1
|
Morikawa K, Kazoe Y, Takagi Y, Tsuyama Y, Pihosh Y, Tsukahara T, Kitamori T. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device. MICROMACHINES 2020; 11:E995. [PMID: 33182488 PMCID: PMC7697862 DOI: 10.3390/mi11110995] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Nanofluidics have recently attracted significant attention with regard to the development of new functionalities and applications, and producing new functional devices utilizing nanofluidics will require the fabrication of nanochannels. Fused silica nanofluidic devices fabricated by top-down methods are a promising approach to realizing this goal. Our group previously demonstrated the analysis of a living single cell using such a device, incorporating nanochannels having different sizes (102-103 nm) and with branched and confluent structures and surface patterning. However, fabrication of geometrically-controlled nanochannels on the 101 nm size scale by top-down methods on a fused silica substrate, and the fabrication of micro-nano interfaces on a single substrate, remain challenging. In the present study, the smallest-ever square nanochannels (with a size of 50 nm) were fabricated on fused silica substrates by optimizing the electron beam exposure time, and the absence of channel breaks was confirmed by streaming current measurements. In addition, micro-nano interfaces between 103 nm nanochannels and 101 μm microchannels were fabricated on a single substrate by controlling the hydrophobicity of the nanochannel surfaces. A micro-nano interface for a single cell analysis device, in which a nanochannel was connected to a 101 μm single cell chamber, was also fabricated. These new fabrication procedures are expected to advance the basic technologies employed in the field of nanofluidics.
Collapse
Affiliation(s)
- Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Yuto Takagi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Yoshiyuki Tsuyama
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Yuriy Pihosh
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Takehiko Tsukahara
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-6, Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| |
Collapse
|
2
|
Le THH, Shimizu H, Morikawa K. Advances in Label-Free Detections for Nanofluidic Analytical Devices. MICROMACHINES 2020; 11:mi11100885. [PMID: 32977690 PMCID: PMC7598655 DOI: 10.3390/mi11100885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Nanofluidics, a discipline of science and engineering of fluids confined to structures at the 1-1000 nm scale, has experienced significant growth over the past decade. Nanofluidics have offered fascinating platforms for chemical and biological analyses by exploiting the unique characteristics of liquids and molecules confined in nanospaces; however, the difficulty to detect molecules in extremely small spaces hampers the practical applications of nanofluidic devices. Laser-induced fluorescence microscopy with single-molecule sensitivity has been so far a major detection method in nanofluidics, but issues arising from labeling and photobleaching limit its application. Recently, numerous label-free detection methods have been developed to identify and determine the number of molecules, as well as provide chemical, conformational, and kinetic information of molecules. This review focuses on label-free detection techniques designed for nanofluidics; these techniques are divided into two groups: optical and electrical/electrochemical detection methods. In this review, we discuss on the developed nanofluidic device architectures, elucidate the mechanisms by which the utilization of nanofluidics in manipulating molecules and controlling light-matter interactions enhances the capabilities of biological and chemical analyses, and highlight new research directions in the field of detections in nanofluidics.
Collapse
Affiliation(s)
- Thu Hac Huong Le
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Correspondence: (T.H.H.L.); (H.S.); (K.M.)
| | - Hisashi Shimizu
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Correspondence: (T.H.H.L.); (H.S.); (K.M.)
| | - Kyojiro Morikawa
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Correspondence: (T.H.H.L.); (H.S.); (K.M.)
| |
Collapse
|
3
|
Podgornik A, Etzel MR. Adsorbed Layer Thickness Determination for Convective-Based Media from Pressure Drop Data. Anal Chem 2018; 90:4992-4998. [DOI: 10.1021/acs.analchem.7b04156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aleš Podgornik
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana, Slovenia
- COBIK, Tovarniška 26, 5270 Ajdovščina, Slovenia
| | - Mark R. Etzel
- University of Wisconsin, Department of Chemical and Biological Engineering, 1605 Linden Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
FUKATSU Y, MORIKAWA K, IKEDA Y, TSUKAHARA T. Temperature and Size Effects on Structural and Dynamical Properties of Water Confined in 1 – 10 nm-scale Pores Using Proton NMR Spectroscopy. ANAL SCI 2017; 33:903-909. [DOI: 10.2116/analsci.33.903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuta FUKATSU
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology
| | - Kyojiro MORIKAWA
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology
| | - Yasuhisa IKEDA
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology
| | | |
Collapse
|
5
|
Morikawa K, Kazoe Y, Mawatari K, Tsukahara T, Kitamori T. Dielectric constant of liquids confined in the extended nanospace measured by a streaming potential method. Anal Chem 2015; 87:1475-9. [PMID: 25569302 DOI: 10.1021/ac504141j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding liquid structure and the electrical properties of liquids confined in extended nanospaces (10-1000 nm) is important for nanofluidics and nanochemistry. To understand these liquid properties requires determination of the dielectric constant of liquids confined in extended nanospaces. A novel dielectric constant measurement method has thus been developed for extended nanospaces using a streaming potential method. We focused on the nonsteady-state streaming potential in extended nanospaces and successfully measured the dielectric constant of liquids within them without the use of probe molecules. The dielectric constant of water was determined to be significantly reduced by about 3 times compared to that of the bulk. This result contributes key information toward further understanding of the chemistry and fluidics in extended nanospaces.
Collapse
Affiliation(s)
- Kyojiro Morikawa
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology , 2-12-1-N1-6, O-Okayama, Meguro, Tokyo 152-8550, Japan
| | | | | | | | | |
Collapse
|