1
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
3
|
Le HN, Kuchlyan J, Baladi T, Albinsson B, Dahlén A, Wilhelmsson LM. Synthesis and photophysical characterization of a pH-sensitive quadracyclic uridine (qU) analogue. Chemistry 2024:e202303539. [PMID: 38230625 DOI: 10.1002/chem.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Fluorescent base analogues (FBAs) have become useful tools for applications in biophysical chemistry, chemical biology, live-cell imaging, and RNA therapeutics. Herein, two synthetic routes towards a novel FBA of uracil named qU (quadracyclic uracil/uridine) are described. The qU nucleobase bears a tetracyclic fused ring system and is designed to allow for specific Watson-Crick base pairing with adenine. We find that qU absorbs light in the visible region of the spectrum and emits brightly with a quantum yield of 27 % and a dual-band character in a wide pH range. With evidence, among other things, from fluorescence lifetime measurements we suggest that this dual emission feature results from an excited-state proton transfer (ESPT) process. Furthermore, we find that both absorption and emission of qU are highly sensitive to pH. The high brightness in combination with excitation in the visible and pH responsiveness makes qU an interesting native-like nucleic acid label in spectroscopy and microscopy applications in, for example, the field of mRNA and antisense oligonucleotide (ASO) therapeutics.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Jagannath Kuchlyan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Tom Baladi
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anders Dahlén
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| |
Collapse
|
4
|
Priyanka, Maiti S. Co-assembly-mediated biosupramolecular catalysis: thermodynamic insights into nucleobase specific (oligo)nucleotide attachment and cleavage. J Mater Chem B 2023; 11:10383-10394. [PMID: 37874292 DOI: 10.1039/d3tb01747h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Gaining control over the stability and cleavage of phosphoester and phosphodiester remains a matter of interest for their application in biotechnology to oligonucleotide-based therapeutics. Herein, we report an efficient unactivated phosphoester hydrolysis (stable mono/di/tri/cyclic nucleotide to nucleoside conversion) via a biosupramolecular system comprising of a non-covalent complex of enzyme, alkaline phosphatase (ALP), and Zn(II)-metallosurfactant. We also demonstrate the nucleobase selective activation or inhibition of ALP-mediated oligonucleotide digestion process using that complex. The higher binding affinity of Zn(II)-containing headgroup with phosphate-containing substrate enhanced the effective substrate concentration surrounding the enzyme, which, in turn, results in a drastic decrease in the Michaelis constant (KM), along with an increase in the turnover (kcat). The catalytic activation or inhibition of nucleobase-specific oligonucleotide digestion depends on the hydration, localization of the substrates, and viscosity of the resultant co-assembly upon substrate binding with the enzyme-metallosurfactant complex. Additionally, through isothermal titration calorimetry experiment, we demonstrate enthalpy-entropy change during both the supramolecular binding of (oligo)nucleotides and simultaneous activation/inhibition in catalytic cleavage. Overall, it showed the possible modularity of Zn(II)-mediated biosupramolecular interaction, describing intrinsic thermodynamic aspects in developing complex biocatalytic circuits with nucleobase-specific oligonucleotides inputs, which are relevant in designing nucleic acid-based cargo for drug delivery and bioimaging.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
| |
Collapse
|
5
|
Yang QL, Luo YR, Xu RY, Zhang BN, Zhang YN, Guo HM. Ruthenium(II)-Catalyzed [4 + 2] Electro-Oxidative Annulation of C6-Arylpurines/Purine Nucleosides. Org Lett 2023; 25:6796-6801. [PMID: 37676817 DOI: 10.1021/acs.orglett.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A sustainable pathway for the synthesis of tetracyclic purinium salts via ruthenium-catalyzed electro-oxidative annulation of C6-arylpurine nucleosides with alkynes without a stoichiometric metal oxidant has been developed. The protocol described herein exhibits high regioselectivity, broad scope, and wide functional group tolerance, allowing efficient coupling of various biologically important molecules including acyclic, ribosyl, arabinosyl, and deoxyribosyl purine nucleoside derivatives. A novel purinoisoquinolinium-coordinated ruthenium(0) sandwich intermediate has been isolated, crystallographically characterized, and electrochemically analyzed, offering direct mechanistic insight.
Collapse
Affiliation(s)
- Qi-Liang Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi-Rui Luo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Rong-Yi Xu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bei-Ning Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Ni Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Russel NS, Kodali G, Stanley RJ, Narayanan M. Screening for Novel Fluorescent Nucleobase Analogues Using Computational and Experimental Methods: 2-Amino-6-chloro-8-vinylpurine (2A6Cl8VP) as a Case Study. J Phys Chem B 2023; 127:7858-7871. [PMID: 37698525 DOI: 10.1021/acs.jpcb.3c03618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Novel fluorescent nucleic acid base analogues (FBAs) with improved optical properties are needed in a variety of biological applications. 2-Amino-6-chloro-8-vinylpurine (2A6Cl8VP) is structural analogue of two existing highly fluorescent FBAs, 2-aminopurine (2AP) and 8-vinyladenine (8VA), and can therefore be expected to have similar base pairing as well as better optical properties compared to its counterparts. In order to determine the absorption and fluorescence properties of 2A6Cl8VP, as a first step, we used TD-DFT calculations and the polarizable continuum model for simulating the solvents and computationally predicted absorption and fluorescence maxima. To test the computational predictions, we also synthesized 2A6Cl8VP and measured its UV/vis absorbance, fluorescence emission, and fluorescence lifetime. The computationally predicted absorbance and fluorescence maxima of 2A6Cl8VP are in reasonable agreement to the experimental values and are significantly redshifted compared to 2AP and 8VA, allowing for its specific excitation. The fluorescence quantum yield of 2A6Cl8VP, however, is significantly lower than those of 2AP and 8VA. Overall, 2A6Cl8VP is a novel fluorescent nucleobase analogue, which can be useful in studying structural, biophysical, and biochemical applications.
