Ueda J, Uemura N, Ishimoto T, Taguchi T, Sawamura M, Nakanishi E, Ikuno M, Matsuzawa S, Yamakado H, Takahashi R. Ca
2+ -Calmodulin-Calcineurin Signaling Modulates α-Synuclein Transmission.
Mov Disord 2023;
38:1056-1067. [PMID:
37066491 DOI:
10.1002/mds.29401]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND
The intercellular transmission of pathogenic proteins plays a crucial role in the progression of neurodegenerative diseases. Previous research has shown that the neuronal uptake of such proteins is activity-dependent; however, the detailed mechanisms underlying activity-dependent α-synuclein transmission in Parkinson's disease remain unclear.
OBJECTIVE
To examine whether α-synuclein transmission is affected by Ca2+ -calmodulin-calcineurin signaling in cultured cells and mouse models of Parkinson's disease.
METHODS
Mouse primary hippocampal neurons were used to examine the effects of the modulation of Ca2+ -calmodulin-calcineurin signaling on the neuronal uptake of α-synuclein preformed fibrils. The effects of modulating Ca2+ -calmodulin-calcineurin signaling on the development of α-synuclein pathology were examined using a mouse model injected with α-synuclein preformed fibrils.
RESULTS
Modulation of Ca2+ -calmodulin-calcineurin signaling by inhibiting voltage-gated Ca2+ channels, calmodulin, and calcineurin blocked the neuronal uptake of α-synuclein preformed fibrils via macropinocytosis. Different subtypes of voltage-gated Ca2+ channel differentially contributed to the neuronal uptake of α-synuclein preformed fibrils. In wild-type mice inoculated with α-synuclein preformed fibrils, we found that inhibiting calcineurin ameliorated the development of α-synuclein pathology.
CONCLUSION
Our data suggest that Ca2+ -calmodulin-calcineurin signaling modulates α-synuclein transmission and has potential as a therapeutic target for Parkinson's disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse