1
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Haberkorn A, Özbagci B, Gruhn M, Büschges A. Optical inactivation of a proprioceptor in an insect by non-genetic tools. J Neurosci Methods 2021; 363:109322. [PMID: 34391793 DOI: 10.1016/j.jneumeth.2021.109322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The specific role of sensory organs in locomotor pattern generation is traditionally investigated by means of mechanical ablation in arthropods that currently do not allow genetic manipulation. Mechanical ablation is irreversible, and may lead to injury discharges and changes in the structural integrity of the cuticle. NEW METHOD Here, we present a new method to temporarily or permanently deprive parts of an insect nervous system of sensory feedback from leg proprioceptors by means of blue light application. We illuminated campaniform sensilla (CS) with a blue LED (420-480 nm) or a 473 nm laser at different light intensities to optically eliminate sensory and motor neuron responses to mechanical stimulation. RESULTS We were able to eliminate all stimulus-evoked responses of CS. Individual CS groups were precisely and selectively inactivated without affecting nearby proprioceptors, using an optical fiber (Ø 200 µm) to guide the light. Our results demonstrated that lower light intensities significantly increase the required exposure time, but also the chance for recovery, thus making the effect reversible. COMPARISON WITH EXISTING METHODS In contrast to mechanical ablation, optical inactivation of individual sensory organs is non-invasive and does not affect the behavioral state of the animal, nor does it induce escape behavior. This is especially relevant in non-model system experimental animals where optogenetic manipulation cannot be used, due to a lack of established methods of access. CONCLUSION Our results show that the proposed method is a reliable alternative to mechanical ablation and can be successfully applied to the CS, as it fulfills all requirements regarding selectivity, efficiency, and reproducibility.
Collapse
Affiliation(s)
- Anna Haberkorn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Burak Özbagci
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
3
|
Functional Mechanism of Cl --Pump Rhodopsin and Its Conversion into H + Pump. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:55-71. [PMID: 33398807 DOI: 10.1007/978-981-15-8763-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cl--pump rhodopsin is the second discovered microbial rhodopsin. Although its physiological role has not been fully clarified, its functional mechanism has been studied as a model for anion transporters. After the success of neural activation by channel rhodopsin, the first Cl--pump halorhodopsin (HR) had become widely used as a neural silencer. The emergence of artificial and natural anion channel rhodopsins lowered the importance of HRs. However, the longer absorption maxima of approximately 585-600 nm for HRs are still advantageous for applications in mammalian brains and collaborations with neural activators possessing shorter absorption maxima. In this chapter, the variation and functional mechanisms of Cl- pumps are summarized. After the discovery of HR, Cl--pump rhodopsins were confined to only extremely halophilic haloarchaea. However, after 2014, two Cl--pump groups were newly discovered in marine and terrestrial bacteria. These Cl- pumps are phylogenetically distinct from HRs and have unique characteristics. In particular, the most recently identified Cl- pump has close similarity with the H+ pump bacteriorhodopsin and was converted into the H+ pump by a single amino acid replacement.
Collapse
|
4
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
5
|
Hasemi T, Kikukawa T, Watanabe Y, Aizawa T, Miyauchi S, Kamo N, Demura M. Photochemical study of a cyanobacterial chloride-ion pumping rhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:136-146. [PMID: 30529327 DOI: 10.1016/j.bbabio.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Mastigocladopsis repens halorhodopsin (MrHR) is a Cl--pumping rhodopsin that belongs to a distinct cluster far from other Cl- pumps. We investigated its pumping function by analyzing its photocycle and the effect of amino acid replacements. MrHR can bind I- similar to Cl- but cannot transport it. I--bound MrHR undergoes a photocycle but lacks the intermediates after L, suggesting that, in the Cl--pumping photocycle, Cl- moves to the cytoplasmic (CP) channel during L decay. A photocycle similar to that of the I--bound form was also observed for a mutant of the Asp200 residue, which is superconserved and assumed to be deprotonated in most microbial rhodopsins. This residue is probably close to the Cl--binding site and the protonated Schiff base, in which a chromophore retinal binds to a specific Lys residue. However, the D200N mutation affected neither the Cl--binding affinity nor the absorption spectrum, but completely eliminated the Cl--pumping function. Thus, the Asp200 residue probably protonates in the dark state but deprotonates during the photocycle. Indeed, a H+ release was detected for photolyzed MrHR by using an indium‑tin oxide electrode, which acts as a good time-resolved pH sensor. This H+ release disappeared in the I--bound form of the wild-type and Cl--bound form of the D200N mutant. Thus, Asp200 residue probably deprotonates during L decay and then drives the Cl- movement to the CP channel.
Collapse
Affiliation(s)
- Takatoshi Hasemi
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan.
