1
|
Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method? Molecules 2022; 27:molecules27134249. [PMID: 35807493 PMCID: PMC9267986 DOI: 10.3390/molecules27134249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microwave-assisted synthesis is considered environmental-friendly and, therefore, in agreement with the principles of green chemistry. This form of energy has been employed extensively and successfully in organic synthesis also in the case of metal-catalyzed synthetic procedures. However, it has been less widely exploited in the synthesis of metal complexes. As microwave irradiation has been proving its utility as both a time-saving procedure and an alternative way to carry on tricky transformations, its use can help inorganic chemists, too. This review focuses on the use of microwave irradiation in the preparation of transition metal complexes and organometallic compounds and also includes new, unpublished results. The syntheses of the compounds are described following the group of the periodic table to which the contained metal belongs. A general overview of the results from over 150 papers points out that microwaves can be a useful synthetic tool for inorganic chemists, reducing dramatically the reaction times with respect to traditional heating. This is often accompanied by a more limited risk of decomposition of reagents or products by an increase in yield, purity, and (sometimes) selectivity. In any case, thermal control is operative, whereas nonthermal or specific microwave effects seem to be absent.
Collapse
|
2
|
Polymer Processing under Microwaves. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/3961233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the last decades, microwave heating has experienced a great development and reached various domains of application, especially in material processing. In the field of polymers, this unusual source of energy showed important advantages arising from the direct microwave/matter interaction. Indeed, microwave heating allows regio-, chemio-, and stereo-selectivity, faster chemical reactions, and higher yields even in solvent-free processes. Thus, this heating mode provides a good alternative to the conventional heating by reducing time and energy consumption, hence reducing the costs and ecological impact of polymer chemistry and processing. This review states some achievements in the use of microwaves as energy source during the synthesis and transformation of polymers. Both in-solution and free-solvent processes are described at different scales, with comparison between microwave and conventional heating.
Collapse
|
3
|
Gu C, Shan F, Zheng L, Zhou Y, Hu J, Chen G. Towards a protein-selective Raman enhancement by a glycopolymer-based composite surface. J Mater Chem B 2022; 10:1434-1441. [PMID: 35168248 DOI: 10.1039/d1tb02746h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS), which is based on the surface plasmon resonance (LSPR) of noble metal nanostructures, is widely used in the biological field due to its advantages of non-damaging samples and detection up to the molecular level. For biological SERS detection, preparation of substrates with biocompatibility and specific adsorption, leading to selective enhancement of the target biomolecules, are important design strategies. Utilizing the specific interaction between a carbohydrate and protein, a glycopolymer-based composite surface is fabricated to realize specific SERS detection of proteins. Herein, we use N-3,4-dihydroxybenzeneethyl methacrylamide (DMA), 2-deoxy-2-(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) as monomers in a sunlight-induced RAFT polymerization to synthesize a dopamine-containing glycopolymer. The glycopolymers are used to prepare a SERS substrate. The composite surface shows specific protein adsorption capacity, and the selective Raman enhancement of specific proteins was successfully achieved between the two different proteins Con A and BSA. This provides a feasible approach to design a SERS surface for protein detection and the study of the interaction between sugar and proteins.
Collapse
Affiliation(s)
- Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|
4
|
Sincari V, Petrova SL, Konefał R, Hruby M, Jäger E. Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Castagnet T, Ballard N, Billon L, Asua JM. Microwave-Assisted Ultrafast RAFT Miniemulsion Polymerization of Biobased Terpenoid Acrylates. Biomacromolecules 2020; 21:4559-4568. [DOI: 10.1021/acs.biomac.0c00662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thibault Castagnet
- Université de Pau & des Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l’Adour, E2S UPPA, 64000 Pau, France
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Ballard
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Laurent Billon
- Université de Pau & des Pays de l’Adour, E2S UPPA, CNRS, IPREM-UMR 5254, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l’Adour, E2S UPPA, 64000 Pau, France
| | - José M. Asua
- POLYMAT, University of the Basque Country UPV/EHU, Kimika Aplikatua Saila, Kimika Zientzien Fakultatea, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
6
|
Nahain AA, Ignjatovic V, Monagle P, Tsanaktsidis J, Vamvounis G, Ferro V. Sulfonated RAFT Copolymers as Heparin Mimetics: Synthesis, Reactivity Ratios, and Anticoagulant Activity. Macromol Biosci 2020; 20:e2000110. [PMID: 32627962 DOI: 10.1002/mabi.202000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Indexed: 12/17/2022]
Abstract
The glycosaminoglycan heparin is a clinically important anticoagulant drug, primarily used to reduce the risk of blood clots (thrombosis) during surgery. Despite its importance in medicine and its continuous use over many decades, heparin suffers from several limitations associated with its heterogeneity and its extraction from animal tissues. In order to address these limitations, reversible addition-fragmentation chain transfer polymerization is utilized to prepare a library of heparin mimetic copolymers from the sulfonated monomers sodium 4-styrene sulfonate, potassium-3-sulfopropyl acrylate, potassium-3-sulfopropyl methacrylate, and sodium-2-acrylamido-2-methyl-1-propane sulfonate. Copolymers are prepared using combinations of two different monomers in various ratios. Monomer reactivity ratios are also determined for some representative monomer combinations, and all polymers are characterized by 1 H NMR spectroscopy and gel permeation chromatography. The anticoagulant activities of the copolymers are determined by activated partial thromboplastin time and thrombin clotting time assays and structure-activity relationships are explored.
Collapse
Affiliation(s)
- Abdullah Al Nahain
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Clinical Haematology, Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
7
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Castagnet T, Agirre A, Ballard N, Billon L, Asua JM. Non-thermal microwave effects in radical polymerization of bio-based terpenoid (meth)acrylates. Polym Chem 2020. [DOI: 10.1039/d0py01192d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-thermal microwave effects are operative for terpenoid acrylates but not for methacrylates, provided that a minimum irradiation power is applied.
