1
|
Yu Z, Ai N, Xu X, Zhang P, Jin Z, Li X, Ma H. Exploring the Molecular Mechanism of Skeletal Muscle Development in Ningxiang Pig by Weighted Gene Co-Expression Network Analysis. Int J Mol Sci 2024; 25:9089. [PMID: 39201775 PMCID: PMC11354759 DOI: 10.3390/ijms25169089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous improvement in living standards, people's demand for high-quality meat is increasing. Ningxiang pig has delicious meat of high nutritional value, and is loved by consumers. However, its slow growth and low meat yield seriously restrict its efficient utilization. Gene expression is the internal driving force of life activities, so in order to fundamentally improve its growth rate, it is key to explore the molecular mechanism of skeletal muscle development in Ningxiang pigs. In this paper, Ningxiang boars were selected in four growth stages (30 days: weaning period, 90 days: nursing period, 150 days: early fattening period, and 210 days: late fattening period), and the longissimus dorsi (LD) muscle was taken from three boars in each stage. The fatty acid content, amino acid content, muscle fiber diameter density and type of LD were detected by gas chromatography, acidolysis, hematoxylin eosin (HE) staining and immunofluorescence (IF) staining. After transcription sequencing, weighted gene co-expression network analysis (WGCNA) combined with the phenotype of the LD was used to explore the key genes and signaling pathways affecting muscle development. The results showed that 10 modules were identified by WGCNA, including 5 modules related to muscle development stage, module characteristics of muscle fiber density, 5 modules characteristic of muscle fiber diameter, and a module characteristic of palmitoleic acid (C16:1) and linoleic acid (C18:2n6C). Gene ontology (GO) enrichment analysis found that 52 transcripts relating to muscle development were enriched in these modules, including 44 known genes and 8 novel genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these genes were enriched in the auxin, estrogen and cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) pathways. Twelve of these genes were transcription factors, there were interactions among 20 genes, and the interactions among 11 proteins in human, pig and mouse were stable. To sum up, through the integrated analysis of phenotype and transcriptome, this paper analyzed the key genes and possible regulatory networks of skeletal muscle development in Ningxiang pigs at various stages, to provide a reference for the in-depth study of skeletal muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.Y.); (N.A.); (X.X.); (P.Z.); (Z.J.); (X.L.)
| |
Collapse
|
2
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Wang W, Lu D, Xu Q, Jin Y, Pang G, Liu Y. Remodeling of the ryanodine receptor isoform 1 channel regulates the sweet and umami taste perception of Rattus norvegicus. FUNDAMENTAL RESEARCH 2023; 3:459-468. [PMID: 38933774 PMCID: PMC11197482 DOI: 10.1016/j.fmre.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022] Open
Abstract
Sweet and umami tastes are elicited by sweet and umami receptors on the tongue and palate epithelium, respectively. However, the molecular machinery allowing the taste reaction remains incompletely understood. Through a phosphoproteomic approach, we identified the key proteins that trigger taste mechanisms based on phosphorylation cascades. Ryanodine receptor isoform 1 (RYR1) was further verified by sensory and behavioral assays. We propose a model of RYR1-mediated sweet/umami signaling in which the RYR1 channel, which mediates Ca2+ release from the endoplasmic reticulum, is closed by dephosphorylation in bud tissue after sweet/umami treatment. The alteration in Ca2+ content in the cytosol induces transient membrane depolarization and generates a cell current for taste signal transduction. We demonstrate that RYR1 is a new channel involved in the regulation of sweet/umami signal transduction and propose a "metabolic clock" notion based on sweet/umami sensing. Our study provides a valuable foundation for a system-level understanding of the taste perception mechanism.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingqiang Lu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Qiuda Xu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yulian Jin
