1
|
Miller AH, Martins IBS, Blagova EV, Wilson KS, Duhme-Klair AK. Kinetic and structural analysis of redox-reversible artificial imine reductases. J Inorg Biochem 2024; 260:112691. [PMID: 39126757 DOI: 10.1016/j.jinorgbio.2024.112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Three artificial imine reductases, constructed via supramolecular anchoring utilising FeIII-azotochelin, a natural siderophore, to bind an iridium-containing catalyst to periplasmic siderophore-binding protein (PBP) scaffolds, have previously been synthesised and subjected to catalytic testing. Despite exhibiting high homology and possessing conserved siderophore anchor coordinating residues, the three artificial metalloenzymes (ArMs) displayed significant variability in turnover frequencies (TOFs). To further understand the catalytic properties of these ArMs, their kinetic behaviour was evaluated with respect to the reduction of three cyclic imines: dihydroisoquinoline, harmaline, and papaverine. Kinetic analyses revealed that all examined ArMs adhere to Michaelis-Menten kinetics, with the most pronounced saturation profile observed for the substrate harmaline. Additionally, molecular docking studies suggested varied hydrogen-bonding interactions between substrates and residues within the artificial binding pocket. Pi-stacking and pi-cation interactions were identified for harmaline and papaverine, corroborating the higher affinity of these substrates for the ArMs in comparison to dihydroisoquinoline. Furthermore, it was demonstrated that multiple cavities are capable of accommodating substrates in close proximity to the catalytic centre, thereby rationalising the moderate enantioselectivity conferred by the unmodified scaffolds.
Collapse
Affiliation(s)
- Alex H Miller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ingrid B S Martins
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Elena V Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Anne-K Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
2
|
Marchi-Delapierre C, Cavazza C, Ménage S. EcNikA, a versatile tool in the field of artificial metalloenzymes. J Inorg Biochem 2024; 262:112740. [PMID: 39426332 DOI: 10.1016/j.jinorgbio.2024.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
This review describes the multiple advantages of using of EcNikA, a nickel transport protein, in the design of artificial metalloenzymes as alternative catalysts for synthetic biology. The rationale behind the strategy of artificial enzyme design is discussed, with particular emphasis on de novo active site reconstitution. The impact of the protein scaffold on the artificial active site and thus the final catalytic properties is detailed, highlighting the considerable aptitude of hybrid systems to catalyze selective reactions, from alkene to thioether transformations (epoxidation, hydroxychlorination, sulfoxidation). The different catalytic approaches - from in vitro to in cristallo - are compared, revealing the considerable advantages of protein crystals in terms of stabilization and acceleration of reaction kinetics. The versatility of proteins, based on metal and ligand diversity and medium/physical conditions, are thus illustrated for oxidation catalysis.
Collapse
Affiliation(s)
| | - Christine Cavazza
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, CBM, F-38000 Grenoble, France.
| |
Collapse
|
3
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
4
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
5
|
Miller KR, Biswas S, Jasniewski A, Follmer AH, Biswas A, Albert T, Sabuncu S, Bominaar EL, Hendrich MP, Moënne-Loccoz P, Borovik AS. Artificial Metalloproteins with Dinuclear Iron-Hydroxido Centers. J Am Chem Soc 2021; 143:2384-2393. [PMID: 33528256 DOI: 10.1021/jacs.0c12564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear iron centers with a bridging hydroxido or oxido ligand form active sites within a variety of metalloproteins. A key feature of these sites is the ability of the protein to control the structures around the Fe centers, which leads to entatic states that are essential for function. To simulate this controlled environment, artificial proteins have been engineered using biotin-streptavidin (Sav) technology in which Fe complexes from adjacent subunits can assemble to form [FeIII-(μ-OH)-FeIII] cores. The assembly process is promoted by the site-specific localization of the Fe complexes within a subunit through the designed mutation of a tyrosinate side chain to coordinate the Fe centers. An important outcome is that the Sav host can regulate the Fe···Fe separation, which is known to be important for function in natural metalloproteins. Spectroscopic and structural studies from X-ray diffraction methods revealed uncommonly long Fe···Fe separations that change by less than 0.3 Å upon the binding of additional bridging ligands. The structural constraints imposed by the protein host on the di-Fe cores are unique and create examples of active sites having entatic states within engineered artificial metalloproteins.
Collapse
Affiliation(s)
- Kelsey R Miller
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Alec H Follmer
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Ankita Biswas
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Therese Albert
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Mail Code HRC3, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Sinan Sabuncu
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Mail Code HRC3, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Pierre Moënne-Loccoz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Mail Code HRC3, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - A S Borovik
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Ghattas W, Mahy JP, Réglier M, Simaan AJ. Artificial Enzymes for Diels-Alder Reactions. Chembiochem 2020; 22:443-459. [PMID: 32852088 DOI: 10.1002/cbic.202000316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.
