1
|
Wang L, Deng Z, Huang J, Li T, Jiang J, Wang W, Sun Y, Deng Y. Zearalenone-induced hepatointestinal toxicity in laying hens: unveiling the role of gut microbiota and fecal metabolites. Poult Sci 2024; 103:104221. [PMID: 39241615 PMCID: PMC11406091 DOI: 10.1016/j.psj.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024] Open
Abstract
Zearalenone (ZEN), a mycotoxin produced by Fusarium species, is known for its reproductive toxicity as an estrogen analogue. However, there are limited knowledge about its hepatointestinal toxicity, as well as the role that gut microbiota and metabolites play in this process. In this study, a total of 24 thirty-week-old hens were fed to investigate the hepatointestinal toxicity subjected to long-term ZEN consumption at 2.0 mg/kg for 90 d. And we employed uncultured 16S rRNA sequencing for gut microbiota and untargeted metabolomics for fecal metabolites assessment. Notably, ZEN induced significant hepatic damage, as evidenced by hepatocyte necrosis, inflammatory cell infiltrate, increased liver lipopolysaccharide (LPS) and blood aspartate aminotransferase (AST) levels (P < 0.05). The decreased villus height, disruption of simple columnar epithelial cells, and exposure of the mucosal intrinsic layer were observed in the intestine. The gut microbial community composition and metabolites differed between ZEN group and control group. ZEN group exhibited higher gut microbial diversity (P < 0.05), lower Firmicutes/Bacteroidetes ratio and Lactobacillus abundance, and higher abundance in the genus such as Bacteroidetes, Parabacteroidetes and Desulfovibrio. Metabolomic analysis showed that ZEN treatment altered biosynthesis of siderophore group nonribosomal peptides and phenylpropanoids, metabolism of amino acid, digestion and absorption of vitamin and ABC transporters. Differential metabolites suggested that ZEN increase the risk of estrogen disorder, nucleic acid degradation, intestinal oxidative stress and inflammation. Neural network analysis showed that Ruminococcus was positively correlated with glyceric acid, and Prevotella was positively correlated with phenylacetylglycine. Both metabolites were positively correlated with blood AST level (P < 0.05), suggesting that intestinal microbe Ruminococcus and Prevotella might exacerbate liver damage by producing these harmful metabolites. Overall, we conclude that ZEN has damaged hepatointestinal system and the altered gut microbiota with resultant metabolite changes contribute to the adverse hepatointestinal effects of ZEN on laying hens. This study underscores the need for monitoring and mitigating ZEN exposure in poultry diets, highlighting its broader implications for animal health and food safety.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Zifeng Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Jieying Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Tingyuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| |
Collapse
|
2
|
Chen H, Huang S, Yao S, Wang J, Huang J, Yu Z. Multi-omics analyses of Bacillus amyloliquefaciens treated mice infected with Schistosoma japonicum reveal dynamics change of intestinal microbiome and its associations with host metabolism. PLoS Negl Trop Dis 2024; 18:e0012583. [PMID: 39466852 PMCID: PMC11515987 DOI: 10.1371/journal.pntd.0012583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosomiasis japonica is a serious threat to human health. It causes damage to the intestine and liver. Probiotic therapy has been shown to be effective in alleviating intestinal diseases and improving host health. Previous studies have found that Bacillus amyloliquefaciens could alleviate the pathological symptoms of schistosomiasis japonica, but the regulatory mechanism of alleviating schistosomiasis japonica is still unknown. PRINCIPAL FINDINGS This study analyzed the dynamic changes of intestinal microbiome in mice infected with Schistosoma japonicum after the intervention of B. amyloliquefaciens and its connection to host metabolism by multi-omics sequencing technology. B. amyloliquefaciens was found to significantly regulate the homeostasis of intestinal microbiota by promoting the growth of beneficial bacteria and inhibiting potential pathogenic bacteria and protect the number of core microbes. Meanwhile, the genes related to the metabolism of glycerophospholipids and amino acid from intestinal microbiome changed significantly, and were shown to be significantly positively correlated with the associated metabolites of microbial origin. Moreover, host metabolism (lipid metabolism and steroid hormone biosynthesis) was also found to be significantly regulated. CONCLUSIONS The recovery of intestinal microbial homeostasis and the regulation of host metabolism revealed the potential probiotic properties of B. amyloliquefaciens, which also provided new ideas for the prevention and adjuvant treatment of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuaiqin Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ma L, Lyu W, Zeng T, Wang W, Chen Q, Zhao J, Zhang G, Lu L, Yang H, Xiao Y. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. IMETA 2024; 3:e198. [PMID: 39135685 PMCID: PMC11316934 DOI: 10.1002/imt2.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Guolong Zhang
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
4
|
Pu Z, Shi CL, Jeon CO, Fu J, Liu SJ, Lan C, Yao Y, Liu YX, Jia B. ChatGPT and generative AI are revolutionizing the scientific community: A Janus-faced conundrum. IMETA 2024; 3:e178. [PMID: 38882492 PMCID: PMC11170961 DOI: 10.1002/imt2.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 06/18/2024]
Abstract
The advent of generative artificial intelligence (AI) technologies marks a transformative moment for the scientific sphere, unlocking novel avenues to elevate scientific writing's efficiency and quality, expedite insight discovery, and enhance code development processes. Essential to leveraging these advancements is prompt engineering, a method that enhances AI interaction efficiency and quality. Despite its benefits, effective application requires blending researchers' expertise with AI, avoiding overreliance. A balanced strategy of integrating AI with independent critical thinking ensures the advancement and quality of scientific research, leveraging innovation while maintaining research integrity.