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Guangchang Pang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhang J, Jiang JZ, Xu J, Xu CY, Mao S, Shi Y, Gu W, Zou CF, Zhao YM, Ye L. Identification of Novel Biomarkers for Abdominal Aortic Aneurysm Promoted by Obstructive Sleep Apnea. Ann Vasc Surg 2023; 92:285-293. [PMID: 36739079 DOI: 10.1016/j.avsg.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND We sought to find new biomarkers for abdominal aortic aneurysms (AAA) caused by chronic intermittent hypoxia (CIH). METHODS The AAA mice model was created using Ang II. The mice were divided into normoxic and CIH groups. The structure of AAA was observed using abdominal ultrasonography, Elastica van Gieson (EVG), and hematoxylin and eosin (HE) staining. The expression of ɑ-SMA was investigated using immunohistochemistry. The novel biomarkers were screened using bioinformatics analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to verify the expression of novel genes in both normal oxygen and CIH. RESULTS CIH appears to cause greater aortic dilation, higher AAA incidence, lower survival rate, thicker vessel wall, and more brittle elastic lamellae when compared to controls. The immunohistochemistry results showed that the expression of ɑ-SMA in the CIH group was reduced significantly. Four novel genes, including Homer2, Robo2, Ehf, and Asic1, were found to be differentially expressed between normal oxygen and CIH using qRT-PCR, indicating the same trend as bioinformatics analysis. CONCLUSIONS We discovered that CIH could hasten the occurrence and progression of AAA. Four genes (Homer2, Robo2, Ehf, and Asic1) may be novel biomarkers for AAA, which could aid in the search for new therapies for patients with AAA caused by CIH.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-Zhong Jiang
- Department of Geriatrics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Jun Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chen-Yu Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shan Mao
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Shi
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chun-Fang Zou
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue-Ming Zhao
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Liang Ye
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Zhou Z, Li K, Liu J, Zhang H, Fan Y, Chen Y, Han H, Yang J, Liu Y. Expression Profile Analysis to Identify Circular RNA Expression Signatures in Muscle Development of Wu'an Goat Longissimus Dorsi Tissues. Front Vet Sci 2022; 9:833946. [PMID: 35518637 PMCID: PMC9062782 DOI: 10.3389/fvets.2022.833946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The growth and development of skeletal muscle is a physiological process regulated by a variety of genes and signaling pathways. As a posttranscriptional regulatory factor, circRNA plays a certain regulatory role in the development of animal skeletal muscle in the form of a miRNA sponge. However, the role of circRNAs in muscle development and growth in goats is still unclear. In our study, apparent differences in muscle fibers in Wu'an goats of different ages was firstly detected by hematoxylin-eosin (HE) staining, the circRNA expression profiles of longissimus dorsi muscles from 1-month-old (mon1) and 9-month-old (mon9) goats were screened by RNA-seq and verified by RT-qPCR. The host genes of differentially expressed (DE) circRNAs were predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) of host genes with DE circRNAs were performed to explore the functions of circRNAs. The circRNA-miRNA-mRNA networks were then constructed using Cytoscape software. Ten significantly differentially expressed circRNAs were also verified in the mon1 and mon9 groups by RT-qPCR. Luciferase Reporter Assay was used to verify the binding site between circRNA and its targeted miRNA. The results showed that a total of 686 DE circRNAs were identified between the mon9 and mon1 groups, of which 357 were upregulated and 329 were downregulated. Subsequently, the 467 host genes of DE circRNAs were predicted using Find_circ and CIRI software. The circRNA-miRNA-mRNA network contained 201 circRNAs, 85 miRNAs, and 581 mRNAs; the host mRNAs were associated with "muscle fiber development" and "AMPK signaling pathway" and were enriched in the FoxO signaling pathway. Competing endogenous RNA (ceRNA) network analysis showed that novel_circ_0005314, novel_circ_0005319, novel_circ_0009256, novel_circ_0009845, novel_circ_0005934 and novel_circ_0000134 may play important roles in skeletal muscle growth and development between the mon9 and mon1 groups. Luciferase Reporter Assay confirmed the combination between novel_circ_0005319 and chi-miR-199a-5p, novel_circ_0005934 and chi-miR-450-3p and novel_circ_0000134 and chi-miR-655. Our results provide specific information related to goat muscle development and a reference for the goat circRNA profile.