Collapse
Affiliation(s)
- Wadih Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, 91405 Cedex 8, France
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, 91405 Cedex 8, France
| | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Avenue Escadrille Normandie Niemen, Service 342, Marseille, 13397, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Avenue Escadrille Normandie Niemen, Service 342, Marseille, 13397, France
| |
Collapse
|
7
|
Lopez S, Mayes DM, Crouzy S, Cavazza C, Leprêtre C, Moreau Y, Burzlaff N, Marchi-Delapierre C, Ménage S. A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah Lopez
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
- Univ. Grenoble-Alpes, DCM-SeRCO, F-38000 Grenoble, France
| | | | - Serge Crouzy
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Christine Cavazza
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Chloé Leprêtre
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Yohann Moreau
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | | | - Stéphane Ménage
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| |
Collapse
|
8
|
Markel U, Sauer DF, Schiffels J, Okuda J, Schwaneberg U. Towards the Evolution of Artificial Metalloenzymes—A Protein Engineer's Perspective. Angew Chem Int Ed Engl 2019; 58:4454-4464. [DOI: 10.1002/anie.201811042] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Johannes Schiffels
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52056 Aachen Germany
| | - Ulrich Schwaneberg
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| |
Collapse
|
9
|
Markel U, Sauer DF, Schiffels J, Okuda J, Schwaneberg U. Auf dem Weg zur Evolution artifizieller Metalloenzyme – aus einem Protein‐Engineering‐Blickwinkel. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ulrich Markel
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Daniel F. Sauer
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Johannes Schiffels
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Jun Okuda
- Institut für Anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| | - Ulrich Schwaneberg
- DWI Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52074 Aachen Deutschland
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| |
Collapse
|
10
|
Tang J, Yao P, Wang L, Bian H, Luo M, Huang F. Schiff base complex conjugates of bovine serum albumin as artificial metalloenzymes for eco-friendly enantioselective sulfoxidation. RSC Adv 2018; 8:40720-40730. [PMID: 35557885 PMCID: PMC9091609 DOI: 10.1039/c8ra07113f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022] Open
Abstract
Artificial metalloenzymes (BSA-ML) have been prepared by non-covalent insertion of transition metal Schiff-base complexes, ML (L = 2-hydroxynaphthalen-1-naphthaldehyde and 3,4-diaminobenzenesulfonic acid; M = Co, Mn, V, Fe, Cr), into bovine serum albumin (BSA) as the host protein and were characterized by UV-visible spectroscopy, ESI-TOF mass spectrometry and molecular docking studies. The catalytic activities of the BSA-ML in the selective oxidation of various prochiral sulfides in aqueous media, using H2O2 as oxidant, have been evaluated. During the optimization process, pH and the concentrations of catalyst and oxidant were found to have a remarkable influence on both yield and enantioselectivity. In certain cases, BSA-ML gave satisfactory results in the oxidation of organic sulfides to sulfoxides (up to 100% conversion, 100% chemoselectivity, 96% ee and 500 h-1 turnover frequency).
Collapse
Affiliation(s)
- Jie Tang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Key Laboratory of Chemistry and Engineering of Forest Products Nanning 530008 P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University Guilin 541004 P. R. China
- Guilin Normal College Guilin 541001 P. R. China
| | - Pengfei Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University Guilin 541004 P. R. China
| | - Lina Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University Guilin 541004 P. R. China
| | - Hedong Bian
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Key Laboratory of Chemistry and Engineering of Forest Products Nanning 530008 P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University Guilin 541004 P. R. China
| | - Meiyi Luo
- Guilin Normal College Guilin 541001 P. R. China
| | - Fuping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
11
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
12
|
Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. J Biol Inorg Chem 2017; 23:7-25. [DOI: 10.1007/s00775-017-1506-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
|
13
|
Lopez S, Rondot L, Leprêtre C, Marchi-Delapierre C, Ménage S, Cavazza C. Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions. J Am Chem Soc 2017; 139:17994-18002. [PMID: 29148757 DOI: 10.1021/jacs.7b09343] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Designing systems that merge the advantages of heterogeneous catalysis, enzymology, and molecular catalysis represents the next major goal for sustainable chemistry. Cross-linked enzyme crystals display most of these essential assets (well-designed mesoporous support, protein selectivity, and molecular recognition of substrates). Nevertheless, a lack of reaction diversity, particularly in the field of oxidation, remains a constraint for their increased use in the field. Here, thanks to the design of cross-linked artificial nonheme iron oxygenase crystals, we filled this gap by developing biobased heterogeneous catalysts capable of oxidizing carbon-carbon double bonds. First, reductive O2 activation induces selective oxidative cleavage, revealing the indestructible character of the solid catalyst (at least 30 000 turnover numbers without any loss of activity). Second, the use of 2-electron oxidants allows selective and high-efficiency hydroxychlorination with thousands of turnover numbers. This new technology by far outperforms catalysis using the inorganic complexes alone, or even the artificial enzymes in solution. The combination of easy catalyst synthesis, the improvement of "omic" technologies, and automation of protein crystallization makes this strategy a real opportunity for the future of (bio)catalysis.