Collapse
Affiliation(s)
| | | | - Che Ok Jeon
- Department of Life Science Chung-Ang University Seoul Republic of Korea
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
- State Key Laboratory of Microbial Technology Shandong University Qingdao China
| | - Canhui Lan
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
- R-Institute Co. Ltd. Beijing China
| | | | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China
| | | |
Collapse
|
5
|
Dong Z, Liu Z, Xu Y, Tan B, Sun W, Ai Q, Yang Z, Zeng J. Potential for the development of Taraxacum mongolicum aqueous extract as a phytogenic feed additive for poultry. Front Immunol 2024; 15:1354040. [PMID: 38529273 PMCID: PMC10961442 DOI: 10.3389/fimmu.2024.1354040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.
Collapse
Affiliation(s)
- Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhiqin Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yufeng Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Bin Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wenqing Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qin Ai
- DHN Business Division, Wens Foodstuff Group Co., Ltd., Zhaoqing, China
| | - Zihui Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Zhu La ALT, Li D, Cheng Z, Wen Q, Hu D, Jin X, Liu D, Feng Y, Guo Y, Cheng G, Hu Y. Enzymatically prepared neoagarooligosaccharides improve gut health and function through promoting the production of spermidine by Faecalibacterium in chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169057. [PMID: 38056640 DOI: 10.1016/j.scitotenv.2023.169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial β-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial β-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.
Collapse
Affiliation(s)
- A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Cheng
- Huzhou Inspection & Quarantine Comprehensive Technology Center, Zhejiang 313000, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Bajagai YS, Van TTH, Joat N, Chousalkar K, Moore RJ, Stanley D. Layer chicken microbiota: a comprehensive analysis of spatial and temporal dynamics across all major gut sections. J Anim Sci Biotechnol 2024; 15:20. [PMID: 38317171 PMCID: PMC10840231 DOI: 10.1186/s40104-023-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The gut microbiota influences chicken health, welfare, and productivity. A diverse and balanced microbiota has been associated with improved growth, efficient feed utilisation, a well-developed immune system, disease resistance, and stress tolerance in chickens. Previous studies on chicken gut microbiota have predominantly focused on broiler chickens and have usually been limited to one or two sections of the digestive system, under controlled research environments, and often sampled at a single time point. To extend these studies, this investigation examined the microbiota of commercially raised layer chickens across all major gut sections of the digestive system and with regular sampling from rearing to the end of production at 80 weeks. The aim was to build a detailed picture of microbiota development across the entire digestive system of layer chickens and study spatial and temporal dynamics. RESULTS The taxonomic composition of gut microbiota differed significantly between birds in the rearing and production stages, indicating a shift after laying onset. Similar microbiota compositions were observed between proventriculus and gizzard, as well as between jejunum and ileum, likely due to their anatomical proximity. Lactobacillus dominated the upper gut in pullets and the lower gut in older birds. The oesophagus had a high proportion of Proteobacteria, including opportunistic pathogens such as Gallibacterium. Relative abundance of Gallibacterium increased after peak production in multiple gut sections. Aeriscardovia was enriched in the late-lay phase compared to younger birds in multiple gut sections. Age influenced microbial richness and diversity in different organs. The upper gut showed decreased diversity over time, possibly influenced by dietary changes, while the lower gut, specifically cecum and colon, displayed increased richness as birds matured. However, age-related changes were inconsistent across all organs, suggesting the influence of organ-specific factors in microbiota maturation. CONCLUSION Addressing a gap in previous research, this study explored the microbiota across all major gut sections and tracked their dynamics from rearing to the end of the production cycle in commercially raised layer chickens. This study provides a comprehensive understanding of microbiota structure and development which help to develop targeted strategies to optimise gut health and overall productivity in poultry production.
