rod phototransduction cascade in the vertebrate retina. Using specific isotope enrichment and magic angle spinning (MAS) NMR, we examine the spatial structure of the C10-C11=C12-C13-C20 motif in the native retinylidene chromophore, its 10-methyl analogue, and the predischarge photoproduct metarhodopsin-I. For the rhodopsin study 11-Z-[10,20-(13)C(2)]- and 11-Z-[11,20-(13)C(2)]-retinal were synthesized and incorporated into bovine opsin while maintaining a natural lipid environment. The ligand is covalently bound to Lys(296) in the photoreceptor. The C10-C20 and C11-C20 distances were measured using a novel 1-D CP/MAS NMR rotational resonance experimental procedure that was specifically developed for the purpose of these measurements [Verdegem, P. J. E., Helmle, M., Lugtenburg, J., and de Groot, H. J. M. (1997) J. Am. Chem. Soc. 119, 169]. We obtain r(10,20) = 0.304 +/- 0.015 nm and r(11,20) = 0.293 +/- 0.015 nm, which confirms that the retinylidene is 11-Z and shows that the C10-C13 unit is conformationally twisted. The corresponding torsional angle is about 44 degrees as indicated by Car-Parrinello modeling studies. To increase the nonplanarity in the chromophore, 11-Z-[10,20-(13)C(2)]-10-methylretinal and 11-Z-[(10-CH(3)), 13-(13)C(2)]-10-methylretinal were prepared and incorporated in opsin. For the resulting analogue pigment r(10,20) = 0.347 +/- 0.015 nm and r((10)(-)(CH)()3())(,)(13) = 0.314 +/- 0.015 nm were obtained, consistent with a more distorted chromophore. The analogue data are in agreement with the induced fit principle for the interaction of opsin with modified retinal chromophores. Finally, we determined the intraligand distances r(10,20) and r(11,20) also for the photoproduct metarhodopsin-I, which has a relaxed all-E structure. The results (r(10,20) >/= 0.435 nm and r(11,20) = 0.283 +/- 0.015 nm) fully agree with such a relaxed all-E structure, which further validates the 1-D rotational resonance technique for measuring intraligand distances and probing ligand structure. As far as we are aware, these results represent the first highly precise distance determinations in a ligand at the active site of a membrane protein. Overall, the MAS NMR data indicate a tight binding pocket, well defined to bind specifically only one enantiomer out of four possibilities and providing a steric complement to the chromophore in an ultrafast ( approximately 200 fs) isomerization process.
Collapse
Affiliation(s)
- P J Verdegem
- Leiden Institute of Chemistry, Gorlaeus Laboratories, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Creemers AF, Klaassen CH, Bovee-Geurts PH, Kelle R, Kragl U, Raap J, de Grip WJ, Lugtenburg J, de Groot HJ. Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin. Biochemistry 1999; 38:7195-9. [PMID: 10353830 DOI: 10.1021/bi9830157] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the baculovirus/Sf9 cell expression system, we have incorporated 99% 15N-enriched [alpha,epsilon-15N2]-L-lysine into the rod visual pigment rhodopsin. We have subsequently investigated the protonated Schiff base (pSB) linkage in the [alpha, epsilon-15N2]Lys-rhodopsin with cross-polarization magic angle spinning (CP/MAS) 15N NMR. The Schiff base (SB) 15N in [alpha, epsilon-15N2]Lys-rhodopsin resonates with an isotropic shift sigmaI of 155.9 ppm, relative to 5.6 M 15NH4Cl. This suggests that the SB in rhodopsin is protonated and stabilized by a complex counterion. The 15N shifts of retinal SBs correlate with the energy difference between the ground and excited states and the frequency of maximum visible absorbance, numax, associated with the pi-pi transition of the polyene chromophore. Experimental modeling of the relation between the numax and the size of the counterion with a set of pSBs provides strong evidence that the charged chromophore in rhodopsin is stabilized by a counterion with an estimated effective center-center distance (deff) between the counterion and the pSB of 0.43 +/- 0.01 nm. While selected prokaryotic proteins and complexes have been labeled before, this is the first time to our knowledge that a 15N-labeled eukaryotic membrane protein has been generated in sufficient amount for such NMR investigations.
