1
|
Poudel H, Leitner DM. Activation-Induced Reorganization of Energy Transport Networks in the β 2 Adrenergic Receptor. J Phys Chem B 2021; 125:6522-6531. [PMID: 34106712 DOI: 10.1021/acs.jpcb.1c03412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We compute energy exchange networks (EENs) through the β2 adrenergic receptor (β2AR), a G-protein coupled receptor (GPCR), in inactive and active states, based on the results of molecular dynamics simulations of this membrane bound protein. We introduce a new definition for the reorganization of EENs upon activation that depends on the relative change in rates of energy transfer across noncovalent contacts throughout the protein. On the basis of the reorganized network that we obtain for β2AR upon activation, we identify a branched pathway between the agonist binding site and the cytoplasmic region, where a G-protein binds to the receptor when activated. The pathway includes all of the motifs containing molecular switches previously identified as contributing to the allosteric transition of β2AR upon agonist binding. EENs and their reorganization upon activation are compared with structure-based contact networks computed for the inactive and active states of β2AR.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
2
|
Poudel H, Reid KM, Yamato T, Leitner DM. Energy Transfer across Nonpolar and Polar Contacts in Proteins: Role of Contact Fluctuations. J Phys Chem B 2020; 124:9852-9861. [PMID: 33107736 DOI: 10.1021/acs.jpcb.0c08091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular dynamics simulations of the villin headpiece subdomain HP36 have been carried out to examine relations between rates of vibrational energy transfer across non-covalently bonded contacts and equilibrium structural fluctuations, with focus on van der Waals contacts. Rates of energy transfer across van der Waals contacts vary inversely with the variance of the contact length, with the same constant of proportionality for all nonpolar contacts of HP36. A similar relation is observed for hydrogen bonds, but the proportionality depends on contact pairs, with hydrogen bonds stabilizing the α-helices all exhibiting the same constant of proportionality, one that is distinct from those computed for other polar contacts. Rates of energy transfer across van der Waals contacts are found to be up to 2 orders of magnitude smaller than rates of energy transfer across polar contacts.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
4
|
Reid KM, Yamato T, Leitner DM. Variation of Energy Transfer Rates across Protein–Water Contacts with Equilibrium Structural Fluctuations of a Homodimeric Hemoglobin. J Phys Chem B 2020; 124:1148-1159. [DOI: 10.1021/acs.jpcb.9b11413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
5
|
Leitner DM, Pandey HD, Reid KM. Energy Transport across Interfaces in Biomolecular Systems. J Phys Chem B 2019; 123:9507-9524. [DOI: 10.1021/acs.jpcb.9b07086] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Hari Datt Pandey
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
6
|
Leitner DM, Yamato T. MAPPING ENERGY TRANSPORT NETWORKS IN PROTEINS. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Reid KM, Yamato T, Leitner DM. Scaling of Rates of Vibrational Energy Transfer in Proteins with Equilibrium Dynamics and Entropy. J Phys Chem B 2018; 122:9331-9339. [DOI: 10.1021/acs.jpcb.8b07552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
8
|
Pandey HD, Leitner DM. Thermodynamics of Hydration Water around an Antifreeze Protein: A Molecular Simulation Study. J Phys Chem B 2017; 121:9498-9507. [DOI: 10.1021/acs.jpcb.7b05892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hari Datt Pandey
- Department of Chemistry and
Chemical Physics Program, University of Nevada, Reno, Nevada 89557, United States
| | - David M. Leitner
- Department of Chemistry and
Chemical Physics Program, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
9
|
Abstract
We examine energy dynamics in the unliganded and liganded states of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI), which exhibits cooperativity mediated by the cluster of water molecules at the interface upon ligand binding and dissociation. We construct and analyze a dynamic network in which nodes representing the residues, hemes, and water cluster are connected by edges that represent energy transport times, as well as a nonbonded network (NBN) indicating regions that respond rapidly to local strain within the protein via nonbonded interactions. One of the two largest NBNs includes the Lys30-Asp89 salt bridge critical for stabilizing the dimer. The other includes the hemes and surrounding residues, as well as, in the unliganded state, the cluster of water molecules between the globules. Energy transport in the protein appears to be controlled by the Lys30-Asp89 salt bridge critical for stabilizing the dimer, as well as the interface water cluster in the unliganded state. Possible connections between energy transport dynamics in response to local strain identified here and allosteric transitions in HbI are discussed.
Collapse
Affiliation(s)
- David M Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada , Reno, Nevada 89557, United States
| |
Collapse
|
10
|
Leitner DM, Buchenberg S, Brettel P, Stock G. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations. J Chem Phys 2015; 142:075101. [DOI: 10.1063/1.4907881] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557, USA
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Sebastian Buchenberg
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Paul Brettel
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Gerhard Stock
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Agbo JK, Xu Y, Zhang P, Straub JE, Leitner DM. Vibrational energy flow across heme–cytochrome c and cytochrome c–water interfaces. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1504-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|