Collapse
Affiliation(s)
- Nadim Shahriar Russel
- Department of Chemistry, Temple University, 1901 N. Broad Street, Philadelphia, Pennsylvania 19122, United States
| | - Goutham Kodali
- GlowDNA LLC., Malvern, Pennsylvania 19355, United States
| | - Robert J Stanley
- Department of Chemistry, Temple University, 1901 N. Broad Street, Philadelphia, Pennsylvania 19122, United States
| | - Madhavan Narayanan
- Department of Physical Sciences, Benedictine University, 5700 College Rd, Lisle, Illinois 60532, United States
| |
Collapse
|
7
|
Xie R, Han Y, Luo W, Zhao Q, Li Y, Chen G. Palladium-Catalyzed C-H Olefination for Nucleic Acid Production. Curr Protoc 2023; 3:e829. [PMID: 37498139 DOI: 10.1002/cpz1.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The palladium-catalyzed direct C-H olefination of unprotected uridine, 2'-deoxyuridine, uridine monophosphate, and uridine analogues are described here. This protocol provides an efficient, atom-economical, and environmentally friendly method for the introduction of an alkenyl group at the C5 position of the uracil without pre-functionalization. A series of C5-alkenylated uridine analogues, including some biologically significant compounds and potential pharmaceutical candidates, were synthesized with exposed hydroxyl groups on the ribose. © 2023 Wiley Periodicals LLC. Basic Protocol 1: The reaction of uridine, 2'-deoxyuridine, and sofosbuvir for the C-H olefination with methyl acrylate Basic Protocol 2: The reaction of uridine and 2'-deoxyuridine for the C-H olefination with styrene.
Collapse
Affiliation(s)
- Ruoqian Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yunxi Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenhao Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qin Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Sawyer JM, Passow KT, Harki DA. Synthesis and photophysical characterization of fluorescent indole nucleoside analogues. RSC Adv 2023; 13:16369-16376. [PMID: 37266506 PMCID: PMC10230516 DOI: 10.1039/d3ra03457g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Fluorescent nucleosides are useful chemical tools for biochemical research and are frequently incorporated into nucleic acids for a variety of applications. The most widely utilized fluorescent nucleoside is 2-aminopurine-2'-deoxyribonucleoside (2APN). However, 2APN is limited by a moderate Stokes shift, molar extinction coefficient, and quantum yield. We recently reported 4-cyanoindole-2'-deoxyribonucleoside (4CIN), which offers superior photophysical characteristics in comparison to 2APN. To further improve upon 4CIN, a focused library of additional analogues combining the structural features of 2APN and 4CIN were synthesized and their photophysical properties were quantified. Nucleosides 2-6 were found to possess diverse photophysical properties with some features superior to 4CIN. In addition, the structure-function relationship data gained from 1-6 can inform the design of next-generation fluorescent indole nucleosides.
Collapse
Affiliation(s)
- Jacob M Sawyer
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| |
Collapse
|
9
|
Lang F, Rönicke F, Wagenknecht HA. Aminophthalimide as a mimetic of purines and a fluorescent RNA base surrogate for RNA imaging. Org Biomol Chem 2023; 21:3079-3082. [PMID: 36943317 DOI: 10.1039/d3ob00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Aminophthalimide and N,N-dimethylaminophthalimide are used as fluorescent mimetics of purines due to their similar size and their possibility for hydrogen bonding. Their C-nucleotides were synthetically incorporated into RNA by means of phosphoramidite chemistry, behave as nonspecific fluorescent base analogs with flexible hydrogen bonding capabilities, and show solvatochromic fluorescence that is suitable for RNA imaging in live cells.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
10
|
Gaware S, Kori S, Serrano JL, Dandela R, Hilton S, Sanghvi YS, Kapdi AR. Rapid plugged flow synthesis of nucleoside analogues via Suzuki-Miyaura coupling and heck Alkenylation of 5-Iodo-2'-deoxyuridine (or cytidine). J Flow Chem 2023; 13:1-18. [PMID: 37359287 PMCID: PMC10019434 DOI: 10.1007/s41981-023-00265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 03/17/2023]
Abstract
Nucleosides modification via conventional cross-coupling has been performed using different catalytic systems and found to take place via long reaction times. However, since the pandemic, nucleoside-based antivirals and vaccines have received widespread attention and the requirement for rapid modification and synthesis of these moieties has become a major objective for researchers. To address this challenge, we describe the development of a rapid flow-based cross-coupling synthesis protocol for a variety of C5-pyrimidine substituted nucleosides. The protocol allows for facile access to multiple nucleoside analogues in very good yields in a few minutes compared to conventional batch chemistry. To highlight the utility of our approach, the synthesis of an anti-HSV drug, BVDU was also achieved in an efficient manner using our new protocol. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s41981-023-00265-1.
Collapse
Affiliation(s)
- Sujeet Gaware
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| | - Jose Luis Serrano
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Stephen Hilton
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX UK
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, California, Encinitas CA92024-6615 USA
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| |
Collapse
|
11
|
Kumagai T, Kinoshita B, Hirashima S, Sugiyama H, Park S. Thiophene-Extended Fluorescent Nucleosides as Molecular Rotor-Type Fluorogenic Sensors for Biomolecular Interactions. ACS Sens 2023; 8:923-932. [PMID: 36740828 DOI: 10.1021/acssensors.2c02617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent molecular rotors are versatile tools for the investigation of biomolecular interactions and the monitoring of microenvironmental changes in biological systems. They can transform invisible information into a fluorescence signal as a straightforward response. Their utility is synergistically amplified when they are merged with biomolecules. Despite the tremendous significance and superior programmability of nucleic acids, there are very few reports on the development of molecular rotor-type isomorphic nucleosides. Here, we report the synthesis and characterization of a highly emissive molecular rotor-containing thymine nucleoside (ThexT) and its 2'-O-methyluridine analogue (2'-OMe-ThexU) as fluorogenic microenvironment-sensitive sensors that emit vivid fluorescence via an interaction with the target proteins. ThexT and 2'-OMe-ThexU may potentially serve as robust probes for a broad range of applications, such as fluorescence mapping, to monitor viscosity changes and specific protein-binding interactions in biological systems.
