Sharma D, Kumar R, Gupta M, Saxena T. Encoding scheme for data storage and retrieval on DNA computers.
IET Nanobiotechnol 2020;
14:635-641. [PMID:
33010141 PMCID:
PMC8676155 DOI:
10.1049/iet-nbt.2020.0157]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
There has been exponential growth in the amount of data being generated on a daily basis. Such a huge amount of data creates a need for efficient data storage techniques. Due to the limitations of existing storage media, new storage solutions have always been of interest. There have been recent developments in order to efficiently use synthetic deoxyribonucleic acid (DNA) for information storage. DNA storage has attracted researchers because of its extremely high data storage density, about 1 exabyte/mm3 and long life under easily achievable conditions. This work presents an encoding scheme for DNA-based data storage system with controllable redundancy and reliability, the authors have also talked about the feasibility of the proposed method. The authors have also analysed the proposed algorithm for time and space complexity. The proposed encoding scheme tries to minimise the bases per letter ratio while controlling the redundancy. They have experimented with three different types of data with a value of redundancy as 0.75. In the randomised simulation setup, it was observed that the proposed algorithm was able to correctly retrieve the stored data in our experiments about 94% of the time. In the situation, where redundancy was increased to 1, the authors were able to retrieve all the information correctly in the proposed experiments.
Collapse