| | - Yumi Watanabe
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Seiji Miyauchi
- Graduate School of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
6
|
Engelhard C, Chizhov I, Siebert F, Engelhard M. Microbial Halorhodopsins: Light-Driven Chloride Pumps. Chem Rev 2018; 118:10629-10645. [DOI: 10.1021/acs.chemrev.7b00715] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, OE8830 Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Albert-Ludwigs-Universität Freiburg, Hermann-Herderstr. 9, 79104 Freiburg, Germany
| | - Martin Engelhard
- Max Planck Institute for Molecular Physiology, Otto Hahn Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
8
|
Maresca JA, Keffer JL, Miller KJ. Biochemical Analysis of Microbial Rhodopsins. ACTA ACUST UNITED AC 2016; 41:1F.4.1-1F.4.18. [PMID: 27153387 DOI: 10.1002/cpmc.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ion-pumping rhodopsins transfer ions across the microbial cell membrane in a light-dependent fashion. As the rate of biochemical characterization of microbial rhodopsins begins to catch up to the rate of microbial rhodopsin identification in environmental and genomic sequence data sets, in vitro analysis of their light-absorbing properties and in vivo analysis of ion pumping will remain critical to characterizing these proteins. As we learn more about the variety of physiological roles performed by microbial rhodopsins in different cell types and environments, observing the localization patterns of the rhodopsins and/or quantifying the number of rhodopsin-bearing cells in natural environments will become more important. Here, we provide protocols for purification of rhodopsin-containing membranes, detection of ion pumping, and observation of functional rhodopsins in laboratory and environmental samples using total internal reflection fluorescence microscopy. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Julia A Maresca
- University of Delaware, Department of Civil and Environmental Engineering, Newark, Delaware
| | - Jessica L Keffer
- University of Delaware, Department of Civil and Environmental Engineering, Newark, Delaware
| | - Kelsey J Miller
- University of Delaware, Department of Biological Sciences, Newark, Delaware
| |
Collapse
|
9
|
Hasemi T, Kikukawa T, Kamo N, Demura M. Characterization of a Cyanobacterial Chloride-pumping Rhodopsin and Its Conversion into a Proton Pump. J Biol Chem 2015; 291:355-62. [PMID: 26578511 DOI: 10.1074/jbc.m115.688614] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
Light-driven ion-pumping rhodopsins are widely distributed in microorganisms and are now classified into the categories of outward H(+) and Na(+) pumps and an inward Cl(-) pump. These different types share a common protein architecture and utilize the photoisomerization of the same chromophore, retinal, to evoke photoreactions. Despite these similarities, successful pump-to-pump conversion had been confined to only the H(+) pump bacteriorhodopsin, which was converted to a Cl(-) pump in 1995 by a single amino acid replacement. In this study we report the first success of the reverse conversion from a Cl(-) pump to a H(+) pump. A novel microbial rhodopsin (MrHR) from the cyanobacterium Mastigocladopsis repens functions as a Cl(-) pump and belongs to a cluster that is far distant from the known Cl(-) pumps. With a single amino acid replacement, MrHR is converted to a H(+) pump in which dissociable residues function almost completely in the H(+) relay reactions. MrHR most likely evolved from a H(+) pump, but it has not yet been highly optimized into a mature Cl(-) pump.
Collapse
Affiliation(s)
- Takatoshi Hasemi
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- From the Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Affiliation(s)
- Sansa Dutta
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lev Weiner
- Department
of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Schreiner M, Schlesinger R, Heberle J, Niemann HH. Structure of Halorhodopsin from Halobacterium salinarum in a new crystal form that imposes little restraint on the E-F loop. J Struct Biol 2015; 190:373-8. [PMID: 25916754 DOI: 10.1016/j.jsb.2015.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Halorhodopsin from the halophilic archaeon Halobacterium salinarum is a membrane located light-driven chloride pump. Upon illumination Halorhodopsin undergoes a reversible photocycle initiated by the all-trans to 13-cis isomerization of the covalently bound retinal chromophore. The photocycle consists of several spectroscopically distinct intermediates. The structural basis of the chloride transport mechanism remains elusive, presumably because packing contacts have so far precluded protein conformational changes in the available crystals. With the intention to structurally characterize late photocycle intermediates by X-ray crystallography we crystallized Halorhodopsin in a new crystal form using the vesicle fusion method. In the new crystal form lateral contacts are mediated by helices A and G. Helices E and F that were suggested to perform large movements during the photocycle are almost unrestrained by packing contacts. This feature might permit the displacement of these helices without disrupting the crystal lattice. Therefore, this new crystal form might be an excellent system for the structural characterization of late Halorhodopsin photocycle intermediates by trapping or by time resolved experiments, especially at XFELs.
Collapse
Affiliation(s)
- Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
12
|
Balashov SP, Imasheva ES, Dioumaev A, Wang JM, Jung KH, Lanyi JK. Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle. Biochemistry 2014; 53:7549-61. [PMID: 25375769 PMCID: PMC4263435 DOI: 10.1021/bi501064n] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/17/2014] [Indexed: 02/06/2023]
Abstract
A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type.
Collapse
Affiliation(s)
- Sergei P. Balashov
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Eleonora S. Imasheva
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Andrei
K. Dioumaev
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Jennifer M. Wang
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| | - Kwang-Hwan Jung
- Department
of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Korea
| | - Janos K. Lanyi
- Department
of Physiology and Biophysics, University
of California, Irvine, California 92697, United States
| |
Collapse
|
13
|
Penzkofer A, Luck M, Mathes T, Hegemann P. Bistable retinal schiff base photodynamics of histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii. Photochem Photobiol 2014; 90:773-85. [PMID: 24460585 DOI: 10.1111/php.12246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/21/2014] [Indexed: 11/28/2022]
Abstract
The photodynamics of the recombinant rhodopsin fragment of the histidine kinase rhodopsin HKR1 from Chlamydomonas reinhardtii was studied by absorption and fluorescence spectroscopy. The retinal cofactor of HKR1 exists in two Schiff base forms RetA and RetB. RetA is the deprotonated 13-cis-retinal Schiff base (RSB) absorbing in the UVA spectral region. RetB is the protonated all-trans RSB absorbing in the blue spectral region. Blue light exposure converts RetB fully to RetA. UVA light exposure converts RetA to RetB and RetB to RetA giving a mixture determined by their absorption cross sections and their conversion efficiencies. The quantum efficiencies of conversion of RetA to RetB and RetB to RetA were determined to be 0.096 ± 0.005 and 0.405 ± 0.01 respectively. In the dark thermal equilibration between RetA and RetB with dominant RetA content occurred with a time constant of about 3 days at room temperature. The fluorescence emission behavior of RetA and RetB was studied, and fluorescence quantum yields of ϕ(F) (RetA) = 0.00117 and ϕ(F) (RetB) = 9.4 × 10(-5) were determined. Reaction coordinate schemes of the photodynamics are developed.