Collapse
Affiliation(s)
- Sarah Lopez
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Laurianne Rondot
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Chloé Leprêtre
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Caroline Marchi-Delapierre
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Stéphane Ménage
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Christine Cavazza
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| |
Collapse
|
14
|
Affiliation(s)
- Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard St. Louis, MO 63121 USA
| |
Collapse
|
15
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
16
|
Solomon LA, Kronenberg JB, Fry HC. Control of Heme Coordination and Catalytic Activity by Conformational Changes in Peptide-Amphiphile Assemblies. J Am Chem Soc 2017; 139:8497-8507. [PMID: 28505436 DOI: 10.1021/jacs.7b01588] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling peptide materials have gained significant attention, due to well-demonstrated applications, but they are functionally underutilized. To advance their utility, we use noncovalent interactions to incorporate the biological cofactor heme-B for catalysis. Heme-proteins achieve differing functions through structural and coordinative variations. Here, we replicate this phenomenon by highlighting changes in heme reactivity as a function of coordination, sequence, and morphology (micelles versus fibers) in a series of simple peptide amphiphiles with the sequence c16-xyL3K3-CO2H where c16 is a palmitoyl moiety and xy represents the heme binding region: AA, AH, HH, and MH. The morphology of this peptide series is characterized using transmission electron and atomic force microscopies as well as dynamic light scattering. Within this small library of peptide constructs, we show that three spectroscopically (UV/visible and electron paramagnetic resonance) distinct heme environments were generated: noncoordinated/embedded high-spin, five-coordinate high-spin, and six-coordinate low-spin. The resulting material's functional dependence on sequence and supramolecular morphology is highlighted 2-fold. First, the heme active site binds carbon monoxide in both micelles and fibers, demonstrating that the heme active site in both morphologies is accessible to small molecules for catalysis. Second, peroxidase activity was observed in heme-containing micelles yet was significantly reduced in heme-containing fibers. We briefly discuss the implications these findings have in the production of functional, self-assembling peptide materials.
Collapse
Affiliation(s)
- Lee A Solomon
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jacob B Kronenberg
- Illinois Math and Science Academy , 1500 West Sullivan Road, Aurora, Illinois 60506, United States
| | - H Christopher Fry
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
17
|
|
18
|
Lopez S, Rondot L, Cavazza C, Iannello M, Boeri-Erba E, Burzlaff N, Strinitz F, Jorge-Robin A, Marchi-Delapierre C, Ménage S. Efficient conversion of alkenes to chlorohydrins by a Ru-based artificial enzyme. Chem Commun (Camb) 2017; 53:3579-3582. [DOI: 10.1039/c6cc08873b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of a ruthenium complex by its insertion into a protein scaffold leads to an efficient non natural transformation of alkenes into α-hydroxy-β-chloro chlorohydrins.
Collapse
Affiliation(s)
- Sarah Lopez
- Université Grenoble Alpes
- Laboratoire de Chimie et Biologie des Métaux
- BioCE
- F-Grenoble
- France
| | - Laurianne Rondot
- Université Grenoble Alpes
- Laboratoire de Chimie et Biologie des Métaux
- BioCE
- F-Grenoble
- France
| | - Christine Cavazza
- Université Grenoble Alpes
- Laboratoire de Chimie et Biologie des Métaux
- BioCE
- F-Grenoble
- France
| | - Marina Iannello
- Université Grenoble Alpes
- Laboratoire de Chimie et Biologie des Métaux
- BioCE
- F-Grenoble
- France
| | - Elisabetta Boeri-Erba
- Université Grenoble Alpes
- Laboratoire de Chimie et Biologie des Métaux
- BioCE
- F-Grenoble
- France
| | - Nicolai Burzlaff
- Inorganic Chemistry
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Frank Strinitz
- Inorganic Chemistry
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Adeline Jorge-Robin
- Université Grenoble Alpes
- Laboratoire de Chimie et Biologie des Métaux
- BioCE
- F-Grenoble
- France
| | | | - Stéphane Ménage
- Université Grenoble Alpes
- Laboratoire de Chimie et Biologie des Métaux
- BioCE
- F-Grenoble
- France
| |
Collapse
|
19
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
20
|
Mann SI, Heinisch T, Weitz AC, Hendrich MP, Ward TR, Borovik AS. Modular Artificial Cupredoxins. J Am Chem Soc 2016; 138:9073-6. [PMID: 27385206 DOI: 10.1021/jacs.6b05428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cupredoxins are electron-transfer proteins that have active sites containing a mononuclear Cu center with an unusual trigonal monopyramidal structure (Type 1 Cu). A single Cu-Scys bond is present within the trigonal plane that is responsible for its unique physical properties. We demonstrate that a cysteine-containing variant of streptavidin (Sav) can serve as a protein host to model the structure and properties of Type 1 Cu sites. A series of artificial Cu proteins are described that rely on Sav and a series of biotinylated synthetic Cu complexes. Optical and EPR measurements highlight the presence of a Cu-Scys bond, and XRD analysis provides structural evidence. We further provide evidence that changes in the linker between the biotin and Cu complex within the synthetic constructs allows for small changes in the placement of Cu centers within Sav that have dramatic effects on the structural and physical properties of the resulting artificial metalloproteins. These findings highlight the utility of the biotin-Sav technology as an approach for simulating active sites of metalloproteins.
