1
|
Mao L, Li X, Ding H, Fan C, Liu G, Pu S. A Highly Selective Hg 2+ Fluorescent Chemosensor Based On Photochromic Diarylethene With Quinoline Unit. J Fluoresc 2022; 32:2119-2128. [PMID: 35932385 DOI: 10.1007/s10895-022-02930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/06/2022] [Indexed: 12/01/2022]
Abstract
A novel diarylethene-based fluorescent chemosensor containing a quinoline unit (1o) had been designed and synthesized. 1o showed good photochromic ability and fluorescence switching properties by alternating UV/vis light irradiation. The chemosensor showed high "Turn-off" fluorescent selectivity for Hg2+ by competitive tests of the fluorescence reaction in the presence other ions in acetonitrile solution. The stoichiometry between the compound 1o and Hg2+ was 1:1 by Job's plot curve and HRMS analysis. In addition, the LOD for Hg2+ was calculated as 60 nM. The fluorescence emission can be back to the "Turn-on" state by adding EDTA. Based on these facts, a molecular logic gate that including four input signals (UV/vis and Hg2+/EDTA) and one output signal (fluorescent intensity at 491 nm) was designed.
Collapse
Affiliation(s)
- Liangtao Mao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xiumei Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China. .,Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| |
Collapse
|
2
|
Substituents affect the mechanism of photochemical E-Z isomerization of diarylethene triazoles via adiabatic singlet excited state pathway or via triplet excited state. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Mlakić M, Čadež T, Barić D, Puček I, Ratković A, Marinić Ž, Lasić K, Kovarik Z, Škorić I. New Uncharged 2-Thienostilbene Oximes as Reactivators of Organophosphate-Inhibited Cholinesterases. Pharmaceuticals (Basel) 2021; 14:ph14111147. [PMID: 34832929 PMCID: PMC8621217 DOI: 10.3390/ph14111147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by organophosphates (OPs) as nerve agents and pesticides compromises normal cholinergic nerve signal transduction in the peripheral and central nervous systems (CNS) leading to cholinergic crisis. The treatment comprises an antimuscarinic drug and an oxime reactivator of the inhibited enzyme. Oximes in use have quaternary nitrogens, and therefore poorly cross the brain–blood barrier. In this work, we synthesized novel uncharged thienostilbene oximes by the Wittig reaction, converted to aldehydes by Vilsmeier formylation, and transformed to the corresponding uncharged oximes in very high yields. Eight trans,anti- and trans,syn-isomers of oximes were tested as reactivators of nerve-agent-inhibited AChE and BChE. Four derivatives reactivated cyclosarin-inhibited BChE up to 70% in two hours of reactivation, and docking studies confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on the moderate binding affinity of both AChE and BChE for all selected oximes, and in silico evaluated ADME properties regarding lipophilicity and CNS activity, these compounds present a new class of oximes with the potential for further development of CNS-active therapeutics in OP poisoning.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000 Zagreb, Croatia; (M.M.); (I.P.)
| | - Tena Čadež
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia;
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia;
| | - Ivana Puček
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000 Zagreb, Croatia; (M.M.); (I.P.)
| | - Ana Ratković
- Fidelta Ltd., Prilaz Baruna Filipovića 29, HR-10 000 Zagreb, Croatia;
| | - Željko Marinić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia;
| | - Kornelija Lasić
- Pliva Tapi R&D, TEVA, Prilaz baruna Filipovića 25, HR-10 000 Zagreb, Croatia;
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia;
- Correspondence: (Z.K.); (I.Š.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000 Zagreb, Croatia; (M.M.); (I.P.)
- Correspondence: (Z.K.); (I.Š.)
| |
Collapse
|
4
|
López-Alled CM, Murfin LC, Kociok-Köhn G, James TD, Wenk J, Lewis SE. Colorimetric detection of Hg 2+ with an azulene-containing chemodosimeter via dithioacetal hydrolysis. Analyst 2020; 145:6262-6269. [PMID: 32926021 DOI: 10.1039/d0an01404d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Azulene is a bicyclic aromatic chromophore that absorbs in the visible region. Its absorption maximum undergoes a hypsochromic shift if a conjugated electron-withdrawing group is introduced at the C1 position. This fact can be exploited in the design of a colorimetric chemodosimeter that functions by the transformation of a dithioacetal to the corresponding aldehyde upon exposure to Hg2+ ions. This chemodosimeter exhibits good chemoselectivity over other metal cations, and responds with an unambiguous colour change clearly visible to the naked eye. Its synthesis is concise and its ease of use makes it appropriate in resource-constrained environments, for example in determing mercury content of drinking water sources in the developing world.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
5
|
Weng T, Zhang K, Wu B, Chen X, Zou Q, Zeng T, Zhu L. Orthogonally Incorporating Dual‐Fluorescence Control into Gated Photochromism for Multifunctional Molecular Switching. Chemistry 2019; 25:15281-15287. [DOI: 10.1002/chem.201903759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Taoyu Weng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of, Electric Power Shanghai 200090 China
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Kai Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of, Electric Power Shanghai 200090 China
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Xuanying Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of, Electric Power Shanghai 200090 China
| | - Qi Zou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric PowerShanghai University of, Electric Power Shanghai 200090 China
| | - Tao Zeng
- Shanghai Key Laboratory of Engineering Materials Application and EvaluationShanghai Research Institute of Materials Shanghai 200437 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| |
Collapse
|
6
|
Li Z, Dai Y, Lu Z, Pei Y, Song Y, Zhang L, Guo H. A Photoswitchable Triple Chemosensor for Cyanide Anion Based on Dicyanovinyl-Functionalized Dithienylethene. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900369] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ziyong Li
- Key Laboratory of Organic Functional Molecules, Luoyang City, College of Food and Drug; Luoyang Normal University; 471934 P. R. China
| | - Yijie Dai
- Key Laboratory of Organic Functional Molecules, Luoyang City, College of Food and Drug; Luoyang Normal University; 471934 P. R. China
| | - Zhiqiang Lu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials; Luoyang Normal University; 471022 Luoyang China
| | - Yingying Pei
- Key Laboratory of Organic Functional Molecules, Luoyang City, College of Food and Drug; Luoyang Normal University; 471934 P. R. China
| | - Yufei Song
- Key Laboratory of Organic Functional Molecules, Luoyang City, College of Food and Drug; Luoyang Normal University; 471934 P. R. China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials; Luoyang Normal University; 471022 Luoyang China
| | - Hui Guo
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials; Luoyang Normal University; 471022 Luoyang China
| |
Collapse
|
7
|
Tang Y, Cui S, Pu S. A Dual-Channel Sensor for Hg2+ Based on a Diarylethene with a Rhodamine B Unit. J Fluoresc 2016; 26:1421-9. [DOI: 10.1007/s10895-016-1834-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/09/2016] [Indexed: 12/23/2022]
|
8
|
A multi-state fluorescence switch based on a new photochromic diarylethene with a di-(ethyl-1,8-naphthalimidyl)amine unit. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Wang R, Ren P, Pu S, Liu G, Cui S. Novel sensitive sensors for Cu2+ and optical switching of photochromic dithienylethene derivatives. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|