Collapse
Affiliation(s)
- Alfons Penzkofer
- Fakultät für Physik, Universität Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
14
|
Shibasaki K, Shigemura H, Kikukawa T, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Thr218 in the light-driven anion pump halorhodopsin from Natronomonas pharaonis. Biochemistry 2013; 52:9257-68. [PMID: 24298916 DOI: 10.1021/bi401295e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Halorhodopsin (HR) is an inward-directed light-driven halogen ion pump, and NpHR is a HR from Natronomonas pharaonis. Unphotolyzed NpHR binds halogen ion in the vicinity of the Schiff base, which links retinal to Lys256. This halogen ion is transported during the photocycle. We made various mutants of Thr218, which is located one half-turn up from the Schiff base to the cytoplasm (CP) channel, and analyzed the photocycle using a sequential irreversible model. Four photochemically defined intermediates (P(i), i = 1-4) were adequate to describe the photocycle. The third component, P₃, was a quasi-equilibrium complex between the N and O intermediates, where a N ↔ O + Cl⁻ equilibrium was attained. The K(d,N↔O) values of this equilibrium for various mutants were determined, and the value of Thr (wild type) was the highest. The partial molar volume differences between N and O, ΔV(N→O), were estimated from the pressure dependence of K(d,N↔O). A comparison between K(d,N↔O) and ΔV(N→O) led to the conclusion that water entry by the F-helix opening at O may occur, which may increase K(d,N↔O). For some mutants, however, large ΔV(N→O) values were found, whereas the K(d,N↔O) values were small. This suggests that the special coordination of a water molecule with the OH group of Thr is necessary for the increase in K(d,N↔O). Mutants with a small K(d,N↔O) showed low pumping activities in the presence of inside negative membrane potential, while the mutant activities were not different in the absence of membrane potential. The effect of the mutation on the pumping activities is discussed.
Collapse
Affiliation(s)
- Kousuke Shibasaki
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Grote M, Engelhard M, Hegemann P. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:533-45. [PMID: 23994288 DOI: 10.1016/j.bbabio.2013.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
We present a historical overview of research on microbial rhodopsins ranging from the 1960s to the present date. Bacteriorhodopsin (BR), the first identified microbial rhodopsin, was discovered in the context of cell and membrane biology and shown to be an outward directed proton transporter. In the 1970s, BR had a big impact on membrane structural research and bioenergetics, that made it to a model for membrane proteins and established it as a probe for the introduction of various biophysical techniques that are widely used today. Halorhodopsin (HR), which supports BR physiologically by transporting negatively charged Cl⁻ into the cell, is researched within the microbial rhodopsin community since the late 1970s. A few years earlier, the observation of phototactic responses in halobacteria initiated research on what are known today as sensory rhodopsins (SR). The discovery of the light-driven ion channel, channelrhodopsin (ChR), serving as photoreceptors for behavioral responses in green alga has complemented inquiries into this photoreceptor family. Comparing the discovery stories, we show that these followed quite different patterns, albeit the objects of research being very similar. The stories of microbial rhodopsins present a comprehensive perspective on what can nowadays be considered one of nature's paradigms for interactions between organisms and light. Moreover, they illustrate the unfolding of this paradigm within the broader conceptual and instrumental framework of the molecular life sciences. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Mathias Grote
- Institut für Philosophie, Literatur-, Wissenschafts- und Technikgeschichte, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Martin Engelhard
- Max Planck Institut für Molekulare Physiologie, Otto Hahn Str. 11, 44227 Dortmund, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
16
|
Pal R, Sekharan S, Batista VS. Spectral Tuning in Halorhodopsin: The Chloride Pump Photoreceptor. J Am Chem Soc 2013; 135:9624-7. [DOI: 10.1021/ja404600z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rhitankar Pal
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| | - Sivakumar Sekharan
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| |
Collapse
|
17
|
Pokhrel R, McConnell IL, Brudvig GW. Chloride regulation of enzyme turnover: application to the role of chloride in photosystem II. Biochemistry 2011; 50:2725-34. [PMID: 21366335 DOI: 10.1021/bi2000388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chloride-dependent α-amylases, angiotensin-converting enzyme (ACE), and photosystem II (PSII) are activated by bound chloride. Chloride-binding sites in these enzymes contain a positively charged Arg or Lys residue crucial for chloride binding. In α-amylases and ACE, removal of chloride from the binding site triggers formation of a salt bridge between the positively charged Arg or Lys residue involved in chloride binding and a nearby carboxylate residue. The mechanism for chloride activation in ACE and chloride-dependent α-amylases is 2-fold: (i) correctly positioning catalytic residues or other residues involved in stabilizing the enzyme-substrate complex and (ii) fine-tuning of the pKa of a catalytic residue. By using examples of how chloride activates α-amylases and ACE, we can gain insight into the potential mechanisms by which chloride functions in PSII. Recent structural evidence from cyanobacterial PSII indicates that there is at least one chloride-binding site in the vicinity of the oxygen-evolving complex (OEC). Here we propose that, in the absence of chloride, a salt bridge between D2:K317 and D1:D61 (and/or D1:E333) is formed. This can cause a conformational shift of D1:D61 and lower the pKa of this residue, making it an inefficient proton acceptor during the S-state cycle. Movement of the D1:E333 ligand and the adjacent D1:H332 ligand due to chloride removal could also explain the observed change in the magnetic properties of the manganese cluster in the OEC upon chloride depletion.