Collapse
Affiliation(s)
- Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ban Kinoshita
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Meher S, Gade CR, Sharma NK. Tropolone-Conjugated DNA: A Fluorescent Thymidine Analogue Exhibits Solvatochromism, Enzymatic Incorporation into DNA and HeLa Cell Internalization. Chembiochem 2023; 24:e202200732. [PMID: 36510378 DOI: 10.1002/cbic.202200732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Tropolone is a non-benzenoid aromatic scaffold with unique photophysical and metal-chelating properties. Recently, it has been conjugated with DNA, and the photophysical properties of this conjugate have been explored. Tropolonyl-deoxyuridine (tr-dU) is a synthetic fluorescent DNA nucleoside analogue that exhibits pH-dependent emissions. However, its solvent-dependent fluorescence properties are unexplored owing to its poor solubility in most organic solvents. It would be interesting to incorporate it into DNA primer enzymatically. This report describes the solvent-dependent fluorescence properties of the silyl-derivative, and enzymatic incorporation of its triphosphate analogue. For practical use, its cell-internalization and cytotoxicity are also explored. tr-dU nucleoside was found to be a potential analogue to design DNA probes and can be explored for various therapeutic applications in the future.
Collapse
Affiliation(s)
- Sagarika Meher
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Chandrasekhar Reddy Gade
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
13
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
14
|
Lakshman MK. Base Modifications of Nucleosides via the Use of Peptide-Coupling Agents, and Beyond. CHEM REC 2023; 23:e202200182. [PMID: 36166699 DOI: 10.1002/tcr.202200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Indexed: 01/24/2023]
Abstract
Several naturally occurring purine and pyrimidine nucleosides contain an amide linkage as part of the heterocyclic aglycone. Enolization of the amide and conversion to leaving groups at the amide carbon atom permits base modification by addition-elimination types of processes. Although a number of methods have been developed over the years for accomplishing such conversions, the present Personal Account describes efforts from the Lakshman laboratories. Facile activation of the amido groups in nucleobases can be achieved with peptide-coupling agents. Subsequent reaction with nucleophiles then accomplishes the base modifications. In many cases, the activation and displacement steps can be done as two-step, one-pot processes, whereas in other cases, discrete storable activated nucleosides can be isolated for subsequent displacement reactions. Using such an approach a wide range of nucleoside base modifications is readily achievable. In many instances, mechanistic investigations have been conducted so as to understand the activation process.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
15
|
Duan L, Zhao Y, Zhang X, Cui X, Meng Q, Zhang C. Fluorescent adenine analogues with ESPT characteristic utilized for real-time detecting DNA adduct. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121675. [PMID: 35914355 DOI: 10.1016/j.saa.2022.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG) is the representative damaged nucleoside that may increase the risk of developing diseases. Accordingly, the selective detection of 8-oxoG in DNA with minimal disturbance to the native structure is important to have an in-depth understanding of the formation mechanism and becomes an attractive tool for genomic research. To identify the DNA adduct in real-time efficiently, a series of quasi-intrinsic optical probes are performed based on the natural adenine, which has preference to form a stable base pair with 8-oxoG in the syn conformation. The calculations revealed that the A-analogues in solution could bring red-shifted absorption spectra and bright photoluminescence arisen from the additional π-conjugation by means of fluorophore modification and the ring expansion. Especially, A1 possesses large Stokes shifts and the highest fluorescence intensity in emission, which is proposed as the biosensor to monitor the optical changes in the presence and absence of the considered 8-oxoG. It is found that the fluorescence is insensitive to base pairing with thymine, while the excited state intermolecular proton transfer (ESPT) induced efficient fluorescence quenching is observed upon pairing with the 8-oxoG. To evaluate the direct usefulness of the bright adenine analogues in biological environment, we further examined the influences of linking deoxyribose on the absorption and emission, which are consistent with the experimental data.
Collapse
Affiliation(s)
- Lingjie Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xiao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
16
|
Shaughnessy KH. Covalent Modification of Nucleobases using Water-Soluble Palladium Catalysts. CHEM REC 2022; 22:e202200190. [PMID: 36074958 DOI: 10.1002/tcr.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Nucleosides represent one of the key building blocks of biochemistry. There is significant interest in the synthesis of nucleoside-derived materials for applications as probes, biochemical models, and pharmaceuticals. Palladium-catalyzed cross-coupling reactions are effective methods for making covalent modification of carbon and nitrogen sites on nucleobases under mild conditions. Water-soluble catalysts derived from palladium and hydrophilic ligands, such as tris(3-sulfonatophenyl)phosphine trisodium (TPPTS), are efficient catalysts for a range of coupling reactions of unprotected halonucleosides. Over the past two decades, these methods have been extended to direct functionalization of halonucleotides, as well as RNA and DNA oligonucleotides (ONs) containing halogenated bases. These methods can be run under biocompatible conditions, including examples of Suzuki coupling of modified DNA in whole cells and tissue samples. In this account, development of this methodology by our group and others is highlighted along with the extension of these catalyst systems to modification of nucleotides and ONs.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| |
Collapse
|
17
|
Sable DA, Gholap A, Kommyreddy SP, Fartade DJ, Gharpure SJ, Schulzke C, Kapdi AR. Heteroatom-Assisted Regio- and Stereoselective Palladium-Catalyzed Carboxylation of 9-Allyl Adenine. J Org Chem 2022; 87:12574-12585. [PMID: 36173114 DOI: 10.1021/acs.joc.2c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strategy for the synthesis of acyclic nucleoside analogs of biological relevance via highly regio- and stereoselective C-H functionalization employing heteroatom-assisted palladium-catalyzed carboxylation of 9-allyl adenine is disclosed. Substrate scope with different carboxylic acids was performed giving decent to good yields of the desired products. The method also allowed for the synthesis of deuterated analogs.
Collapse
Affiliation(s)
- Dhanashri A Sable
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Raod, Matunga, Mumbai 400019, India
| | - Aniket Gholap
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Raod, Matunga, Mumbai 400019, India
| | | | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Carola Schulzke
- Institute fur Biochemie, University of Greifswald, Felix-Hausdorff Strasse 4, D-17487 Greifswald, Germany
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Raod, Matunga, Mumbai 400019, India
| |
Collapse
|
18
|
Zhao Q, Xie R, Zeng Y, Li W, Xiao G, Li Y, Chen G. Palladium-catalyzed C-H olefination of uridine, deoxyuridine, uridine monophosphate and uridine analogues. RSC Adv 2022; 12:24930-24934. [PMID: 36199883 PMCID: PMC9434382 DOI: 10.1039/d2ra03681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The palladium-catalyzed oxidative C-H olefinations of uridine, deoxyuridine, uridine monophosphate and uridine analogues are reported herein. This protocol provides an efficient, atom-economic and environmentally friendly approach to the synthesis of biologically important C5-alkene modified uracil/uridine-containing derivatives and pharmaceutical candidates.