Collapse
Affiliation(s)
- Samuel I Mann
- Department of Chemistry, University of California-Irvine , 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Tillmann Heinisch
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Thomas R Ward
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - A S Borovik
- Department of Chemistry, University of California-Irvine , 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
21
|
Hartwig JF, Larsen MA. Undirected, Homogeneous C-H Bond Functionalization: Challenges and Opportunities. ACS CENTRAL SCIENCE 2016; 2:281-92. [PMID: 27294201 PMCID: PMC4898263 DOI: 10.1021/acscentsci.6b00032] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 05/19/2023]
Abstract
The functionalization of C-H bonds has created new approaches to preparing organic molecules by enabling new strategic "disconnections" during the planning of a synthetic route. Such functionalizations also have created the ability to derivatize complex molecules by modifying one or more of the many C-H bonds. For these reasons, researchers are developing new types of functionalization reactions of C-H bonds and new applications of these processes. These C-H bond functionalization reactions can be divided into two general classes: those directed by coordination to an existing functional group prior to the cleavage of the C-H bond (directed) and those occurring without coordination prior to cleavage of the C-H bond (undirected). The undirected functionalizations of C-H bonds are much less common and more challenging to develop than the directed reactions. This outlook will focus on undirected C-H bond functionalization, as well as related reactions that occur by a noncovalent association of the catalyst prior to C-H bond cleavage. The inherent challenges of conducting undirected functionalizations of C-H bonds and the methods for undirected functionalization that are being developed will be presented, along with the factors that govern selectivity in these reactions. Finally, this outlook discusses future directions for research on undirected C-H functionalization, with an emphasis on the limitations that must be overcome if this type of methodology is to become widely used in academia and in industry.
Collapse
Affiliation(s)
- John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division
of Chemical Sciences, Lawrence Berkeley
Laboratory, Berkeley, California 94720, United States
| | - Matthew A. Larsen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division
of Chemical Sciences, Lawrence Berkeley
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Rondot L, Girgenti E, Oddon F, Marchi-Delapierre C, Jorge-Robin A, Ménage S. Catalysis without a headache: Modification of ibuprofen for the design of artificial metalloenzyme for sulfide oxidation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
|
24
|
Sauer DF, Gotzen S, Okuda J. Metatheases: artificial metalloproteins for olefin metathesis. Org Biomol Chem 2016; 14:9174-9183. [DOI: 10.1039/c6ob01475e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advance in the design of artificial metalloproteins for olefin metathesis is presented.
Collapse
Affiliation(s)
- D. F. Sauer
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - S. Gotzen
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - J. Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| |
Collapse
|
25
|
Leurs M, Spiekermann PS, Tiller JC. Optimization of and Mechanistic Considerations for the Enantioselective Dihydroxylation of Styrene Catalyzed by Osmate-Laccase-Poly(2-Methyloxazoline) in Organic Solvents. ChemCatChem 2015. [DOI: 10.1002/cctc.201501083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melanie Leurs
- Chair of Biomaterials and Polymer Science; Department of Biochemical and Chemical Engineering; TU Dortmund; Emil-Figge-Strasse 66 44227 Dortmund Germany), Fax: (+49) 231-755-2480
| | - Pia S. Spiekermann
- Chair of Biomaterials and Polymer Science; Department of Biochemical and Chemical Engineering; TU Dortmund; Emil-Figge-Strasse 66 44227 Dortmund Germany), Fax: (+49) 231-755-2480
| | - Joerg C. Tiller
- Chair of Biomaterials and Polymer Science; Department of Biochemical and Chemical Engineering; TU Dortmund; Emil-Figge-Strasse 66 44227 Dortmund Germany), Fax: (+49) 231-755-2480
| |
Collapse
|