1
|
Lu B, Xia J, Huang Y, Yao Y. The design strategy for pillararene based active targeted drug delivery systems. Chem Commun (Camb) 2023; 59:12091-12099. [PMID: 37740359 DOI: 10.1039/d3cc04021f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Pillararenes have columnar architectures with electron-rich cavities to endow themselves with unique host-guest complexation capability. Easy structural modifiability facilitates them to be used in many applications. Currently, pillararene based drug delivery systems (DDSs) have been developed as a powerful tool for precise diagnosis and treatment of cancer. Various functional guest molecules could be integrated with pillararenes to construct nanomaterials for cancer chemotherapy, phototherapy and chemodynamic therapy. In order to improve cancer therapy efficacy, active targeted DDSs have become particularly important. Benefiting from the good host-guest properties and structural variability of pillararenes, tumor targeting groups could be easily introduced into pillararene based DDSs to realize precise drug delivery at tumor sites. In this feature article, we provide a comprehensive summary of the present design strategy for pillararene based active targeted DDSs, which can be classified into three types namely host-guest complexation, charge reversal and targeted group modified pillararenes. Some important examples are selected to for a detailed discussion on their respective strengths and weaknesses.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
2
|
Qiu Y, Shang K, Xu N, Chen P, Gao H, Mu H, Feng W, Duan J. Clearance of intracellular bacterial infections by hyaluronic acid-based ROS responsive drug delivery micelles. Int J Biol Macromol 2023:125506. [PMID: 37356691 DOI: 10.1016/j.ijbiomac.2023.125506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Pathogenic bacteria residing inside cells could cause disruption of cellular metabolic balance. Therefore, basing on high oxidative stress response of the intracellular bacteria infected micro-environment, a novel amphipathic micelle (HATAD-TCS) was developed consisting of hyaluronic acid-derivative and reactive oxygen species (ROS) - responsive group and antibacterial agent triclosan (TCS). ROS-generating cinnamaldehyde (CA) was incorporated into ROS-cleavable linkages which are future linked to the 1-decylamine to form hydrophobicity. The cinnamaldehyde released did not just killed bacteria however, also maintained intracellular ROS levels. In this study, the HATAD-TCS micelles have been characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The HATAD-TCS micelles could release drug gradually upon exposure to endogenous ROS being caused by infected intracellular bacteria. Furthermore, the more promising therapeutic effect of the HATAD-TCS micelles was observed in a mouse pneumonia model. These results might highlight a ROS-responsive hyaluronic acid-based nanoparticle, which could effectively treat intracellular bacterial infections.
Collapse
Affiliation(s)
- Yuanhao Qiu
- College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China; College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Shang
- College of Medicine, Yan'an University, Yan'an, Shaanxi 716000, China; College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ningning Xu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Chen
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huashan Gao
- College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenpo Feng
- College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Rim-differentiation vs. mixture of constitutional isomers: A binding study between pillar[5]arene-based glycoclusters and lectins from pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Hybrid vesicles of pillar[5]arene/silica: Host-guest complexation and application in pH-triggered release. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Hua Y, Chen L, Hou C, Liu S, Pei Z, Lu Y. Supramolecular Vesicles Based on Amphiphilic Pillar[n]arenes for Smart Nano-Drug Delivery. Int J Nanomedicine 2020; 15:5873-5899. [PMID: 32848395 PMCID: PMC7429218 DOI: 10.2147/ijn.s255637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular vesicles are the most popular smart nano-drug delivery systems (SDDs) because of their unique cavities, which have high loading carrying capacity and controlled-release action in response to specific stimuli. These vesicles are constructed from amphiphilic molecules via host-guest complexation, typically with targeted stimuli-responsive units, which are particularly important in biotechnology and biomedicine applications. Amphiphilic pillar[n]arenes, which are novel and functional macrocyclic host molecules, have been widely used to construct supramolecular vesicles because of their intrinsic rigid and symmetrical structure, electron-rich cavities and excellent properties. In this review, we first explain the synthesis of three types of amphiphilic pillar[n]arenes: neutral, anionic and cationic pillar[n]arenes. Second, we examine supramolecular vesicles composed of amphiphilic pillar[n]arenes recently used for the construction of SDDs. In addition, we describe the prospects for multifunctional amphiphilic pillar[n]arenes, particularly their potential in novel applications.
Collapse
Affiliation(s)
- Yijie Hua
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Lan Chen
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Chenxi Hou
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Shengbo Liu
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu215009, People’s Republic of China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| |
Collapse
|
6
|
Dorababu A. Recent Advances in Nanoformulated Chemotherapeutic Drug Delivery (2015‐2019). ChemistrySelect 2019. [DOI: 10.1002/slct.201901064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Atukuri Dorababu
- Department of ChemistrySRMPP Govt. First Grade College, Huvinahadagali, Ballari (Dt), Karnataka India – 583219
| |
Collapse
|
7
|
Affiliation(s)
- Zhe Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Wen‐Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|