Collapse
Affiliation(s)
- Qin Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Ruoqian Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Yuxiao Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Wanlu Li
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 People's Republic of China
| | - Guolan Xiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425199 People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 People's Republic of China
| |
Collapse
|
19
|
Bollu A, Panda SS, Sharma NK. Fluorescent DNA analog: 2-aminotroponyl-pyrrolyl-2'-deoxyuridinyl DNA oligo enhance fluorescence in DNA-duplex as compared to 2-aminotroponyl-ethynyl-2'-deoxyuridinyl DNA oligo. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:119-133. [PMID: 36002436 DOI: 10.1080/15257770.2022.2111442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The nucleobase modified fluorescent DNA and RNA analogs are synthesized by the conjugation of aromatic scaffolds through linkers, comprising mostly ethyne/ethene or fused ring residues at the pyrimidine/purine ring. These scaffolds are mainly derived from the benzenoid aromatic molecules comprising electron withdrawing/donating characters. However, non-benzenoid aromatic scaffolds such as tropolone and related derivatives are constituents of various troponoid natural products. The conjugation of nucleobases with a troponyl moiety is underutilized for the synthesis of fluorescent DNA analogs. This report describes the synthesis and photophysical studies of 2-aminotroponyl conjugated deoxyuridine nucleosides and their DNA analogs. 2-Aminotropone derivatives are conjugated at the C-5 position of uridine through an ethynyl linker/pyrrolyl ring fusion and their DNA analogs. Their photophysical studies reveal that aminotroponyl deoxyuridine analogs exhibit solvent-dependent fluorescence properties. Moreover, pyrrolyl ring-fused aminotroponyl DNA oligonucleotides enhance the fluorescence after formation of duplexation with complementary sequences of native DNA oligonucleotides. Hence, these modified nucleosides and DNA are promising fluorescent analogs which could be useful to design the sequence-specific DNA probes.
Collapse
Affiliation(s)
- Amarnath Bollu
- School of Chemical Science, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | - Subhashree Subhadarshini Panda
- School of Chemical Science, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | | |
Collapse
|
20
|
Kondhare D, Zhang A, Leonard P, Seela F. DNA with Purine-Purine Base Pairs: Size and Position of Isoguanine and 8-Aza-7-deazaisoguanine Clickable Residues Control the Molecular Recognition of Guanine and 5-Aza-7-deazaguanine. J Org Chem 2022; 87:10630-10650. [PMID: 35948421 DOI: 10.1021/acs.joc.2c00812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purine-purine base pairs represent an alternative recognition system to the purine-pyrimidine pairing reported by Watson and Crick. Modified purines are the source for non-canonical interactions. To mimic dG-dC interactions, 2'-deoxyisoguanosine (1a) and 8-aza-7-deaza-2'-deoxyisoguanosine (2a) are used to construct base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine (dZ). This work reports the chemical functionalization of 1a and its shape mimic 2a in purine-purine base pairs. Clickable rigid ethynyl and more flexible octadiynyl side chain derivatives of 1a and 2a were synthesized. They were protected and converted into phosphoramidites. Building blocks were employed in the synthesis of base-modified 12-mer oligonucleotides with clickable side chains. Pyrene azide was clicked to the linkers. After hybridization, oligonucleotides with purine-purine base pairs were constructed with linkers and pyrene adducts at position-8 of isoguanine and at position-7 of 8-aza-7-deazaisoguanine. Recognition and stability of purine-purine base pairs were explored using Tm values, thermodynamic data, and CD-spectroscopic changes. Side chains at position-7 of 8-aza-7-deazaisoguanine-guanine base pairs or with 5-aza-7-deazaguanine are well accommodated in DNA, whereas functionalization at 8-position of isoguanine makes the DNA unstable. Pyrene click adducts verified the observation. In conclusion, position-7 is the place of choice for purine-purine base pair functionalization.
Collapse
Affiliation(s)
- Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Aigui Zhang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
21
|
Caldero-Rodríguez NE, Arpa EM, Cárdenas DJ, Martínez-Fernández L, Jockusch S, Seth SK, Corral I, Crespo-Hernández CE. 2-Oxopurine Riboside: A Dual Fluorescent Analog and Photosensitizer for RNA/DNA Research. J Phys Chem B 2022; 126:4483-4490. [PMID: 35679327 DOI: 10.1021/acs.jpcb.2c01113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is significant interest in developing suitable nucleoside analogs exhibiting high fluorescence and triplet yields to investigate the structure, dynamics, and binding properties of nucleic acids and promote selective photosensitized damage to DNA/RNA, respectively. In this study, steady-state, laser flash photolysis, time-resolved IR luminescence, and femtosecond broad-band transient absorption spectroscopies are combined with quantum chemical calculations to elucidate the excited-state dynamics of 2-oxopurine riboside in aqueous solution and to investigate its prospective use as a fluorescent or photosensitizer analog. The Franck-Condon population in the S1 (ππ*) state decays through a combination of solvent and conformational relaxation to its minimum in 1.9 ps. The population trapped in the 1ππ* minimum bifurcates to either fluoresce or intersystem cross to the triplet manifold within ca. 5 ns, while another fraction of the population decays nonradiatively to the ground state. It is demonstrated that 2-oxopurine riboside exhibits both high fluorescent (48%) and significant triplet (between 10% and 52%) yields, leading to a yield of singlet oxygen generation of 10%, making this nucleoside analog a dual fluorescent and photosensitizer analog for DNA and RNA research.