Collapse
Affiliation(s)
- Zuyang Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kunyu Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Hui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yulin Chen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Haiyin Han
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Junqi Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yufang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
6
|
Colorectal cancer in Crohn's disease evaluated with genes belonging to fibroblasts of the intestinal mucosa selected by NMF. Pathol Res Pract 2021; 229:153728. [PMID: 34953405 DOI: 10.1016/j.prp.2021.153728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022]
Abstract
Crohn's disease (CD) is a type of chronic, inflammatory bowel disease (IBD) which affects any part of the gastrointestinal tract. This study aims to understand the mechanism which activate mucosal fibroblasts in the microenvironment of the colon in CD and colorectal carcinomas and to extract fibroblasts phenotypes via a novel framework based on non-negative factorization of matrix (NMF). The results identify a fibroblast phenotype characterized by intense pro-inflammatory activity ensured by the presence of genes belonging to the APOBEC1 family, such as APOBEC3F and APOBEC3G. These results demonstrated that there is a difference in fibroblast response in producing a pro-tumorigenic effect in CD. The different activation mechanisms could represent useful biomarkers in controlling CD development without generalizing its significance as IBD.
Collapse
|
7
|
Preliminary Observations on Skeletal Muscle Adaptation and Plasticity in Homer 2 -/- Mice. Metabolites 2021; 11:metabo11090642. [PMID: 34564458 PMCID: PMC8469648 DOI: 10.3390/metabo11090642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/05/2023] Open
Abstract
Homer represents a diversified family of scaffold and transduction proteins made up of several isoforms. Here, we present preliminary observations on skeletal muscle adaptation and plasticity in a transgenic model of Homer 2-/- mouse using a multifaceted approach entailing morphometry, quantitative RT-PCR (Reverse Transcription PCR), confocal immunofluorescence, and electrophysiology. Morphometry shows that Soleus muscle (SOL), at variance with Extensor digitorum longus muscle (EDL) and Flexor digitorum brevis muscle (FDB), displays sizable reduction of fibre cross-sectional area compared to the WT counterparts. In SOL of Homer 2-/- mice, quantitative RT-PCR indicated the upregulation of Atrogin-1 and Muscle ring finger protein 1 (MuRF1) genes, and confocal immunofluorescence showed the decrease of neuromuscular junction (NMJ) Homer content. Electrophysiological measurements of isolated FDB fibres from Homer 2-/- mice detected the exclusive presence of the adult ε-nAChR isoform excluding denervation. As for NMJ morphology, data were not conclusive, and further work is needed to ascertain whether the null Homer 2 phenotype induces any endplate remodelling. Within the context of adaptation and plasticity, the present data show that Homer 2 is a co-regulator of the normotrophic status in a muscle specific fashion.
Collapse
|
8
|
Alvarez-Suarez P, Nowak N, Protasiuk-Filipunas A, Yamazaki H, Prószyński TJ, Gawor M. Drebrin Regulates Acetylcholine Receptor Clustering and Organization of Microtubules at the Postsynaptic Machinery. Int J Mol Sci 2021; 22:9387. [PMID: 34502296 PMCID: PMC8430516 DOI: 10.3390/ijms22179387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023] Open
Abstract
Proper muscle function depends on the neuromuscular junctions (NMJs), which mature postnatally to complex "pretzel-like" structures, allowing for effective synaptic transmission. Postsynaptic acetylcholine receptors (AChRs) at NMJs are anchored in the actin cytoskeleton and clustered by the scaffold protein rapsyn, recruiting various actin-organizing proteins. Mechanisms driving the maturation of the postsynaptic machinery and regulating rapsyn interactions with the cytoskeleton are still poorly understood. Drebrin is an actin and microtubule cross-linker essential for the functioning of the synapses in the brain, but its role at NMJs remains elusive. We used immunohistochemistry, RNA interference, drebrin inhibitor 3,5-bis-trifluoromethyl pyrazole (BTP2) and co-immunopreciptation to explore the role of this protein at the postsynaptic machinery. We identify drebrin as a postsynaptic protein colocalizing with the AChRs both in vitro and in vivo. We also show that drebrin is enriched at synaptic podosomes. Downregulation of drebrin or blocking its interaction with actin in cultured myotubes impairs the organization of AChR clusters and the cluster-associated microtubule network. Finally, we demonstrate that drebrin interacts with rapsyn and a drebrin interactor, plus-end-tracking protein EB3. Our results reveal an interplay between drebrin and cluster-stabilizing machinery involving rapsyn, actin cytoskeleton, and microtubules.