Collapse
Affiliation(s)
- Yadav Sharma Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4701, Australia.
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Nitish Joat
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4701, Australia
| |
Collapse
|
8
|
Jin W, Peng J, Dai J, Tang R, Guo J, Zhao H, Wang J, Zhang S, Gao Y. Bacterial load in meconium. IMETA 2024; 3:e173. [PMID: 38868517 PMCID: PMC10989067 DOI: 10.1002/imt2.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 06/14/2024]
Abstract
The spike-in plasmid method was utilized to perform an analysis on meconium and second-pass feces, yielding both relative and absolute quantitative results. With the absolute quantitative data, the abundance of bacteria in 17 meconium samples and 17 second-pass fecal samples were found to be 1.14 × 107 and 1.59 × 109 copies/g, respectively. The mode of delivery can significantly influence the alterations and compositions of gut bacteria in a newborn within 72 h.
Collapse
Affiliation(s)
- Wen‐Yu Jin
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Peng
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jinping Dai
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Rongkang Tang
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
| | - Jia‐Xin Guo
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
| | - Huan Zhao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jielin Wang
- Hongqiao International Institute of Medicine, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shu Zhang
- Department of Gynecological OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yi‐Zhou Gao
- The Center for Microbes, Development and Health, Shanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghaiChina
| |
Collapse
|
9
|
Lu Y, Chu S, Shi Z, You R, Chen H. Marked variations in diversity and functions of gut microbiota between wild and domestic stag beetle Dorcus Hopei Hopei. BMC Microbiol 2024; 24:24. [PMID: 38238710 PMCID: PMC10795464 DOI: 10.1186/s12866-023-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although stag beetles are a popular saprophytic insect, their gut microbiome has been poorly studied. Here, 16 S rRNA gene sequencing was employed to reveal the gut microbiota composition and functional variations between wild and domestic Dorcus hopei hopei (Dhh) larval individuals. RESULTS The results indicated a significant difference between the wild and domestic Dhh gut microbiota., the domestic Dhh individuals contained more gut microbial taxa (e.g. genera Ralstonia and Methyloversatilis) with xenobiotic degrading functions. The wild Dhh possesses gut microbiota compositions (e.g. Turicibacter and Tyzzerella ) more appropriate for energy metabolism and potential growth. This study furthermore assigned all Dhh individuals by size into groups for data analysis; which indicated limited disparities between the gut microbiota of different-sized D. hopei hopei larvae. CONCLUSION The outcome of this study illustrated that there exists a significant discrepancy in gut microbiota composition between wild and domestic Dhh larvae. In addition, the assemblage of gut microbiome in Dhh was primarily attributed to environmental influences instead of individual differences such as developmental potential or size. These findings will provide a valuable theoretical foundation for the protection of wild saprophytic insects and the potential utilization of the insect-associated intestinal microbiome in the future.
Collapse
Affiliation(s)
- Yikai Lu
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zhiyuan Shi
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Ruobing You
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
10
|
Song J, Luo C, Liu Z, Liu J, Xie L, Zhang X, Xie Z, Li X, Ma Z, Ding J, Li H, Xiang H. Early fecal microbiota transplantation from high abdominal fat chickens affects recipient cecal microbiome and metabolism. Front Microbiol 2024; 14:1332230. [PMID: 38260901 PMCID: PMC10800977 DOI: 10.3389/fmicb.2023.1332230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Abdominal fat deposition (AFD) in chickens is closely related to the gut microecological balance. In this study, the gut microbiota from high-AFD chickens was transplanted into the same strain of 0-day-old chicks via fecal microbiota transplantation (FMT). The FTM from chickens with high AFD had no obvious effects on growth traits, adult body weight, carcass weight, abdominal fat weight, and abdominal fat percentage, but did reduce the coefficient of variation of AFD traits. FMT significantly decreased cecal microbiome richness, changed the microbiota structure, and regulated the biological functions associated with energy metabolism and fat synthesis. Additionally, the cecal metabolite composition and metabolic function of FMT recipient chickens were also significantly altered from those of the controls. Transplantation of high-AFD chicken gut microbiota promoted fatty acid elongation and biosynthesis and reduced the metabolism of vitamins, steroids, and carbohydrates in the cecum. These findings provide insights into the mechanisms by which chicken gut microbiota affect host metabolic profiles and fat deposition.