Collapse
Affiliation(s)
| | - Enrique M Arpa
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - Diego J Cárdenas
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lara Martínez-Fernández
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Inés Corral
- Departamento de Química, Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
22
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
23
|
Akula HK, Bae S, Pradhan P, Yang L, Zajc B, Lakshman MK. Diversely C8-functionalized adenine nucleosides via their underexplored carboxaldehydes. Chem Commun (Camb) 2022; 58:1744-1747. [PMID: 35029254 DOI: 10.1039/d1cc06686b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially versatile N-unprotected 8-formyl derivatives of adenosine and 2'-deoxyadenosine are highly underexploited for C8 modifications of these nucleosides. Only in situ formation of 8-formyladenosine is known and a single application of an N-benzoyl derivative has been reported. On the other hand, 8-formyl-2'-deoxyadenosine and its applications remain unknown. Herein, we report straightforward, scalable syntheses of both N-unprotected 8-formyladenine nucleoside derivatives, and demonstrate broad diversification at the C8 position by hydroxymethylation, azidation, CuAAC ligation, reductive amination, as well as olefination and fluoroolefination with modified Julia and a Horner-Wadsworth-Emmons reagents.
Collapse
Affiliation(s)
- Hari K Akula
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Suyeal Bae
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Lijia Yang
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Barbara Zajc
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA. .,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA. .,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
24
|
Matyašovský J, Tack L, Palágyi A, Kuba M, Pohl R, Kraus T, Güixens-Gallardo P, Hocek M. Nucleotides bearing aminophenyl- or aminonaphthyl-3-methoxychromone solvatochromic fluorophores for the enzymatic construction of DNA probes for the detection of protein-DNA binding. Org Biomol Chem 2021; 19:9966-9974. [PMID: 34747967 DOI: 10.1039/d1ob02098f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized nucleosides bearing aminophenyl- or aminonaphthyl-3-methoxychromone fluorophores attached at position 5 of cytosine or thymine and converted them to nucleoside triphosphates. The fluorophores showed solvatochromic fluorescence with strong fluorescence at 433-457 nm in non-polar solvents and very weak fluorescence at 567 nm in alcohols. The nucleosides and nucleotides also showed only negligible fluorescence in alcohols or water. The triphosphates were substrates for DNA polymerase in the enzymatic synthesis of modified DNA probes that showed only very weak fluorescence in aqueous buffer but a significant light-up and blue shift were observed when they interacted with proteins (histone H3.1 or p53 for double-stranded DNA probes or single-strand binding protein for single-stranded oligonucleotide probes). Hence, nucleotides have good potential in the construction of DNA sensors for studying protein-DNA interactions. The modified dNTPs were also transported into cells using a cyclodextrin-based transporter but they were not incorporated into the genomic DNA.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Laure Tack
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Attila Palágyi
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Miroslav Kuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic.
| | - Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, CZ-16610 Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|
25
|
Walunj MB, Srivatsan SG. Heterocycle-modified 2'-Deoxyguanosine Nucleolipid Analogs Stabilize Guanosine Gels and Self-assemble to Form Green Fluorescent Gels. Chem Asian J 2021; 17:e202101163. [PMID: 34817121 DOI: 10.1002/asia.202101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Indexed: 11/08/2022]
Abstract
Nucleoside-lipid conjugates are very useful supramolecular building blocks to construct self-assembled architectures suited for biomedical and material applications. Such nucleoside derivatives can be further synthetically manipulated to endow additional functionalities that could augment the assembling process and impart interesting properties. Here, we report the design, synthesis and self-assembling process of multifunctional supramolecular nucleolipid synthons containing an environment-sensitive fluorescent guanine. The amphiphilic synthons are composed of an 8-(2-(benzofuran-2-yl)vinyl)-guanine core and alkyl chains attached to 3'-O and 5'-O-positions of 2'-deoxyguanosine. The 2-(benzofuran-2-yl)vinyl (BFV) moiety attached at the C8 position of the nucleobase adopted a syn conformation about the glycosidic bond, which facilitated the self-assembly process through the formation of a G-tetrad as the basic unit. While 3',5'-diacylated BFV-modified dG analog stabilized the guanosine hydrogel by hampering the crystallization process and imparted fluorescence, BFV-modified dGs containing longer alkyl chains formed a green fluorescent organogel, which transformed into a yellow fluorescent gel in the presence of a complementary non-fluorescent cytidine nucleolipid. The ability of the dG analog containing short alkyl chains to modulate the mechanical property of a gel, and interesting fluorescence properties and self-assembling behavior exhibited by the dG analogs containing long alkyl chains in response to heat and complementary base underscore the potential use of these new supramolecular synthons in material applications.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
26
|
Kondhare D, Leonard P, Seela F. Isoguanine (2-Hydroxyadenine) and 2-Aminoadenine Nucleosides with an 8-Aza-7-deazapurine Skeleton: Synthesis, Functionalization with Fluorescent and Clickable Side Chains, and Impact of 7-Substituents on Physical Properties. J Org Chem 2021; 86:14461-14475. [PMID: 34661407 DOI: 10.1021/acs.joc.1c01283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
7-Functionalized 8-aza-7-deaza-2'-deoxyisoguanine and 8-aza-7-deaza-2-aminoadenine 2'-deoxyribonucleosides decorated with fluorescent pyrene or benzofuran sensor tags or clickable side chains with terminal triple bonds were synthesized. 8-Aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine was used as the central intermediate and was accessible by an improved two-step glycosylation/amination protocol. Functionalization of position-7 was performed either on 8-aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine followed by selective deamination of the 2-amino group or on 7-iodinated 8-aza-7-deaza-2'-deoxyisoguanosine. Sonogashira and Suzuki-Miyaura cross-coupling reactions were employed for this purpose. Octadiynyl side chains were selected as linkers for click reactions with azido pyrenes. KTaut values calculated from H2O/dioxane mixtures revealed that side chains have a significant influence on the tautomeric equilibrium. Photophysical properties (fluorescence, solvatochromism, and quantum yields) of the new 8-aza-7-deazapurine nucleosides with fluorescent side chains were determined. Remarkably, a strong excimer fluorescence in H2O was observed for pyrene dye conjugates of 8-aza-7-deazaisoguanine and 2-aminoadenine nucleosides with a long linker. In other solvents including methanol, excimer fluorescence was negligible. The 2-aminoadenine and isoguanine nucleosides with the 8-aza-7-deazapurine skeleton expand the class of nucleosides applicable to fluorescence detection with respect to diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
27
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
28
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
