1
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
2
|
Pascual-Colino J, Artetxe B, Beobide G, Castillo O, Fidalgo-Mayo ML, Isla-López A, Luque A, Mena-Gutiérrez S, Pérez-Yáñez S. The Chemistry of Zirconium/Carboxylate Clustering Process: Acidic Conditions to Promote Carboxylate-Unsaturated Octahedral Hexamers and Pentanuclear Species. Inorg Chem 2022; 61:4842-4851. [PMID: 35286083 PMCID: PMC9993394 DOI: 10.1021/acs.inorgchem.1c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clustering chemistry is a key point in the design and synthesis of the secondary building units that comprise metal-organic frameworks (MOFs) based on group IV metals. In this work, the first stages of the zirconium-carboxylate clustering process in alcohol/water mixtures are studied in detail using the monocarboxylic benzoic and hydroxybenzoic acids to avoid the polymerization. Mass spectroscopy measurements performed on the reactions revealed the presence of hexa- and pentanuclear species even at low pH values and also evidenced the acid-base nature and pH dependence of the transformation between both species. The control on the chemistry governing the equilibria between these species has allowed us to isolate six new compounds in the solid state. The single-crystal X-ray diffraction analysis revealed that they are closely related to the well-known [Zr6(O)4(OH)4(OOC)12] secondary building unit found in many MOFs by removing carboxylic ligands in the case of the hexameric species ([Zr6(O)4(OH)4(OOC)8(H2O)8]4+) or by additionally removing one of the metal centers in the case of the pentameric entities ([Zr5(O)2(OH)6(OOC)4(H2O)11(alcohol)]6+). Going in detail, the unsaturated hexameric clusters exhibit different dispositions of their eight carboxylate ligands in such a way that the remaining four carboxylate-free positions are arranged according to a square planar or tetrahedral symmetry. It should be highlighted that the pentameric complexes imply an unprecedented core nuclearity in zirconium clusters and thus their isolation provides a novel building block for the design of metal-organic materials.
Collapse
Affiliation(s)
- Jon Pascual-Colino
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Beñat Artetxe
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Garikoitz Beobide
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Oscar Castillo
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Maria Luz Fidalgo-Mayo
- Departamento de Química Orgánica e Inorgánica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Vitoria-Gasteiz E-01006, Spain
| | - Ainhoa Isla-López
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Antonio Luque
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain
| | - Sandra Mena-Gutiérrez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, Bilbao E-48080, Spain
| | - Sonia Pérez-Yáñez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa E-48940, Spain.,Departamento de Química Orgánica e Inorgánica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Vitoria-Gasteiz E-01006, Spain
| |
Collapse
|
3
|
Gao JP, Qi Z, Zhang FQ, Zhang XM. In situ insertion of copper to form heteroanionic D3h-symmetric [Cu 3Mo 8O 32] 10- for a templated Ag 55 nanocluster. NANOSCALE 2022; 14:4469-4473. [PMID: 35262141 DOI: 10.1039/d2nr00078d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A polyoxometalate-templated thiolate-protected silver nanocluster, [Cu3(Mo4O16)2@Ag55(CyhS)43(CH3O)(COOCF3)]·3H2O, has been isolated under solvothermal conditions. In situ insertion of three Cu2+ ions into two polymolybdate anions generated a new, sandwich-type D3h-symmetric [Cu3(Mo4O16)2]10- polyoxoanion template encapsulated into an Ag55(CyhS)43 shell. The structure and composition of this Ag nanocluster have been fully characterized. This work has provided a new way to develop high-nuclearity metal nanoclusters with various structures.
Collapse
Affiliation(s)
- Jin-Ping Gao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan 030006, P. R. China.
| | - Zhikai Qi
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan 030006, P. R. China.
| | - Fu-Qiang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan 030006, P. R. China.
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan 030006, P. R. China.
- Key Laboratory of Interface Science and Engineering in Advanced Material (Ministry of Education), College of Chemistry & Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
4
|
Xia Y, Xia XY, Fang JJ, Liu Z, Xie YP, Lu X. Anion-templated silver thiolated clusters effected by carboxylate ligands. Dalton Trans 2022; 51:14557-14562. [DOI: 10.1039/d2dt02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under the guidance of anion templates V10O286- and SO42-, the novelty of assembly can be increased by using different carboxylate ligands. Herein, the synthesis, crystal structure and electrochemical properties of...
Collapse
|
5
|
Zeng H, Jiang Z, Zhang H, Mao W, Gao X, Zhan C. An Extraordinary OER Electrocatalyst Based on the Co−Mo Synergistic 2D Pure Inorganic Porous Framework. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hui‐Min Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material Institute of Physical Chemistry College of Chemistry and Life Sciences Zhejiang Normal University No.688, Yingbin Avenue Jinhua 321004 China
| | - Zhan‐Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material Institute of Physical Chemistry College of Chemistry and Life Sciences Zhejiang Normal University No.688, Yingbin Avenue Jinhua 321004 China
| | - Huiwen Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material Institute of Physical Chemistry College of Chemistry and Life Sciences Zhejiang Normal University No.688, Yingbin Avenue Jinhua 321004 China
| | - Wei‐Tao Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material Institute of Physical Chemistry College of Chemistry and Life Sciences Zhejiang Normal University No.688, Yingbin Avenue Jinhua 321004 China
| | - Xuehui Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material Institute of Physical Chemistry College of Chemistry and Life Sciences Zhejiang Normal University No.688, Yingbin Avenue Jinhua 321004 China
| | - Cai‐Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material Institute of Physical Chemistry College of Chemistry and Life Sciences Zhejiang Normal University No.688, Yingbin Avenue Jinhua 321004 China
| |
Collapse
|
6
|
Ge R, Li XX, Zheng ST. Recent advances in polyoxometalate-templated high-nuclear silver clusters. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Gao MY, Wang K, Sun Y, Li D, Song BQ, Andaloussi YH, Zaworotko MJ, Zhang J, Zhang L. Tetrahedral Geometry Induction of Stable Ag-Ti Nanoclusters by Flexible Trifurcate TiL 3 Metalloligand. J Am Chem Soc 2020; 142:12784-12790. [PMID: 32579354 DOI: 10.1021/jacs.0c05199] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of increasingly large silver nanoclusters with a varied combination of Archimedean and/or Platonic solid arrangements was constructed using a flexible trifurcate TiL3 (L = Salicylic acid or 5-fluorosalicylic acid) metalloligand: Ag4@Ag4@Ti4 (PTC-85), Ag12@Ti4 (PTC-86), Ag4@Ag6@Ag12@Ti4 (PTC-87), Ag6@Ag24@Ag12@Ti4 (PTC-88), and Ag12@Ag24@Ti4 (PTC-89). The silver nanoclusters are each capped by four TiL3 moieties, thereby forming {Ti4} supertetrahedra with average edge lengths ranging from ∼8.12 Å to ∼17.37 Å. Such {Ti4} moieties further induce the tetrahedral geometry of the encapsulated silver nanoclusters. These atomically precise metallic clusters were found to be ultrastable with respect to air for several months, and to water for more than 3 days, due to the stabilizing effects of the TiL3 metalloligand. Moreover, the obtained clusters exhibit nonlinear optical (NLO) effects in optical limiting tests and also temperature-dependent photoluminescent properties. This work provides an interesting metalloligand method not only to induce the spatial growth of metallic clusters to achieve highly symmetric structures, but also to enhance their stability which is crucial for future application.
Collapse
Affiliation(s)
- Mei-Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Kai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Dejing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Bai-Qiao Song
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Yassin H Andaloussi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|