Collapse
Affiliation(s)
- A F Creemers
- Leiden Institute of Chemistry, Leiden University, RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Synthesis of new heterocyclic and polycyclic aromatic retinals and their bacteriorhodopsin analogues. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)00263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Recent studies on rhodopsin structure and function are reviewed and the properties of vertebrate as well as invertebrate rhodopsin described. Open issues such as the 'red shift' of the absorbance spectra are emphasized in the light of the present model of the retinal-binding pocket. The processes that restore the rhodopsin content in photoreceptors are also presented with a comparison between vertebrate and invertebrate visual systems. The central role of rhodopsin in the phototransduction cascade becomes evident by examining the main reports on light-activated conformational changes of rhodopsin and its interaction with transducin. Shut-off mechanisms are considered by reporting the studies on the sites of rhodopsin phosphorylation and arrestin binding. Furthermore, recent findings on the energetics of phototransduction point out that the ATP needed for photoreception in vertebrates is synthesized in the outer segments where phototransduction events take place.
Collapse
Affiliation(s)
- I M Pepe
- Institute of Biophysics, Faculty of Medicine, University of Genoa, Italy.
| |
Collapse
|
18
|
DeLange F, Klaassen CH, Wallace-Williams SE, Bovee-Geurts PH, Liu XM, DeGrip WJ, Rothschild KJ. Tyrosine structural changes detected during the photoactivation of rhodopsin. J Biol Chem 1998; 273:23735-9. [PMID: 9726981 DOI: 10.1074/jbc.273.37.23735] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present the first Fourier transform infrared (FTIR) analysis of an isotope-labeled eukaryotic membrane protein. A combination of isotope labeling and FTIR difference spectroscopy was used to investigate the possible involvement of tyrosines in the photoactivation of rhodopsin (Rho). Rho --> MII difference spectra were obtained at 10 degrees C for unlabeled recombinant Rho and isotope-labeled L-[ring-2H4]Tyr-Rho expressed in Spodoptera frugiperda cells grown on a stringent culture medium containing enriched L-[ring-2H4]Tyr and isolated using a His6 tag. A comparison of these difference spectra revealed reproducible changes in bands that correspond to tyrosine and tyrosinate vibrational modes. A similar pattern of tyrosine/tyrosinate bands has also been observed in the bR --> M transition in bacteriorhodopsin, although the sign of the bands is reversed. In bacteriorhodopsin, these bands were assigned to Tyr-185, which along with Pro-186 in the F-helix, may form a hinge that facilitates alpha-helix movement.
Collapse
Affiliation(s)
- F DeLange
- Department of Biochemistry, Institute of Cellular Signalling, University of Nijmegen, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Terstegen F, Buß V. Geometries and interconversion pathways of free and protonated β-ionone Schiff bases. An ab initio study of photoreceptor chromophore model compounds. Chem Phys 1997. [DOI: 10.1016/s0301-0104(97)00194-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Rousso I, Khachatryan E, Gat Y, Brodsky I, Ottolenghi M, Sheves M, Lewis A. Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin. Proc Natl Acad Sci U S A 1997; 94:7937-41. [PMID: 9223291 PMCID: PMC21533 DOI: 10.1073/pnas.94.15.7937] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this paper a new atomic force sensing technique is presented for dynamically probing conformational changes in proteins. The method is applied to the light-induced changes in the membrane-bound proton pump bacteriorhodopsin (bR). The microsecond time-resolution of the method, as presently implemented, covers many of the intermediates of the bR photocycle which is well characterized by spectroscopical methods. In addition to the native pigment, we have studied bR proteins substituted with chemically modified retinal chromophores. These synthetic chromophores were designed to restrict their ability to isomerize, while maintaining the basic characteristic of a large light-induced charge redistribution in the vertically excited Franck-Condon state. An analysis of the atomic force sensing signals lead us to conclude that protein conformational changes in bR can be initiated as a result of a light-triggered redistribution of electronic charge in the retinal chromophore, even when isomerization cannot take place. Although the coupling mechanism of such changes to the light-induced proton pump is still not established, our data question the current working hypothesis which attributes all primary events in retinal proteins to an initial trans<==>cis isomerization.
Collapse
Affiliation(s)
- I Rousso
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Brown MF. Chapter 8 Influence of Nonlamellar-Forming Lipids on Rhodopsin. CURRENT TOPICS IN MEMBRANES 1997. [DOI: 10.1016/s0070-2161(08)60212-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|