29
|
Güixens-Gallardo P, Hocek M. Acetophenyl-thienyl-aniline-Linked Nucleotide for Construction of Solvatochromic Fluorescence Light-Up DNA Probes Sensing Protein-DNA Interactions. Chemistry 2021; 27:7090-7093. [PMID: 33769635 DOI: 10.1002/chem.202100575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The synthesis of 2'-deoxycytidine and its 5'-O-triphosphate bearing solvatochromic acetophenyl-thienyl-aniline fluorophore was developed using the Sonogashira cross-coupling reaction as the key step. The triphosphate was used for polymerase synthesis of labelled DNA. The labelled nucleotide or DNA exerted weak red fluorescence when excited at 405 nm, but a significant colour change (to yellow or green) and light-up (up to 20 times) was observed when the DNA probes interacted with proteins or lipids.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
30
|
Shet H, Parmar U, Bhilare S, Kapdi AR. A comprehensive review of caged phosphines: synthesis, catalytic applications, and future perspectives. Org Chem Front 2021. [DOI: 10.1039/d0qo01194k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Caged phosphines are versatile ligands due to their rigid backbones, exhibiting a range of catalytic activities, as depicted through the given pictorial representation.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
- Institute of Chemical Technology-Indian Oil Odisha Campus
| | | | - Shatrughn Bhilare
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai 400019
- India
| |
Collapse
|
31
|
Kumar S, Kumar S, Maity J, Kumar B, Bali Mehta S, Prasad AK. Synthesis and photophysical properties of 5-(3′′-alkyl/aryl-amino-1′′-azaindolizin-2′′-yl)-2′-deoxyuridines. NEW J CHEM 2021. [DOI: 10.1039/d1nj02423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Groebke–Blackburn–Bienayame (GBB) reaction has been used for the efficient synthesis of novel fluorescent 5-azaindolizino-2′-deoxyuridines starting from commercially available thymidine following two strategies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi 110007, India
| | - Sumit Kumar
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi 110007, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi, India
| | - Banty Kumar
- Department of Chemistry, Rajdhani College, University of Delhi, Delhi, India
| | | | - Ashok K. Prasad
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi 110007, India
| |
Collapse
|
32
|
George JT, Srivatsan SG. Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state. Chem Commun (Camb) 2020; 56:12307-12318. [PMID: 33026365 PMCID: PMC7611129 DOI: 10.1039/d0cc05228k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To understand the structure and ensuing function of RNA in various cellular processes, researchers greatly rely on traditional as well as contemporary labeling technologies to devise efficient biochemical and biophysical platforms. In this context, bioorthogonal chemistry based on chemoselective reactions that work under biologically benign conditions has emerged as a state-of-the-art labeling technology for functionalizing biopolymers. Implementation of this technology on sugar, protein, lipid and DNA is fairly well established. However, its use in labeling RNA has posed challenges due to the fragile nature of RNA. In this feature article, we provide an account of bioorthogonal chemistry-based RNA labeling techniques developed in our lab along with a detailed discussion on other technologies put forward recently. In particular, we focus on the development and applications of covalent methods to label RNA by transcription and posttranscription chemo-enzymatic approaches. It is expected that existing as well as new bioorthogonal functionalization methods will immensely advance our understanding of RNA and support the development of RNA-based diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | | |
Collapse
|
33
|
Kuba M, Kraus T, Pohl R, Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chemistry 2020; 26:11950-11954. [PMID: 32633433 PMCID: PMC7361531 DOI: 10.1002/chem.202003192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
34
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
35
|
Li J, Fang X, Ming X. Visibly Emitting Thiazolyl-Uridine Analogues as Promising Fluorescent Probes. J Org Chem 2020; 85:4602-4610. [DOI: 10.1021/acs.joc.9b03208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jinsi Li
- Department of Pharmacy, Chengdu Medical College, No. 783 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| | - Xuerong Fang
- Department of Pharmacy, Chengdu Medical College, No. 783 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| | - Xin Ming
- Department of Pharmacy, Chengdu Medical College, No. 783 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
36
|
Ramsingh Girase T, Bhilare S, Sankar Murthy Bandaru S, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. Carbazole‐Based N‐Heterocyclic Carbenes for the Promotion of Copper‐Catalyzed Palladium‐Free Homo‐/Hetero‐Coupling of Alkynes and Sonogashira Reactions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Shatrughn Bhilare
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh road, Matunga Mumbai 400019 India
| | | | - Nicolas Chrysochos
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 D-17487 Greifswald Germany
| | - Carola Schulzke
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 D-17487 Greifswald Germany
| | - Yogesh S. Sanghvi
- Rasayan Inc. 2802, Crystal Ridge Road Encinitas, California 92024-6615 USA
| | - Anant R. Kapdi
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh road, Matunga Mumbai 400019 India
- Institute of Chemical Technology-Indian Oil Odisha CampusIIT Kharagpur extension Centre Mouza Samantpuri Bhubaneswar 751013, Odisha India
| |
Collapse
|
37
|
Güixens-Gallardo P, Humpolickova J, Miclea SP, Pohl R, Kraus T, Jurkiewicz P, Hof M, Hocek M. Thiophene-linked tetramethylbodipy-labeled nucleotide for viscosity-sensitive oligonucleotide probes of hybridization and protein-DNA interactions. Org Biomol Chem 2020; 18:912-919. [PMID: 31919486 DOI: 10.1039/c9ob02634g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytosine 2'-deoxyribonucleoside dCTBdp and its triphosphate (dCTBdpTP) bearing tetramethylated thiophene-bodipy fluorophore attached at position 5 were designed and synthesized. The green fluorescent nucleoside dCTBdp showed a perfect dependence of fluorescence lifetime on the viscosity. The modified triphosphate dCTBdpTP was substrate to several DNA polymerases and was used for in vitro enzymatic synthesis of labeled oligonucleotides (ONs) or DNA by primer extension. The labeled single-stranded ONs showed a significant decrease in mean fluorescence lifetime when hybridized to the complementary strand of DNA or RNA and were also sensitive to mismatches. The labeled dsDNA sensed protein binding (p53), which resulted in the increase of its fluorescence lifetime. The triphosphate dCTBdpTP was transported to live cells where its interactions could be detected by FLIM but it did not show incorporation to genomic DNA in cellulo.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Sebastian Paul Miclea
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
38
|
Ardhapure AV, Gayakhe V, Bhilare S, Kapdi AR, Bag SS, Sanghvi YS, Gunturu KC. Extended fluorescent uridine analogues: synthesis, photophysical properties and selective interaction with BSA protein. NEW J CHEM 2020. [DOI: 10.1039/d0nj02803g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The improvement in fluorescence properties of 2′-deoxyuridine was made possible by the introduction of (hetero)aromatic moieties at the C–5 position of uridine with alkenyl/phenyl/styryl linkers to create a library of useful fluorescent nucleosides.