Collapse
Affiliation(s)
- Ravi Pokhrel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | | | | |
Collapse
|
18
|
Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K. Crystal Structure of the Light-Driven Chloride Pump Halorhodopsin from Natronomonas pharaonis. J Mol Biol 2010; 396:564-79. [DOI: 10.1016/j.jmb.2009.11.061] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
19
|
Yamashita H, Voïtchovsky K, Uchihashi T, Contera SA, Ryan JF, Ando T. Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J Struct Biol 2009; 167:153-8. [DOI: 10.1016/j.jsb.2009.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
20
|
Inoue K, Kubo M, Demura M, Kamo N, Terazima M. Reaction dynamics of halorhodopsin studied by time-resolved diffusion. Biophys J 2009; 96:3724-34. [PMID: 19413978 DOI: 10.1016/j.bpj.2008.12.3932] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/24/2008] [Accepted: 12/31/2008] [Indexed: 11/26/2022] Open
Abstract
Reaction dynamics of a chloride ion pump protein, halorhodopsin (HR), from Natronomonas pharaonis (N. pharaonis) (NpHR) was studied by the pulsed-laser-induced transient grating (TG) method. A detailed investigation of the TG signal revealed that there is a spectrally silent diffusion process besides the absorption-observable reaction dynamics. We interpreted these dynamics in terms of release, diffusion, and uptake of the Cl(-) ion. From a quantitative global analysis of the signals at various grating wavenumbers, it was concluded that the release of the Cl(-) ion is associated with the L2 --> (L2 (or N) <==> O) process, and uptake of Cl(-) occurs with the (L2 (or N) <==> O) -->NpHR' process. The diffusion coefficient of NpHR solubilized in a detergent did not change during the cyclic reaction. This result contrasts the behavior of many photosensor proteins and implies that the change in the H-bond network from intra- to intermolecular is not significant for the activity of this protein pump.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
21
|
Sobotta C, Braun M, Tittor J, Oesterhelt D, Zinth W. Influence of the charge at D85 on the initial steps in the photocycle of bacteriorhodopsin. Biophys J 2009; 97:267-76. [PMID: 19580764 DOI: 10.1016/j.bpj.2009.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 03/25/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022] Open
Abstract
Studies have shown that trans-cis isomerization of retinal is the primary photoreaction in the photocycle of the light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum, as well as in the photocycle of the chloride pump halorhodopsin (HR). The transmembrane proteins HR and BR show extensive structural similarities, but differ in the electrostatic surroundings of the retinal chromophore near the protonated Schiff base. Point mutation of BR of the negatively charged aspartate D85 to a threonine T (D85T) in combination with variation of the pH value and anion concentration is used to study the ultrafast photoisomerization of BR and HR for well-defined electrostatic surroundings of the retinal chromophore. Variations of the pH value and salt concentration allow a switch in the isomerization dynamics of the BR mutant D85T between BR-like and HR-like behaviors. At low salt concentrations or a high pH value (pH 8), the mutant D85T shows a biexponential initial reaction similar to that of HR. The combination of high salt concentration and a low pH value (pH 6) leads to a subpopulation of 25% of the mutant D85T whose stationary and dynamic absorption properties are similar to those of native BR. In this sample, the combination of low pH and high salt concentration reestablishes the electrostatic surroundings originally present in native BR, but only a minor fraction of the D85T molecules have the charge located exactly at the position required for the BR-like fast isomerization reaction. The results suggest that the electrostatics in the native BR protein is optimized by evolution. The accurate location of the fixed charge at the aspartate D85 near the Schiff base in BR is essential for the high efficiency of the primary reaction.
Collapse
Affiliation(s)
- Constanze Sobotta
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
22
|
Song Y, Gunner M. Using Multiconformation Continuum Electrostatics to Compare Chloride Binding Motifs in α-Amylase, Human Serum Albumin, and Omp32. J Mol Biol 2009; 387:840-56. [DOI: 10.1016/j.jmb.2009.01.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Pfisterer C, Gruia A, Fischer S. The mechanism of photo-energy storage in the Halorhodopsin chloride pump. J Biol Chem 2009; 284:13562-13569. [PMID: 19211559 DOI: 10.1074/jbc.m808787200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The light-driven pump Halorhodopsin (hR) uses the energy stored in an initial meta-stable state (K), in which the bound retinal chromophore has been photoisomerized from all-trans to 13-cis, to drive the translocation of one chloride anion across the membrane. Thus far it was unclear whether retinal twisting or charge separation between the positive Schiff base of the retinal and the chloride anion is the primary mechanism of energy storage. Here, combined quantum mechanical/molecular mechanical (QM/MM) simulations show that the energy is predominantly stored by charge separation. However, a large variability in retinal twisting is observed, thus reconciling the contradictory hypotheses for storage. Surprisingly, the energy stored in the K-state amounts to only one-fifth of the photon energy. We explain why the protein cannot store more: even though this would accelerate chloride pumping, raising the K-state also reduces the relative energy barriers against unproductive decay, in particular via the premature cis to trans back-isomerization. Indeed, the protein has maximized its storage so that the back-isomerization barriers are just high enough (> or =18 kcal/mol) to keep the decay rate (1/100 ms) slower than the remaining photocycle (1/20 ms). This need to stabilize the captured photon-energy until it can be used in subsequent steps is inherent to light-driven proteins.
Collapse
Affiliation(s)
- Christoph Pfisterer
- Computational Biochemistry Group, IWR, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andreea Gruia
- Computational Biochemistry Group, IWR, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Fischer
- Computational Biochemistry Group, IWR, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Sasaki T, Kubo M, Kikukawa T, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Halorhodopsin fromNatronomonas pharaonisForms a Trimer Even in the Presence of a Detergent, Dodecyl-β-d-maltoside. Photochem Photobiol 2009; 85:130-6. [DOI: 10.1111/j.1751-1097.2008.00406.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Nakamura T, Takeuchi S, Shibata M, Demura M, Kandori H, Tahara T. Ultrafast Pump−Probe Study of the Primary Photoreaction Process in pharaonis Halorhodopsin: Halide Ion Dependence and Isomerization Dynamics. J Phys Chem B 2008; 112:12795-800. [DOI: 10.1021/jp803282s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Takumi Nakamura
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Mikihiro Shibata
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Makoto Demura
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideki Kandori
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan, Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, and Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
26
|
Klare JP, Chizhov I, Engelhard M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 2007; 45:73-122. [PMID: 17898961 DOI: 10.1007/400_2007_041] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Microbial rhodopsins have been intensively researched for the last three decades. Since the discovery of bacteriorhodopsin, the scope of microbial rhodopsins has been considerably extended, not only in view of the large number of family members, but also their functional properties as pumps, sensors, and channels. In this review, we give a short overview of old and newly discovered microbial rhodopsins, the mechanism of signal transfer and ion transfer, and we discuss structural and mechanistic aspects of phototaxis.