Collapse
Affiliation(s)
- Paloma Alvarez-Suarez
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Natalia Nowak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Anna Protasiuk-Filipunas
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Hiroyuki Yamazaki
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan;
| | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Marta Gawor
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| |
Collapse
|
9
|
Takeuchi F, Liang YQ, Isono M, Tajima M, Cui ZH, Iizuka Y, Gotoda T, Nabika T, Kato N. Integrative genomic analysis of blood pressure and related phenotypes in rats. Dis Model Mech 2021; 14:dmm048090. [PMID: 34010951 PMCID: PMC8188887 DOI: 10.1242/dmm.048090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable progress made in human genome-wide association studies, there remains a substantial gap between statistical evidence for genetic associations and functional comprehension of the underlying mechanisms governing these associations. As a means of bridging this gap, we performed genomic analysis of blood pressure (BP) and related phenotypes in spontaneously hypertensive rats (SHR) and their substrain, stroke-prone SHR (SHRSP), both of which are unique genetic models of severe hypertension and cardiovascular complications. By integrating whole-genome sequencing, transcriptome profiling, genome-wide linkage scans (maximum n=1415), fine congenic mapping (maximum n=8704), pharmacological intervention and comparative analysis with transcriptome-wide association study (TWAS) datasets, we searched causal genes and causal pathways for the tested traits. The overall results validated the polygenic architecture of elevated BP compared with a non-hypertensive control strain, Wistar Kyoto rats (WKY); e.g. inter-strain BP differences between SHRSP and WKY could be largely explained by an aggregate of BP changes in seven SHRSP-derived consomic strains. We identified 26 potential target genes, including rat homologs of human TWAS loci, for the tested traits. In this study, we re-discovered 18 genes that had previously been determined to contribute to hypertension or cardiovascular phenotypes. Notably, five of these genes belong to the kallikrein-kinin/renin-angiotensin systems (KKS/RAS), in which the most prominent differential expression between hypertensive and non-hypertensive alleles could be detected in rat Klk1 paralogs. In combination with a pharmacological intervention, we provide in vivo experimental evidence supporting the presence of key disease pathways, such as KKS/RAS, in a rat polygenic hypertension model.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Michiko Tajima
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Zong Hu Cui
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Yoko Iizuka
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Takanari Gotoda
- Department of Metabolism and Biochemistry, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|
10
|
Cui X, Liang H, Hao C, Jing X. Homer1 is a Potential Biomarker for Prognosis in Human Colorectal Carcinoma, Possibly in Association with G3BP1 Signaling. Cancer Manag Res 2020; 12:2899-2909. [PMID: 32425603 PMCID: PMC7196245 DOI: 10.2147/cmar.s240942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
Background Homer scaffolding protein 1 (Homer1) is a postsynaptic scaffold protein that regulates the structure and function of excitatory synaptic as well as its intracellular signal transduction. However, the role of Homer1 in colorectal cancer as well as the underlying molecular mechanisms has not been elucidated. Materials and Methods To evaluate the alternations of gene expression during colorectal cancer, Homer1 expression was analyzed using the gene expression profiling interactive analysis and Oncomine analyses. The prognostic value of Homer1 expression was validated by our own colorectal cancer specimens using RT-PCR. Then, the cell viability, migration and invasion of colorectal cancer cell lines were detected by CCK-8 and transwell assay. Results We obtained the following important results. (1) Homer1 expression was significantly higher in colorectal cancer than normal samples. (2) Among patients with colorectal cancer, those with higher Homer1 expression had a lower survival rate. (3) The major mutation type of Homer1 in colorectal cancer samples was missense mutation. (4) Homer1 was able to promote colorectal cancer cell proliferation, migration, and invasion through up-regulating G3BP1 in vitro. Conclusion Our findings suggest that Homer1 may play a role in malignancy of colorectal cancer mainly through the G3BP1 signaling pathway, which might be a potential indicator of poor prognosis.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People's Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Chonghua Hao