Collapse
Affiliation(s)
| | - Vijay Gayakhe
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai-400019
- India
| | - Shatrughn Bhilare
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai-400019
- India
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Matunga
- Mumbai-400019
- India
| | - Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Guwahati 781039
- India
| | | | | |
Collapse
|
39
|
Leonard P, Kondhare D, Jentgens X, Daniliuc C, Seela F. Nucleobase-Functionalized 5-Aza-7-deazaguanine Ribo- and 2′-Deoxyribonucleosides: Glycosylation, Pd-Assisted Cross-Coupling, and Photophysical Properties. J Org Chem 2019; 84:13313-13328. [DOI: 10.1021/acs.joc.9b01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Xenia Jentgens
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Institut für Organische Chemie, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
40
|
Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc Chem Res 2019; 52:1730-1737. [PMID: 31181911 DOI: 10.1021/acs.accounts.9b00195] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-DNA interactions are important in replication, transcription, repair, as well as epigenetic modifications of DNA, which involve methylation and demethylation of DNA resulting in regulation of gene expression. Understanding of these processes and chemical tools for studying and perhaps even modulating them could be of great relevance and importance not only in chemical biology but also in real diagnostics and treatment of diseases. In the past decade, we have been working on development of synthesis of base-modified 2'-deoxyribo- or ribonucleoside triphosphates (dNTPs or NTPs) and their use in enzymatic synthesis of modified nucleic acids using DNA or RNA polymerases. These synthetic and enzymatic methods are briefly summarized with focus on recent development and outlining of scope, limitations, and further challenges. The main focus of this Account is on applications of base-modified nucleic acids in sensing of protein-DNA interactions, in covalent cross-linking to DNA-binding proteins ,and in modulation of protein-DNA binding and transcription. Several environment-sensitive fluorescent nucleotides were incorporated to DNA probes which responded to protein binding by light-up, changing of color, or lifetime of fluorescence. Using a cyclodextrin-peptide transporter, fluorescent nucleotides can be transported through the cell membrane and incorporated to genomic DNA. Several dNTPs bearing reactive groups (i.e., vinylsulfonamide or chloroacetamide) were used for polymerase synthesis of DNA reactive probes which cross-link to Cys, His, or Lys in peptides or proteins. An attractive challenge is to use DNA modifications and bioorthogonal reactions in the major groove of DNA for modulation and switching of protein-DNA interactions. We have systematically explored the influence of major-groove modifications on recognition and cleavage of DNA by restriction endonucleases and constructed simple chemical switches of DNA cleavage. Systematic study of the influence of major-groove modifications on transcription with bacterial RNA polymerases revealed not only that some modified bases are tolerated, but also that the presence of 5-hydroxymethyluracil or -cytosine can even enhance the transcription (350 or 250% compared to native DNA). Based on these results, we have constructed the first chemical switch of transcription based on photocaging of hydroxymethylpyrimidines in DNA by 2-nitrobenzyl protection (transcription off), photochemical deprotection of the DNA (transcription on), and enzymatic phosphorylation (only for 5-hydroxymethyluracil, transcription off). Although it has been so far demonstrated only in vitro, it is the proof-of-principle first step toward chemical epigenetics.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
41
|
Manna S, Srivatsan SG. Synthesis and Enzymatic Incorporation of a Responsive Ribonucleoside Probe That Enables Quantitative Detection of Metallo-Base Pairs. Org Lett 2019; 21:4646-4650. [PMID: 31184159 PMCID: PMC6794643 DOI: 10.1021/acs.orglett.9b01544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Synthesis of a highly
responsive fluorescent ribonucleoside analogue
based on a 5-methoxybenzofuran uracil core, enzymatic incorporation
of its triphosphate substrate into RNA transcripts, and its utility
in the specific detection and estimation of Hg2+-ion-mediated
metallo-base pair formation in DNA–RNA and RNA–RNA duplexes
are described.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road , Pune 411008 , India
| | - Seergazhi G Srivatsan
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road , Pune 411008 , India
| |
Collapse
|
42
|
Wen Z, Tuttle PR, Howlader AH, Vasilyeva A, Gonzalez L, Tangar A, Lei R, Laverde EE, Liu Y, Miksovska J, Wnuk SF. Fluorescent 5-Pyrimidine and 8-Purine Nucleosides Modified with an N-Unsubstituted 1,2,3-Triazol-4-yl Moiety. J Org Chem 2019; 84:3624-3631. [PMID: 30806513 DOI: 10.1021/acs.joc.8b03135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Cu(I)- or Ag(I)-catalyzed cycloaddition between 8-ethynyladenine or guanine nucleosides and TMSN3 gave 8-(1- H-1,2,3-triazol-4-yl) nucleosides in good yields. On the other hand, reactions of 5-ethynyluracil or cytosine nucleosides with TMSN3 led to the chemoselective formation of triazoles via Cu(I)-catalyzed cycloaddition or vinyl azides via Ag(I)-catalyzed hydroazidation. These nucleosides with a minimalistic triazolyl modification showed excellent fluorescent properties with 8-(1- H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (8-TrzdA), exhibiting a quantum yield of 44%. The 8-TrzdA 5'-triphosphate was incorporated into duplex DNA containing a one-nucleotide gap by DNA polymerase β.