Collapse
Affiliation(s)
- Jiani Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chaowei Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhijie Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jingshou Liu
- Guangdong Tinoo’s Foods Group Co., Ltd., Guangdong, China
| | - Li Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhuojun Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiangkun Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jinlong Ding
- Guangdong Tinoo’s Foods Group Co., Ltd., Guangdong, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Tinoo’s Foods Group Co., Ltd., Guangdong, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
11
|
Li S, Li X, Wang K, Li Y, Nagaoka K, Li C. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol 2023; 14:159. [PMID: 38129919 PMCID: PMC10734199 DOI: 10.1186/s40104-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Broilers have a robust metabolism and high body temperature, which make them less tolerant to high-temperature (HT) environments and more susceptible to challenges from elevated temperatures. Gut microbes, functioning as symbionts within the host, possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host. This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures, as well as the underlying mechanism involving the "gut-brain" axis. METHODS Broilers were subjected to gut microbiota interference with or without antibiotics (control or ABX) starting at 1 day of age. At 21 day of age, they were divided into 4 groups and exposed to different environments for 7 d: The control and ABX groups at room temperature (RT, 24 ± 1 °C, 60% relative humidity (RH), 24 h/d) and the control-HT and ABX-HT groups at high temperature (HT, 32 ± 1 °C, 60% RH, 24 h/d). RESULTS : The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens (P < 0.05). Under HT conditions, the microbiota intervention reduced the rectal temperature of broiler chickens (P < 0.05), inhibited the expression of avUCP and thermogenesis-related genes in breast muscle and liver (P < 0.05), and thus decreased thermogenesis capacity. Furthermore, the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic-pituitary-thyroid axis activation induced by HT conditions. By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions, we found that Alistipes was enriched in control chickens. In contrast, antibiotic-induced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes (P < 0.05). Moreover, this difference was accompanied by increased hypothalamic 5-hydroxytryptamine (5-HT) content and TPH2 expression (P < 0.05). CONCLUSIONS These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
13
|
Wu Y, Peng L, Feng P, Han R, Khan A, Kulshreshtha S, Ling Z, Liu P, Li X. Gut microbes consume host energy and reciprocally provide beneficial factors to sustain a symbiotic relationship with the host. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166773. [PMID: 37689204 DOI: 10.1016/j.scitotenv.2023.166773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The gut microbes thrive by utilizing host energy and, in return, provide valuable benefits, akin to the symbiotic relationship. To study the mutualistic association between the gut microbiota and host, a range of gut microbe populations (85 %, 66 %, 45 % and 38 % at the normal level) with comparable structures were constructed in broiler model. The results revealed that reductions in gut microbial population led to decreased energy consumption, resulting in increased host weight (10.26 %, 30.88 %, 17.65 % and - 12.77 %, respectively). Fecal metabolome revealed that among 85 % and 66 % of the normal population level, the gut microbes downregulated the immune-associated pathways of tryptophan metabolism and catecholamine biosynthesis, while the level of fatty acid oxidation was upregulated at 45 %. In the host, the concentration of gut microbes contributed to regulate functions related to lipid biosynthesis (from glycerophosphoserines to glycerophosphoethanolamines (9.63 %, 12.20 %, 6.66 % and 47.75 %) and glycerophosphocholines (10.78 %, 36.51 %, 2.00 % and 87.11 %)) and inflammation responses (methionine and betaine metabolism). From 85 % to 45 % of gut microbes, broiler showed an inhibited immunity (thymus gland, spleen, SIgG and IgA) and increased low-level inflammation response (ALT and T-SOD). However, at 38 %, the immune indexes exhibited an increase (thymus gland, spleen, SIgG, and IgA increased by 8.67 %, 8.50 %, 20.87 %, and 29.43 %, respectively), indicating the host lipid accumulation and inflammation response were negatively correlated with the immune reaction. Collectively, the gut microbiota maintains a symbiotic relationship with the host through the secretion of beneficial substances to interact with the host.
Collapse
Affiliation(s)
- Ying Wu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Liang Peng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Department of Children Rehabilitation Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rong Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173212, Himachal Pradesh, India
| | - Zhenmin Ling
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|