Collapse
Affiliation(s)
- Johann P Klare
- Fachbereich Physik, University Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | | | | |
Collapse
|
27
|
Losi A, Wegener AA, Engelhard M, Braslavsky SE. Thermodynamics of the Early Steps in the Photocycle of Natronobacterium pharaonis Halorhodopsin. Influence of Medium and of Anion Substitution†¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740495totesi2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Mevorat-Kaplan K, Brumfeld V, Engelhard M, Sheves M. The protonated Schiff base of halorhodopsin from Natronobacterium pharaonis is hydrolyzed at elevated temperatures. Photochem Photobiol 2007; 82:1414-21. [PMID: 16602834 DOI: 10.1562/2005-12-16-ra-756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Halorhodopsin from Natronobacterium pharaonis (pHR) is a light-driven chloride pump in which photoisomerzation of a retinal chromophore triggers a photocycle which leads to a chloride anion transport across the plasma membrane. Similarly to other retinal proteins the protonated Schiff base (PSB), which covalently links the retinal to the protein, does not experience hydrolysis reaction at room temperature even though several water molecules are located in the protonated Schiff base (PSB) vicinity. In the present studies we have revealed that in contrast to other studied archaeal rhodopsins, temperature increase to about 70 degrees C hydrolyses the PSB linkage of pHR. The rate of the reaction is affected by Cl-concentration and reveals an anion binding site (in addition to the Cl- in the SB vicinity) with a binding constant of 100mM (measured at 70 degrees C). We suggest that this binding site is located on the extracellular side and its possible role in the Cl-pumping mechanism is discussed. The rate of the hydrolysis reaction is affected by the nature of the anion bound to pHR. Substitution of the Cl- anion by Br-, I- and SCN- exhibits similar behavior to that of CI- in the region of 100mM but higher concentrations are needed for N3-, HCOO- and NO2-to achieve similar behavior. Steady state pigment illumination accelerates the reaction and reduces the energy of activation and the frequency factor. Adjusting the sample temperature to 25 degrees C following the hydrolysis reaction led to about 80% pigment recovery. However, the newly reformed pigment is different from the mother pigment and has different characteristics. It is concluded that the apo-membrane adopts a modified conformation and/or aggregated state which rebinds the retinal to give a new conformation of the pHR pigment.
Collapse
Affiliation(s)
- Keren Mevorat-Kaplan
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
29
|
Gmelin W, Zeth K, Efremov R, Heberle J, Tittor J, Oesterhelt D. The Crystal Structure of the L1 Intermediate of Halorhodopsin at 1.9 Å Resolution†. Photochem Photobiol 2007; 83:369-77. [PMID: 17117890 DOI: 10.1562/2006-06-23-ra-947] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mutant T203V of the light driven chloride pump halorhodopsin from Halobacterium salinarum was crystallized and the X-ray structure was solved at 1.6 angstroms resolution. The T203V structure turned out to be nearly identical to the wild type protein with a root mean square deviation of 0.43 angstroms for the carbon alpha atoms of the protein backbone. Two chloride binding (CB) sites were demonstrated by a substitution of chloride with bromide and an analysis of anomalous difference Fourier maps. The CB1 site was found at the same position as in the wild type structure. In addition, a second chloride binding site CB2 was identified around Q105 due to higher resolution in the mutant crystal. As T203V showed a 10 times slower decay of its photocycle intermediate L, this intermediate could be trapped with an occupancy of 60% upon illumination at room temperature and subsequent cooling to 120 degrees K. Fourier transform infrared spectroscopy clearly identified the crystal to be trapped in the L1 intermediate state and the X-ray structure was solved to 1.9 angstroms resolution. In this intermediate, the chloride moved by 0.3 angstroms within binding site CB1 as indicated by peaks in difference Fourier density maps. The chloride in the second binding site CB2 remained unchanged. Thus, intraproteinous chloride translocation from the extracellular to the cytoplasmic part of the protein must occur in reaction steps following the L1 intermediate in the catalytic cycle of halorhodopsin.
Collapse
Affiliation(s)
- Walter Gmelin
- Max Planck Institute of Biochemistry, Department of Membrane Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Mevorat-Kaplan K, Brumfeld V, Engelhard M, Sheves M. The Protonated Schiff Base of Halorhodopsin from Natronobacterium pharaonis is Hydrolyzed at Elevated Temperatures. Photochem Photobiol 2006. [DOI: 10.1111/j.1751-1097.2006.tb09793.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Lanyi JK. Proton transfers in the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1012-8. [PMID: 16376293 DOI: 10.1016/j.bbabio.2005.11.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 11/23/2022]
Abstract
The steps in the mechanism of proton transport in bacteriorhodopsin include examples for most kinds of proton transfer reactions that might occur in a transmembrane pump: proton transfer via a bridging water molecule, coupled protonation/deprotonation of two buried groups separated by a considerable distance, long-range proton migration over a hydrogen-bonded aqueous chain, and capture as well as release of protons at the membrane-water interface. The conceptual and technical advantages of this system have allowed close examination of many of these model reactions, some at an atomic level.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
Gruia AD, Bondar AN, Smith JC, Fischer S. Mechanism of a molecular valve in the halorhodopsin chloride pump. Structure 2005; 13:617-27. [PMID: 15837200 DOI: 10.1016/j.str.2005.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/23/2004] [Accepted: 01/08/2005] [Indexed: 11/30/2022]
Abstract
Halorhodopsin is a light-driven chloride anion pump in which the trans-->cis photoisomerization of a retinal chromophore triggers a photocycle resulting in the translocation of chloride across the plasma membrane. The mechanism of chloride transfer past the cis retinal is determined here by computing multiple pathways for this process. The calculations reveal two conditions of the valve mechanism. First, a lumen absent in the ground state structure is transiently opened by chloride passage. Second, this activated opening, which is achieved by flexible deformation of the surrounding protein, is shown to significantly raise the chloride translocation barrier between photocycles, thus preventing chloride backflow. Unlike macroscopic valve designs, the protein allows differential ion flows in the pumping and resting states that are tuned to match the physiological timescales of the cell, thus creating a "kinetic" valve.
Collapse
Affiliation(s)
- Andreea D Gruia
- Computational Biochemistry, IWR, Heidelberg University, Im Neuenheimer Feld 368, D-69210 Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
Weston AD, Baliga NS, Bonneau R, Hood L. Systems approaches applied to the study of Saccharomyces cerevisiae and Halobacterium sp. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:345-57. [PMID: 15338636 DOI: 10.1101/sqb.2003.68.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A D Weston
- Institute for Systems Biology, Seattle, Washington 98103-8904, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Two major types of environment provide habitats for the most xerophilic organisms known: foods preserved by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (a(w)) of 0.61, the lowest a(w) value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (a(w) 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called 'compatible solutes' (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloarchaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods.
