1
|
Chen FY, Li CZ, Han H, Geng WC, Zhang SX, Jiang ZT, Zhao QY, Cai K, Guo DS. Expanding the Hydrophobic Cavity Surface of Azocalix[4]arene to Enable Biotin/Avidin Affinity with Controlled Release. Angew Chem Int Ed Engl 2024; 63:e202402139. [PMID: 38563765 DOI: 10.1002/anie.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.
Collapse
Affiliation(s)
- Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Cheng-Zhi Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Han Han
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong SAR, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Shu-Xin Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| | - Qing-Yu Zhao
- College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Kang Cai
- College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| |
Collapse
|
2
|
Zhao Q, Zhu J, Chen Y, Dong H, Zhou S, Yin Y, Cai Q, Chen S, Chen C, Wang L. Trapping and reversing neuromuscular blocking agent by anionic pillar[5]arenes: Understanding the structure-affinity-reversal effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133875. [PMID: 38457970 DOI: 10.1016/j.jhazmat.2024.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Selective relaxant binding agents (SRBA) have great potential in clinical surgeries for the precise reversal of neuromuscular blockades. Understanding the relationship between the structure-affinity-reversal effects of SRBA and neuromuscular blockade is crucial for the design of new SRBAs, which has rarely been explored. Seven anionic pillar[5]arenes (AP5As) with different aliphatic chains and anionic groups at both edges were designed. Their binding affinities to the neuromuscular blocking agent decamonium bromide (DMBr) were investigated using 1H NMR, isothermal titration calorimetry (ITC), and theoretical calculations. The results indicate that the capture of DMBr by AP5As is primarily driven by electrostatic interactions, ion-dipole interactions and C-H‧‧‧π interactions. The optimal size matching between the carboxylate AP5As and DMBr was ∼0.80. The binding affinity increased with an increase in the charge quantity of AP5As. Further animal experiments indicated that the reversal efficiency increased with increasing binding affinity for carboxylate or phosphonate AP5As. However, phosphonate AP5As exhibited lower reversal efficiencies than carboxylate AP5As, despite having stronger affinities with DMBr. By understanding the structure-affinity-reversal relationships, this study provides valuable insights into the design of innovative SRBAs for reversing neuromuscular blockade.
Collapse
Affiliation(s)
- Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China; Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yi Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hongqiang Dong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yongfei Yin
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China.
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
3
|
Jothi Nayaki S, Roja A, Ravindhiran R, Sivarajan K, Arunachalam M, Dhandapani K. Pillar[ n]arenes in the Fight against Biofilms: Current Developments and Future Perspectives. ACS Infect Dis 2024; 10:1080-1096. [PMID: 38546344 DOI: 10.1021/acsinfecdis.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The global surge in bacterial infections, compounded by the alarming escalation of drug-resistant strains, has evolved into a critical public health crisis. Among the challenges posed, biofilms stand out due to their formidable resistance to conventional antibiotics. This review delves into the burgeoning potential of pillar[n]arenes, distinctive macrocyclic host molecules, as promising anti-biofilm agents. The review is structured into two main sections, each dedicated to exploring distinct facets of pillar[n]arene applications. The first section scrutinizes functionalized pillar[n]arenes with a particular emphasis on cationic derivatives. This analysis reveals their significant efficacy in inhibiting biofilm formation, underscoring the pivotal role of specific chemical attributes in combating microbial communities. The second section of the review shifts its focus to inclusion complexes, elucidating how pillar[n]arenes serve as encapsulation platforms for antibiotics. This encapsulation enhances the stability of antibiotics and enables a controlled release, thereby amplifying their antibacterial activity. The examination of inclusion complexes provides valuable insights into the potential synergy between pillar[n]arenes and traditional antibiotics, offering a novel avenue for overcoming biofilm resistance. This comprehensive review highlights the escalating global threat of bacterial infections and the urgent need for innovative strategies to counteract drug-resistant biofilms. The unique properties of pillar[n]arenes, both as functionalized molecules and as inclusion complex hosts, position them as promising candidates in the quest for effective anti-biofilm agents. The exploration of their distinct mechanisms opens new avenues for research and development in the ongoing battle against bacterial infections and biofilm-related health challenges.