- Clinical Laboratory, Shanxi Provincial People's Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Provincial People's Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| |
Collapse
|
11
|
Reibring CG, Hallberg K, Linde A, Gritli-Linde A. Distinct and Overlapping Expression Patterns of the Homer Family of Scaffolding Proteins and Their Encoding Genes in Developing Murine Cephalic Tissues. Int J Mol Sci 2020; 21:ijms21041264. [PMID: 32070057 PMCID: PMC7072945 DOI: 10.3390/ijms21041264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Public Dental Service, Region Västra Götaland, SE-45131 Uddevalla, Sweden
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Correspondence: ; Tel.: +46-31-7863392
| |
Collapse
|
12
|
Wang T, Zhang L, Shi C, Wei R, Yin C. Interaction of the Homer1 EVH1 domain and skeletal muscle ryanodine receptor. Biochem Biophys Res Commun 2019; 514:720-725. [PMID: 31078268 DOI: 10.1016/j.bbrc.2019.04.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1) proteins are intracellular calcium (Ca2+) release channels on the membrane of the sarcoplasmic reticulum (SR) and required for skeletal muscle excitation-contraction coupling. Homer (Vesl) is a family of scaffolding proteins that modulate target proteins including RyRs (ryanodine receptors), mGluRs (group 1 metabotropic glutamate receptors) and IP3Rs (inositol-1,4,5-trisphosphate receptors) through a conserved EVH1 (Ena/VASP homology 1) domain. Here, we examined the interaction between Homer1 EVH1 domain and RyR1 by co-immunoprecipitation, continuous sucrose density-gradient centrifugation, and bio-layer interferometry binding assay at different Ca2+ concentrations. Our results show that there exists a high-affinity binding between the Homer1 EVH1 domain and RyR1, especially at 1 mM of Ca2+. Based on our data and the known structures of Homer1 EVH1 domain and RyR1, we found two consensus proline-rich sequences in the structure of RyR1, PPHHF and FLPPP, and proposed two corresponding binding models to show mechanisms of recognition different from those used by other proline-rich motifs. The side proline residues of two proline-rich motifs from RyR1 are away from the hydrophobic surface of Homer1 EVH1, rather than buried in this hydrophobic surface. Our results provide evidence that Homer1 regulates RyR1 by direct interaction.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Lei Zhang
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China; Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Chao Shi
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Risheng Wei
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Changcheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China; Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing, 100191, China; Center for Protein Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Hatazawa Y, Ono Y, Hirose Y, Kanai S, Fujii NL, Machida S, Nishino I, Shimizu T, Okano M, Kamei Y, Ogawa Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration. FASEB J 2018; 32:1452-1467. [DOI: 10.1096/fj.201700573r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yukino Hatazawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
- Division of Regenerative Medicine Research Japan Agency for Medical Research and Development (AMED) Tokyo Japan
| | - Yuma Hirose
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Sayaka Kanai
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Nobuharu L. Fujii
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan University Hachioji Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University Chiba Japan
| | - Ichizo Nishino
- National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine Chiba University Graduate School of Medicine Chiba Japan
| | - Masaki Okano
- Institute of Molecular Embryology and Genetics, Kumamoto University Kumamoto Japan
| | - Yasutomi Kamei
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Yoshihiro Ogawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu University Fukuoka Japan
- Japan Agency for Medical Research and Development (AMED) Core Research for Evolutional Science and Technology (CREST) Tokyo Japan
| |
Collapse
|
14
|
Zimmermann J, Neuhuber WL, Raab M. Homer1 (VesL-1) in the rat esophagus: focus on myenteric plexus and neuromuscular junction. Histochem Cell Biol 2017; 148:189-206. [PMID: 28337539 DOI: 10.1007/s00418-017-1555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