Collapse
Affiliation(s)
- W D Grant
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Building, University Road, Leicester LE1 9HN, UK.
| |
Collapse
|
35
|
Müller V, Oren A. Metabolism of chloride in halophilic prokaryotes. Extremophiles 2003; 7:261-6. [PMID: 12728360 DOI: 10.1007/s00792-003-0332-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2002] [Accepted: 03/26/2003] [Indexed: 10/26/2022]
Abstract
While much understanding has been achieved on the intracellular sodium and potassium concentrations of halophilic and halotolerant microorganisms and on their regulation, we know little on the metabolism of anions. Archaea of the family Halobacteriaceae contain molar concentrations of chloride, which is pumped into the cells by cotransport with sodium ions and/or using the light-driven primary chloride pump halorhodopsin. Most halophilic and halotolerant representatives of the bacterial domain contain low intracellular ion concentrations, with organic osmotic solutes providing osmotic balance. However, some species show a specific requirement for chloride. In Halobacillus halophilus certain functions, such as growth, endospore germination, motility and flagellar synthesis, and glycine betaine transport are chloride dependent. In this organism the expression of a large number of proteins is chloride regulated. Other moderately halophilic Bacteria such as Halomonas elongata do not show a specific demand for chloride. A very high requirement for chloride was demonstrated in two groups of Bacteria that accumulate inorganic salts intracellularly rather than using organic osmotic solutes: the anaerobic Halanaerobiales and the aerobic extremely halophilic Salinibacter ruber. It is thus becoming increasingly clear that chloride has specific functions in haloadaptation in different groups of halophilic microorganisms.
Collapse
Affiliation(s)
- Volker Müller
- Section Microbiology, Department Biology I, LMU München, Maria-Ward-Strasse 1a, 80638 München, Germany.
| | | |
Collapse
|
36
|
Sato M, Kikukawa T, Araiso T, Okita H, Shimono K, Kamo N, Demura M, Nitta K. Ser-130 of Natronobacterium pharaonis halorhodopsin is important for the chloride binding. Biophys Chem 2003; 104:209-16. [PMID: 12834839 DOI: 10.1016/s0301-4622(02)00368-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pharaonis halorhodopsin (phR) is an inward light-driven chloride ion pump from Natronobacterium pharaonis. In order to clarify the role of Ser-130(phR) residue which corresponds to Ser-115(shR) for salinarum hR on the anion-binding affinity, the wild-type and Ser-130 mutants substituted with Thr, Cys and Ala were expressed in E. coli cells and solubilized with 0.1% n-dodecyl beta-D-maltopyranoside The absorption maximum (lambda(max)) of the S130T mutant indicated a blue shift from that of the wild type in the absence and presence of chloride. For S130A, a large red shift (12 nm) in the absence of chloride was observed. The wild-type and all mutants showed the blue-shift of lambda(max) upon Cl(-) addition, from which the dissociation constants of Cl(-) were determined. The dissociation constants were 5, 89, 153 and 159 mM for the wild-type, S130A, S130T and S130C, respectively, at pH 7.0 and 25 degrees C. Circular dichroic spectra of the wild-type and the Ser-130 mutants exhibited an oligomerization. The present study revealed that the Ser-130 of N. pharaonis halorhodopsin is important for the chloride binding.
Collapse
Affiliation(s)
- Maki Sato
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Muneyuki E, Shibazaki C, Wada Y, Yakushizin M, Ohtani H. Cl(-) concentration dependence of photovoltage generation by halorhodopsin from Halobacterium salinarum. Biophys J 2002; 83:1749-59. [PMID: 12324398 PMCID: PMC1302269 DOI: 10.1016/s0006-3495(02)73941-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms.
Collapse
Affiliation(s)
- Eiro Muneyuki
- Chemical Resources Laboratory (Research Laboratory of Resources Utilization), Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Halorhodopsin, a light-driven halide pump, is the second archaeal rhodopsin involved in ion pumping to be studied at high resolution by X-ray crystallography. Like its cousin bacteriorhodopsin, halorhodopsin couples vectorial ion transport to the isomerisation state of a covalently linked retinal. Given the similarity and interconvertability of these two ion pumps, a unified mechanism for ion translocation by archaeal rhodopsins is now emerging.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Chemistry, Philipps University, Hans-Meerwein-Strasse, D-35032 Marburg, Germany.
| |
Collapse
|
39
|
Sudo Y, Iwamoto M, Shimono K, Kamo N. Association between a photo-intermediate of a M-lacking mutant D75N of pharaonis phoborhodopsin and its cognate transducer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2002; 67:171-6. [PMID: 12167316 DOI: 10.1016/s1011-1344(02)00322-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pharaonis phoborhodopsin (ppR or pharaonis sensory rhodopsin II) is a receptor of the negative phototaxis of Natronobacterium pharaonis and forms a complex with its transducer pHtrII in membranes. Flash-photolyis of a D75N mutant did not yield the M-intermediate, but an O-like intermediate is observed in a ms time range. We examined the interaction between the D75N of ppR and t-Htr (truncated pHtrII). These formed a complex in the presence of 0.1% n-dodecyl-beta-maltoside, and the association accelerated the decay of the O of D75N from 15 to 56 s(-1). From the decay time constants under varying ratios of D75N and t-Htr, n, the molar ratio of D75N/t-Htr in the complex, and K(D), the dissociation constant, were estimated. The value of n was unity and K(D) was estimated to 146 nM. This K(D) value can be considered to be the association between the photo-intermediate and t-Htr, which is deduced by the method of estimation. Previously we (Photochem. Photobiol. 74 (2001) 489) reported a K(D) of 15 microM for the interaction between the wild-type and t-Htr by means of the change in M-decay rates. Therefore, this value should be the K(D) value for the interaction between M of the wild-type and t-Htr.
Collapse
Affiliation(s)
- Yuki Sudo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
40
|
Sudo Y, Iwamoto M, Shimono K, Kamo N. Association of pharaonis phoborhodopsin with its cognate transducer decreases the photo-dependent reactivity by water-soluble reagents of azide and hydroxylamine. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:63-9. [PMID: 11750265 DOI: 10.1016/s0005-2736(01)00423-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. In halobacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. In the present work, the truncated transducer, t-Htr, was used which interacts with ppR [Sudo et al. (2001) Photochem. Photobiol. 74, 489-494]. Two water-soluble reagents, hydroxylamine and azide, reacted both with the transducer-free ppR and with the complex ppR/t-Htr (the complex between ppR and its truncated transducer). In the dark, the bleaching rates caused by hydroxylamine were not significantly changed between transducer-free ppR and ppR/t-Htr, or that of the free ppR was a little slower. Illumination accelerated the bleach rates, which is consistent with our previous conclusion that the reaction occurs selectively at the M-intermediate, but the rate of the complex was about 7.4-fold slower than that of the transducer-free ppR. Azide accelerated the M-decay, and its reaction rate of ppR/t-Htr was about 4.6-fold slower than free ppR. These findings suggest that the transducer binding decreases the water accessibility around the chromophore at the M-intermediate. Its implication is discussed.