Collapse
Affiliation(s)
- Sekar Jothi Nayaki
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Arivazhagan Roja
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Murugan Arunachalam
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| |
Collapse
|
4
|
JothiNayaki S, Ramya R, Srividhya S, Kiruthika J, Ramya K, Karthiga S, Arunachalam M, Kavitha D. Antibacterial potentials of pillar[5]arene, pillar[4]arene[1]quinone derivative and their isatin inclusion complexes. Supramol Chem 2023. [DOI: 10.1080/10610278.2023.2173072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Sekar JothiNayaki
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ravindhiran Ramya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sankar Srividhya
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Jeyavelraman Kiruthika
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Krishnamurthy Ramya
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sivarajan Karthiga
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Murugan Arunachalam
- Department of Chemistry, the Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Dhandapani Kavitha
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
5
|
Sabin C, Sam S, Hrishikes A, Salin B, Vigneshkumar PN, George J, John F. Supramolecular Drug Delivery Systems Based on Host‐Guest Interactions for Nucleic Acid Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christeena Sabin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Samanta Sam
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - A. Hrishikes
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Biyatris Salin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - P. N. Vigneshkumar
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
- Department of Chemistry The University of British Columbia Okanagan Vancouver BC V6T 1Z4 Canada
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
6
|
Nazarova A, Yakimova L, Mostovaya O, Kulikova T, Mikhailova O, Evtugyn G, Ganeeva I, Bulatov E, Stoikov I. Encapsulation of the quercetin with interpolyelectrolyte complex based on pillar[5]arenes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
8
|
|
9
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
10
|
Xue PC, Chen Q, Chen X, Han Y, Liang M. Luminescent organic porous crystals from non-cyclic molecules and their applications. CrystEngComm 2022. [DOI: 10.1039/d1ce01702k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic porous crystals from small and non-cyclic organic molecules can be constructed by various intermolecular weak interactions. Owing to their precise stacking types, intermolecular interaction and pore microstructure, the relationship...
Collapse
|
11
|
Shurpik DN, Aleksandrova YI, Mostovaya OA, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Mukhametzyanov TA, Cragg PJ, Stoikov II. Water-soluble pillar[5]arene sulfo-derivatives self-assemble into biocompatible nanosystems to stabilize therapeutic proteins. Bioorg Chem 2021; 117:105415. [PMID: 34673453 DOI: 10.1016/j.bioorg.2021.105415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pillar[5]arenes containing sulfonate fragments have been shown to form supramolecular complexes with therapeutic proteins to facilitate targeted transport with an increased duration of action and enhanced bioavailability. Regioselective synthesis was used to obtain a water-soluble pillar[5]arene containing the fluorescent label FITC and nine sulfoethoxy fragments. The pillar[5]arene formed complexes with the therapeutic proteins binase, bleomycin, and lysozyme in a 1:2 ratio as demonstrated by UV-vis and fluorescence spectroscopy. The formation of stable spherical nanosized macrocycle/binase complexes with an average particle size of 200 nm was established by dynamic light scattering and transmission electron microscopy. Flow cytometry demonstrated the ability of macrocycle/binase complexes to penetrate into tumor cells where they exhibited significant cytotoxicity towards A549 cells at 10-5-10-6 M while maintaining the enzymatic activity of binase.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | - Yulia I Aleksandrova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Olga A Mostovaya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Viktoriya A Nazmutdinova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgenia V Subakaeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Timur A Mukhametzyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Applied Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| |
Collapse
|
12
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
13
|
Xue W, Zavalij PY, Isaacs L. Pillar[n]MaxQ: A New High Affinity Host Family for Sequestration in Water. Angew Chem Int Ed Engl 2020; 59:13313-13319. [PMID: 32413198 PMCID: PMC7487980 DOI: 10.1002/anie.202005902] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/11/2022]
Abstract
We report the synthesis, X-ray crystal structure, and molecular recognition properties of pillar[n]arene derivative P[6]AS, which we refer to as Pillar[6]MaxQ along with analogues P[5]AS and P[7]AS toward guests 1-18. The ultratight binding affinity of P[5]AS and P[6]AS toward quaternary (di)ammonium ions renders them prime candidates for in vitro and in vivo non-covalent bioconjugation, for imaging and delivery applications, and as in vivo sequestration agents.
Collapse
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
14
|
Xue W, Zavalij PY, Isaacs L. Pillar[
n
]MaxQ: A New High Affinity Host Family for Sequestration in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Peter Y. Zavalij
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
15
|
Towards novel functional polymers: Ring-opening polymerization of l-lactide with p-tert-butylthiacalix[4]arene derivatives. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Padnya P, Gorbachuk V, Stoikov I. The Role of Calix[n]arenes and Pillar[n]arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int J Mol Sci 2020; 21:ijms21041425. [PMID: 32093189 PMCID: PMC7073139 DOI: 10.3390/ijms21041425] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Silver nanoparticles (AgNPs) are an attractive alternative to plasmonic gold nanoparticles. The relative cheapness and redox stability determine the growing interest of researchers in obtaining selective plasmonic and electrochemical (bio)sensors based on silver nanoparticles. The controlled synthesis of metal nanoparticles of a defined morphology is a nontrivial task, important for such fields as biochemistry, catalysis, biosensors and microelectronics. Cyclophanes are well known for their great receptor properties and are of particular interest in the creation of metal nanoparticles due to a variety of cyclophane 3D structures and unique redox abilities. Silver ion-based supramolecular assemblies are attractive due to the possibility of reduction by “soft” reducing agents as well as being accessible precursors for silver nanoparticles of predefined morphology, which are promising for implementation in plasmonic sensors. For this purpose, the chemistry of cyclophanes offers a whole arsenal of approaches: exocyclic ion coordination, association, stabilization of the growth centers of metal nanoparticles, as well as in reduction of silver ions. Thus, this review presents the recent advances in the synthesis and stabilization of Ag (0) nanoparticles based on self-assembly of associates with Ag (I) ions with the participation of bulk platforms of cyclophanes (resorcin[4]arenes, (thia)calix[n]arenes, pillar[n]arenes).