Collapse
Affiliation(s)
- Zhiwei Wen
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Paloma R Tuttle
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Anna Vasilyeva
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Laura Gonzalez
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Antonija Tangar
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ruipeng Lei
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Eduardo E Laverde
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Yuan Liu
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
43
|
Stendevad J, Hornum M, Wüstner D, Kongsted J. Photophysical investigation of two emissive nucleosides exhibiting gigantic stokes shifts. Photochem Photobiol Sci 2019; 18:1858-1865. [DOI: 10.1039/c9pp00172g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present discovery of two highly emissive nucleoside analogs with gigantic Stokes shifts and use in silico methods for rationalizing their striking fluorescent properties.
Collapse
Affiliation(s)
- Julie Stendevad
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Mick Hornum
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Jacob Kongsted
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| |
Collapse
|
44
|
Kanamori T, Masaki Y, Oda Y, Ohzeki H, Ohkubo A, Sekine M, Seio K. DNA triplex-based fluorescence turn-on sensors for adenosine using a fluorescent molecular rotor 5-(3-methylbenzofuran-2-yl) deoxyuridine. Org Biomol Chem 2019; 17:2077-2080. [DOI: 10.1039/c8ob02747a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence turn-on detection of adenosine based on microenvironmental and conformational changes of a fluorescent molecular rotor in the DNA triplex is reported.
Collapse
Affiliation(s)
- Takashi Kanamori
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Yoshiaki Masaki
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Yuki Oda
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Hiroki Ohzeki
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Akihiro Ohkubo
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Mitsuo Sekine
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Kohji Seio
- Department of Life Science
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| |
Collapse
|
45
|
Eltyshev AK, Suntsova PO, Karmatskaia KD, Taniya OS, Slepukhin PA, Benassi E, Belskaya NP. An effective and facile synthesis of new blue fluorophores on the basis of an 8-azapurine core. Org Biomol Chem 2018; 16:9420-9429. [PMID: 30500034 DOI: 10.1039/c8ob02644k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A convenient synthesis of 2-aryl-2,4-dihydro-5H-[1,2,3]triazolo[4,5-d]pyrimidin-5-ones (DTPs) from 3,3-diamino-2-(arylazo)acrylonitriles through a versatile and readily accessible two-step procedure is described. Density functional theory (DFT) calculations were performed to explain the selectivity of the heterocyclization step, which predominantly afforded 6-amino-5-(arylazo)pyrimidin-2(1H)-thiones in chloroform or ethanol, and 2,3-dihydro-1,2,4-triazines in toluene or DMF. Novel 2-aryl-2,4-dihydro-5H-[1,2,3]triazolo[4,5-d]pyrimidin-5-ones were obtained in good yields and showed absorption in the ultraviolet region and good emission in the blue region. The photophysical properties of DTPs were better than those cited in select literature examples of 8-azapurines. Owing to the facile synthesis and good photophysical characteristics in an aqueous medium, the new DTPs should have potential applications as organic fluorophores in fluorescence imaging and materials science.
Collapse
|
46
|
Kuba M, Pohl R, Hocek M. Synthesis of 2′-deoxycytidine and its triphosphate bearing tryptophan-based imidazolinone fluorophore for environment sensitive fluorescent labelling of DNA. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Güixens-Gallardo P, Zawada Z, Matyašovský J, Dziuba D, Pohl R, Kraus T, Hocek M. Brightly Fluorescent 2′-Deoxyribonucleoside Triphosphates Bearing Methylated Bodipy Fluorophore for in Cellulo Incorporation to DNA, Imaging, and Flow Cytometry. Bioconjug Chem 2018; 29:3906-3912. [DOI: 10.1021/acs.bioconjchem.8b00721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
48
|
De Schutter C, Roy V, Favetta P, Pavageau C, Maisonneuve S, Bogliotti N, Xie J, Agrofoglio LA. Synthesis and characterization of various 5'-dye-labeled ribonucleosides. Org Biomol Chem 2018; 16:6552-6563. [PMID: 30168548 DOI: 10.1039/c8ob01606b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hitherto unknown chromophoric nucleosides are reported. This novel set of visibly coloured dye-labeled 5'-nucleosides, including 1,2,4,5-tetrazine, dicyanomethylene-4H-pyran, benzophenoxazinone, 9,10-anthraquinone and azobenzene chromophores, were prepared mainly under Cu-catalyzed azide-alkyne cycloaddition (CuAAC). The design criteria are outlined. Several derivatives possess in supplement a fluorescence property. The absorption and fluorescence spectra of all coloured nucleosides were recorded to study their potential as visible-range probes. Such nucleodyes are of great interest for future competitive lateral flow test MIP-based strips.
Collapse
|
49
|
Seio K, Kanamori T, Masaki Y. Synthesis of Fluorescent Nucleic Acids bearing Nucleobases Modified with Heteroaryl Group and Fluorophores. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology
| | | | | |
Collapse
|
50
|
Manna S, Srivatsan SG. Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Adv 2018; 8:25673-25694. [PMID: 30210793 PMCID: PMC6130854 DOI: 10.1039/c8ra03708f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Biophysical and biochemical investigations provide compelling evidence connecting the four-stranded G-quadruplex (GQ) structure with its role in regulating multiple cellular processes. Hence, modulating the function of GQs by using small molecule binders is being actively pursued as a strategy to develop new chemotherapeutic agents. However, sequence diversity and structural polymorphism of GQs have posed immense challenges in terms of understanding what conformation a G-rich sequence adopts inside the cell and how to specifically target a GQ motif amidst several other GQ-forming sequences. In this context, here we review recent developments in the applications of biophysical tools that use fluorescence readout to probe the GQ structure and recognition in cell-free and cellular environments. First, we provide a detailed discussion on the utility of covalently labeled environment-sensitive fluorescent nucleoside analogs in assessing the subtle difference in GQ structures and their ligand binding abilities. Furthermore, a detailed discussion on structure-specific antibodies and small molecule probes used to visualize and confirm the existence of DNA and RNA GQs in cells is provided. We also highlight the open challenges in the study of tetraplexes (GQ and i-motif structures) and how addressing these challenges by developing new tools and techniques will have a profound impact on tetraplex-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| |
Collapse
|