Collapse
Affiliation(s)
- Yuki Sudo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Sapporo, Japan
| | | | | | | |
Collapse
|
41
|
Losi A, Wegener AA, Engelhard M, Braslavsky SE. Thermodynamics of the early steps in the photocycle of Natronobacterium pharaonis halorhodopsin. Influence of medium and of anion substitution. Photochem Photobiol 2001; 74:495-503. [PMID: 11594067 DOI: 10.1562/0031-8655(2001)074<0495:totesi>2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The enthalpy (delta H) and structural volume changes (delta V) associated with the formation and decay of the early intermediate K600 in the photocycle of Natronobacterium pharaonis halorhodopsin (pHR), an inward-directed anion pump, were obtained by laser-induced optoacoustic spectroscopy. A large expansion is associated with K600 formation, its value depending on the medium and on the anion (Cl-, NO3-, Br-, I-). A smaller expansion is associated with K600 decay to L520. A contraction is found for the same step in the case of the azide-loaded pHR which is an efficient outward-directed proton pump. Thus, the conformational changes in L520 determine the direction and sign of charge translocation. The linear correlation between delta H and delta V for chloride-loaded pHR observed upon mild medium variations is attributed to enthalpy-entropy compensation effects and allows the calculation of the free-energy changes, delta GK = (97 +/- 16) kJ/mol and delta GKL = -(2 +/- 2) kJ/mol. Different from other systems, delta S correlates negatively with delta V in the first steps of the pHR photocycle. Thus, the space around the anion becomes larger and more rigid during each of these two steps. The photocycle quantum yield was 0.52 for chloride-pHR as measured by laser flash photolysis.
Collapse
Affiliation(s)
- A Losi
- Max-Planck-Institut für Strahlenchemie, Postfach 101365, D-45413 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
42
|
Chizhov I, Engelhard M. Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J 2001; 81:1600-12. [PMID: 11509373 PMCID: PMC1301638 DOI: 10.1016/s0006-3495(01)75814-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photocycle kinetics of halorhodopsin from Natronobacterium pharaonis (pHR(575)) was analyzed at different temperatures and chloride concentrations as well as various halides. Over the whole range of modified parameters the kinetics can be adequately modeled with six apparent rate constants. Assuming a model in which the observed rates are assigned to irreversible transitions of a single relaxation chain, six kinetically distinguishable states (P(1-6)) are discernible that are formed from four chromophore states (spectral archetypes S(j): K(570), L(N)(520), O(600), pHR'(575)). Whereas P(1) coincides with K(570) (S(1)), both P(2) and P(3) have identical spectra resembling L(520) (S(2)), thus representing a true spectral silent transition between them. P(4) constitutes a fast temperature-dependent equilibrium between the chromophore states S(2) and S(3) (L(520) and O(600), respectively). The subsequent equilibrium (P(5)) of the same spectral archetypes is only moderately temperature dependent but shows sensitivity toward the type of anion and the chloride concentration. Therefore, S(2) and S(3) occurring in P(4) as well as in P(5) have to be distinguished and are assigned to L(520)<--> O(1)(600) and O(2)(600)<--> N(520) equilibrium, respectively. It is proposed that P(4) and P(5) represent the anion release and uptake steps. Based on the experimental data affinities of the halide binding sites are estimated.
Collapse
Affiliation(s)
- I Chizhov
- Max-Planck-Institut für Molekulare Physiologie, 44227 Dortmund, Germany.
| | | |
Collapse
|
43
|
Persike N, Pfeiffer M, Guckenberger R, Radmacher M, Fritz M. Direct observation of different surface structures on high-resolution images of native halorhodopsin. J Mol Biol 2001; 310:773-80. [PMID: 11453686 DOI: 10.1006/jmbi.2001.4782] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Halorhodopsin (HR) was investigated with atomic force microscopic techniques (AFM) in aqueous solution. Two-dimensional (2D) crystals of HR were obtained by purifying an HR membrane fraction with the same buoyant density as the purple membrane (HR-PM) from the overexpressing strain Halobacterium salinarum D2. The membrane patches of HR were immobilized on mica. Images with a resolution up to 14 A were recorded. Crystals showed an orthogonal structure and the orientation of the molecules showed p42(1)2 symmetry; thus, alternate tetramers are inverted in the membrane. The crystal surface was found to display different structures depending on the imaging force used, indicating that some parts of the HR molecule are more rigid but others more compressible. From samples with single tetramers missing in the crystalline patches dimensions of the unit cell could be determined. Helix-connecting loops in single molecules of halorhodopsin were assigned. The images indicate that the large extracellular BC loop covers the whole molecule and is very flexible.
Collapse
Affiliation(s)
- N Persike
- Physik Department der TU-München, Institut für Biophysik, E22, James-Franck-Str., Garching, 85747, Germany
| | | | | | | | | |
Collapse
|
44
|
Liu RS. Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction. Acc Chem Res 2001; 34:555-62. [PMID: 11456473 DOI: 10.1021/ar000165c] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The volume-conserving hula-twist cis/trans isomerization process has been incorporated in a general scheme for photoisomerization of polyenes, applicable to small organic molecules as well as to protein-bound polyene chromophores. The main theme is that in solution the conventional one-bond-flip mechanism dominates, while in frozen media (or under other forms of supramolecular constraint) the hula-twist mechanism takes over. Literature examples of photoisomerization obtained under confined conditions have been critically reviewed, the applicability of HT has been examined, and new systems unambiguously testing this volume-conserving process are proposed.