Collapse
Affiliation(s)
- Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
17
|
Gatiatulin AK, Ziganshin MA, Gorbatchuk VV. Smart Molecular Recognition: From Key-to-Lock Principle to Memory-Based Selectivity. Front Chem 2020; 7:933. [PMID: 32039152 PMCID: PMC6990106 DOI: 10.3389/fchem.2019.00933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023] Open
Abstract
The formation and decomposition of inclusion compounds with a solid-solid phase transition may be very selective to the guest molecular structure. This selectivity may function in essentially different ways than defined by the classical concept of molecular recognition, which implies the preferential binding of complementary molecules. Solid inclusion compounds may take part as an initial or/and final state in several processes of different types summarized in this review, which selectivity is boosted by cooperativity of participating molecular crystals. Some of these processes resemble switching electronic devices and can be called smart giving practically absolute molecular recognition.
Collapse
Affiliation(s)
| | | | - Valery V. Gorbatchuk
- Department of Physical Chemistry, A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| |
Collapse
|
18
|
Zhang H, Han J. The synthesis and applications of porphyrin-containing pillararenes. Org Biomol Chem 2020; 18:4894-4905. [DOI: 10.1039/d0ob00763c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress regarding the combination of porphyrins and pillararenes into hybrid compounds and supramolecular systems is summarized in this review.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
19
|
Theoretical prediction of structures and inclusion properties of heteroatom-bridged pillar[n]arenes. Struct Chem 2019. [DOI: 10.1007/s11224-019-01409-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Kitagishi H, Ohara K, Shimoji D, Vonesch M, Weiss J, Wytko JA. Hydrogen bond directed molecular recognition in water in a strapped-porphyrin-cyclodextrin assembly. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A water soluble, phenanthroline-strapped zinc porphyrin bearing four arylsulfonate groups formed a stable host–guest complex with two per-[Formula: see text]-methylated [Formula: see text]-cyclodextrin cavities. In the host–guest assembly, the zinc porphyrin was capable of binding imidazole within the cavity between the zinc(II) ion and the phenanthroline strap in an aqueous medium. The formation of a hydrogen bond between the imidazole NH and the nitrogen atoms of the phenanthroline was an essential element of the binding event, as shown by comparative binding studies with a non-strapped tetrasulfonated zinc porphyrin and with [Formula: see text]-methylimidazole. This hydrogen bonding in an aqueous medium was possible due to the protected hydrophobic environment created by the cyclodextrins around the phenanthroline strap. This type of binding event may provide a biomimetic approach to study water soluble heme protein models.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kazuki Ohara
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Daiki Shimoji
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Maxime Vonesch
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Jennifer A. Wytko
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
21
|
Kaizerman-Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH-Responsive Pillar[6]arene-based Water-Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019; 58:5302-5306. [PMID: 30786135 DOI: 10.1002/anie.201900217] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Indexed: 01/08/2023]
Abstract
We describe the preparation of the first water-soluble pH-responsive supramolecular hexagonal boxes (SHBs) based on multiple charge-assisted hydrogen bonds between peramino-pillar[6]arenes 2 with the molecular "lid" mellitic acid (1 a). The interaction between 2 and 1 a, as well as the other "lids" pyromellitic and trimesic acids (1 b and 1 c, respecively) were studied by a combination of experimental and computational methods. Interestingly, the addition of 1 a to the complexes of the protonated form of pillar[6]arene 2, that is, 3, with bis-sulfonate 4 a or 4 b, immediately led to guest escape along with the formation of closed 1 a2 2 supramolecular boxes. Moreover, the process of the openning and closing of the supramolecular boxes along with threading and escaping of the guests, respectively, was found to be reversible and pH-responsive. This study paves the way for the easy and modular preparation of different SHBs that may have myriad applications.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Noam Tal
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
22
|
Kaizerman‐Kane D, Hadar M, Tal N, Dobrovetsky R, Zafrani Y, Cohen Y. pH‐Responsive Pillar[6]arene‐based Water‐Soluble Supramolecular Hexagonal Boxes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dana Kaizerman‐Kane
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Maya Hadar
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Noam Tal
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Roman Dobrovetsky
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| | - Yossi Zafrani
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
- Department of Organic ChemistryIsrael Institute for Biological Research Ness-Ziona 740000 Israel
| | - Yoram Cohen
- School of ChemistrySackler Faculty of Exact sciencesTel Aviv University Ramat Aviv 69978 Tel Aviv Israel
| |
Collapse
|
23
|
|