Collapse
Affiliation(s)
- Thibault Castagnet
- Université de Pau & des Pays de l'Adour
- E2S UPPA
- CNRS
- IPREM-UMR 5254
- 64000 Pau
| | - Amaia Agirre
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| | - Nicholas Ballard
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| | - Laurent Billon
- Université de Pau & des Pays de l'Adour
- E2S UPPA
- CNRS
- IPREM-UMR 5254
- 64000 Pau
| | - José M. Asua
- POLYMAT
- University of the Basque Country UPV/EHU
- Kimika Aplikatua saila
- Kimika Zientzien Fakultatea
- Joxe Mari Korta Zentroa
| |
Collapse
|
9
|
Tran JD, Mikulec SN, Calzada OM, Prossnitz AN, Ennis AF, Sherwin WJ, Magsumbol AS, Jameson A, Schellinger JG. Microwave‐Assisted Reversible Addition–Fragmentation Chain Transfer Polymerization of Cationic Monomers in Mixed Aqueous Solvents. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jonathan D. Tran
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Sydney N. Mikulec
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Oscar M. Calzada
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Alexander N. Prossnitz
- Department of Bioengineering University of Washington 3720 15th Ave NE Seattle WA 98105 USA
| | - Amanda F. Ennis
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - William J. Sherwin
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Alisson S. Magsumbol
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Alexandra Jameson
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| | - Joan G. Schellinger
- Department of Chemistry and Biochemistry University of San Diego 5998 Alcala Park San Diego CA 92110 USA
| |
Collapse
|
10
|
Peng J, Xu Q, Ni Y, Zhang L, Cheng Z, Zhu X. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance. Polym Chem 2019. [DOI: 10.1039/c9py00069k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fast visible light controlled RAFT polymerization system without the prior removal of oxygen was successfully carried out in a continuous tubular reactor with water as a green solvent.
Collapse
Affiliation(s)
- Jinying Peng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Qinghua Xu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Yuanyuan Ni
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| |
Collapse
|
11
|
Moad G. A Critical Assessment of the Kinetics and Mechanism of Initiation of Radical Polymerization with Commercially Available Dialkyldiazene Initiators. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Hill MR, Carmean RN, Sumerlin BS. Expanding the Scope of RAFT Polymerization: Recent Advances and New Horizons. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00342] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Megan R. Hill
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - R. Nicholas Carmean
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
13
|
Kabb CP, Carmean RN, Sumerlin BS. Probing the surface-localized hyperthermia of gold nanoparticles in a microwave field using polymeric thermometers. Chem Sci 2015; 6:5662-5669. [PMID: 29861901 PMCID: PMC5949850 DOI: 10.1039/c5sc01535a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles decorated with “polymeric thermometers,” consisting of a polymeric spacer, thermally-labile azo linker, and fluorescent tag, were used to quantify the extent of localized hyperthermia under microwave irradiation.
The surface-localized hyperthermia of gold nanoparticles under microwave irradiation was examined. Gold nanoparticles with a hydrodynamic diameter of ∼6 nm stabilized by polymeric “thermometers” were used to gather information on the extent of heating as well as its spatial confinements. Reversible addition–fragmentation chain transfer polymerization was employed to synthesize well-defined, functional polymers of predetermined molecular weights, allowing for estimation of the distance between the nanoparticle surface and the polymer chain end. The polymers were conjugated with a fluorescent dye separated by a thermally-labile azo linkage, and these polymeric ligands were bound to gold nanoparticles via gold–thiolate bonds. Conventional heating experiments elucidated the relationship between temperature and the extent of dye release from the gold nanoparticle using fluorescence spectroscopy. The local temperature increase experienced under microwave irradiation was calculated using the same methodology. This approach indicated the temperature near the surface of the nanoparticle was nearly 70 °C higher than the bulk solution temperature, but decreased rapidly with distance, with no noticeable temperature increase when the azo linkage was approximately 2 nm away.
Collapse
Affiliation(s)
- Christopher P Kabb
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| | - R Nicholas Carmean
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA .
| |
Collapse
|
14
|
|
15
|
Mishra K, Joy A. Dual functionalized telechelic block copolymers with reproducible block sizes prepared by microwave assisted RAFT polymerization. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhen L, Huang D, Li R. Ultrasonic–microwave synthesis of polyoxyethylenated stearyl ether maleic acid diester gemini surfactants. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-1964-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Affiliation(s)
- Graeme Moad
- CSIRO Manufacturing Flagship, Bayview Ave, Clayton, Victoria 3168, Australia
| |
Collapse
|
18
|
|
19
|
Moad G, Rizzardo E, Thang SH. Fundamentals of RAFT Polymerization. FUNDAMENTALS OF CONTROLLED/LIVING RADICAL POLYMERIZATION 2013. [DOI: 10.1039/9781849737425-00205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter sets out to describe the fundamental aspects of radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Following a description of the mechanism we describe aspects of the kinetics of RAFT polymerization, how to select a RAFT agent to achieve optimal control over polymer molecular weight, composition and architecture, and how to avoid side reactions which might lead to retardation or inhibition.
Collapse
Affiliation(s)
- Graeme Moad
- CSIRO Materials Science and Engineering Bayview Ave, Clayton, Victoria 3168 Australia
| | - Ezio Rizzardo
- CSIRO Materials Science and Engineering Bayview Ave, Clayton, Victoria 3168 Australia
| | - San H. Thang
- CSIRO Materials Science and Engineering Bayview Ave, Clayton, Victoria 3168 Australia
| |
Collapse
|
20
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|