Collapse
Affiliation(s)
- R S Liu
- Department of Chemistry, University of Hawaii, 2545 The Mall, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
45
|
Hackmann C, Guijarro J, Chizhov I, Engelhard M, Rödig C, Siebert F. Static and time-resolved step-scan Fourier transform infrared investigations of the photoreaction of halorhodopsin from Natronobacterium pharaonis: consequences for models of the anion translocation mechanism. Biophys J 2001; 81:394-406. [PMID: 11423423 PMCID: PMC1301520 DOI: 10.1016/s0006-3495(01)75708-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular changes during the photoreaction of halorhodopsin from Natronobacterium pharaonis have been monitored by low-temperature static and by time-resolved step-scan Fourier transform infrared difference spectroscopy. In the low-temperature L spectrum anions only influence a band around 1650 cm(-1), tentatively assigned to the C=N stretch of the protonated Schiff base of L. The analysis of the time-resolved spectra allows to identify the four states: K, L(1), L(2), and O. Between L(1) and L(2), only the apoprotein undergoes alterations. The O state is characterized by an all-trans chromophore and by rather large amide I spectral changes. Because in our analysis the intermediate containing O is in equilibrium with a state indistinguishable from L(2), we are unable to identify an N-like state. At very high chloride concentrations (>5 M), we observe a branching of the photocycle from L(2) directly back to the dark state, and we provide evidence for direct back-isomerization from L(2). This branching leads to the reported reduction of transport activity at such high chloride concentrations. We interpret the L(1) to L(2) transition as an accessibility change of the anion from the extracellular to the cytosolic side, and the large amide I bands in O as an indication for opening of the cytosolic channel from the Schiff base toward the cytosolic surface and/or as indication for changes of the binding constant of the release site.
Collapse
Affiliation(s)
- C Hackmann
- Sektion Biophysik, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Paula S, Tittor J, Oesterhelt D. Roles of cytoplasmic arginine and threonine in chloride transport by the bacteriorhodopsin mutant D85T. Biophys J 2001; 80:2386-95. [PMID: 11325738 PMCID: PMC1301427 DOI: 10.1016/s0006-3495(01)76208-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the light-driven anion pump halorhodopsin (HR), the residues arginine 200 and threonine 203 are involved in anion release at the cytoplasmic side of the membrane. Because of large sequence homology and great structural similarities between HR and bacteriorhodopsin (BR), it has been suggested that anion translocation by HR and by the chloride-pumping BR mutant BR-D85T occurs by the same mechanism. Consequently, the functions of the R200/T203 pair in HR should be the same as those of the corresponding pair in BR-D85T (R175/T178). We have put this hypothesis to a test by creating two mutants of BR-D85T in which R175 and T178 were replaced by glutamine and valine, respectively. Chloride transport activities were essentially the same for all three mutants, whereas chloride binding and the kinetics of parts of the photocycle were markedly affected by the replacement of T178. In contrast, the consequences of mutating R175 proved to be less significant. These findings are consistent with evidence obtained on HR and therefore support the idea that the respective mechanistic roles of the cytoplasmic arginine/threonine pairs in HR and BR-D85T are equal.
Collapse
Affiliation(s)
- S Paula
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | |
Collapse
|
47
|
Verdegem PJ, Monnee MC, Lugtenburg J. Simple and efficient preparation of [10,20-13C2]- and [10-CH3,13-13C2]-10-methylretinal: introduction of substituents at the 2-position of 2,3-unsaturated nitriles. J Org Chem 2001; 66:1269-82. [PMID: 11312957 DOI: 10.1021/jo0009595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we present the synthesis of [10,20-13C2]-10-methylretinal and [10-CH3,13-13C2]-10-methylretinal, two doubly 13C-labeled chemically modified retinals that have been recently used to study the structural and functional details behind the photocascade of bovine rhodopsin (Verdegem et al. Biochemistry 1999, 38, 11316; de Lange et al. Biochemistry 1998, 37, 1411). To obtain both doubly 13C-labeled compounds, we developed a novel synthetic method to directly and regiospecifically introduce a methyl substituent on the 2-position of 3-methyl-5-(2',6',6'-trimethyl-1'-cyclohexen-1'-yl)-2,4-pentadienenitrile. Encouraged by these results, we investigated the scope of this novel reaction by developing a general method for the introduction of a variety of substituents to the 2-position of 3-methyl-2,3-unsaturated nitriles, paving the way for simple and efficient synthesis of a wide variety of 10-, 14-, and 10,14-substituted chemically modified retinals, and other biologically important compounds.
Collapse
Affiliation(s)
- P J Verdegem
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratoria, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
48
|
Shimono K, Kitami M, Iwamoto M, Kamo N. Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophys Chem 2000; 87:225-30. [PMID: 11099184 DOI: 10.1016/s0301-4622(00)00195-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pharaonis phoborhodopsin (ppR; or pharaonis sensory rhodopsin II, psRII) is a photophobic receptor of the halobacterium Natronobacterium pharaonis. Its lambdamax is at 496 nm, but upon acidification in the absence of chloride, lambdamax shifted to 522 nm. This bathochromic shift is thought to be caused by the protonation of Asp75, which corresponds to Asp85 of bacteriorhodopsin (bR). The D75N mutant, in which Asp75 was replaced by Asn, had its lambdamax at approximately 520 nm, supporting this mechanism for the bathochromic shift. A titration of the shift yielded a pKa of 3.5 for Asp75. In the presence of chloride, the spectral shifts were different: with a decrease in pH, a bathochromic shift was first observed, followed by a hypsochromic shift on further acidification. This was interpreted as: the disappearance of a negative charge by the protonation of Asp75 was compensated by the binding of chloride, but it is worthy to note that the binding requires the protonation of another proton-associable group other than Asp75. This is supported by the observation that in the presence of chloride, upon acidification, the lambdamax of D75N even showed a blue shift, showing that the protonation of a proton-associable group (pKa = 1.2) leads to the chloride binding that gives rise to a blue shift.
Collapse
Affiliation(s)
- K Shimono
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
49
|
Lanyi JK. Molecular Mechanism of Ion Transport in Bacteriorhodopsin: Insights from Crystallographic, Spectroscopic, Kinetic, and Mutational Studies. J Phys Chem B 2000. [DOI: 10.1021/jp0023718] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janos K. Lanyi
- Department of Physiology & Biophysics, University of California, Irvine, California 92697
| |
Collapse
|
50
|
Luecke H. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:133-56. [PMID: 10984596 DOI: 10.1016/s0005-2728(00)00135-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.
Collapse
Affiliation(s)
- H Luecke
- Departments of Molecular Biology and Biochemistry and Physiology and Biophysics, UCI Program in Macromolecular Structure, University of California, 92697-3900, Irvine, CA, USA.
| |
Collapse
|