Homer1, a scaffolding protein of the postsynaptic density (PSD), enriched at excitatory synapses is known to anchor and modulate group I metabotropic glutamate receptors (mGluRs) and different channel- and receptor-proteins. Homer proteins are expressed in neurons of different brain regions, but also in non-neuronal tissues like skeletal muscle. Occurrence and location of Homer1 and mGluR5 in myenteric plexus and neuromuscular junctions (NMJ) of rat esophagus have yet not been characterized. We located Homer1 and mGluR5 immunoreactivity (-iry) in rat esophagus and focused on myenteric neurons, intraganglionic laminar endings (IGLEs) and NMJs, using double- and triple-label immunohistochemistry and confocal laser scanning microscopy. Homer1-iry was found in a subpopulation of vesicular glutamate transporter 2 (VGLUT2) positive IGLEs and cholinergic varicosities within myenteric ganglia, but neither in nitrergic nor cholinergic myenteric neuronal cell bodies. Homer1-iry was detected in 63% of esophageal and, for comparison, in 35% of sternomastoid NMJs. Besides the location in the PSD, Homer1-iry colocalized with cholinergic markers, indicating a presynaptic location in coarse VAChT/CGRP/NF200- immunoreactive (-ir) terminals of nucleus ambiguus neurons supplying striated esophageal muscle. mGluR5-iry was found in subpopulations of myenteric neuronal cell bodies, VGLUT2-ir IGLEs and cholinergic varicosities within the myenteric neuropil and NMJs of esophagus and sternomastoid muscles. Thus, Homer1 may anchor mGluR5 at presynaptic sites of cholinergic boutons at esophageal motor endplates, in a small subpopulation of VGLUT2-ir IGLEs and cholinergic varicosities within myenteric ganglia possibly modulating Ca2+-currents and neurotransmitter release.
Collapse
Affiliation(s)
- J Zimmermann
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - W L Neuhuber
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - M Raab
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
15
|
Castelli V, Brancato A, Cavallaro A, Lavanco G, Cannizzaro C. Homer2 and Alcohol: A Mutual Interaction. Front Psychiatry 2017; 8:268. [PMID: 29249995 PMCID: PMC5714871 DOI: 10.3389/fpsyt.2017.00268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The past two decades of data derived from addicted individuals and preclinical animal models of addiction implicate a role for the excitatory glutamatergic transmission within the mesolimbic structures in alcoholism. The cellular localization of the glutamatergic receptor subtypes, as well as their signaling efficiency and function, are highly dependent upon discrete functional constituents of the postsynaptic density, including the Homer family of scaffolding proteins. The consequences of repeated alcohol administration on the expression of the Homer family proteins demonstrate a crucial and active role, particularly for the expression of Homer2 isoform, in regulating alcohol-induced behavioral and cellular neuroplasticity. The interaction between Homer2 and alcohol can be defined as a mutual relation: alcohol consumption enhances the expression of Homer2 protein isoform within the nucleus accumbens and the extended amygdala, cerebral areas where, in turn, Homer2 is able to mediate the development of the "pro-alcoholic" behavioral phenotype, as a consequence of the morpho-functional synaptic adaptations. Such findings are relevant for the detection of the strategic molecular components that prompt alcohol-induced functional and behavioral disarrangement as targets for future innovative treatment options.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Lu J, Gan J, Fu G, Ding L, Zheng Q. The Impact of Small RNA Interference Against Homer1 on Rats with Type 2 Diabetes and ERK Phosphorylation. Cell Biochem Biophys 2016; 73:597-601. [PMID: 27259299 DOI: 10.1007/s12013-015-0657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the study is to evaluate Homer1 expression in rats with Type 2 diabetes mellitus (T2DM) and investigate the mechanism by which Homer1 influences the pathogenesis of diabetes through study on rat model with decreased Homer1 expression. Rat model of T2DM was constructed and blood insulin concentration was measured. Homer1 mRNA and protein expressions in rat pancreatic tissue were determined using RT-PCR as well as Western blotting. Homer1 expression in human monocytic THP-1 cells was interfered using short hairpin RNA, and its effect on phosphorylation of extracellular signal-regulated kinase (ERK) was assessed. Fasting glucose concentration in rat model of T2DM was significantly higher than that of normal rats (13.1 ± 2.4 vs 5.1 ± 1.1 mmol/L), and fasting blood insulin concentration of diabetic group was significantly lower than that of normal group (13.6 ± 1.9 18.3 ± 2.2 mIU/L) (P < 0.05). Homer1 mRNA and protein expressions in pancreatic tissue of rats with T2DM were significantly higher than those of normal rats (P < 0.05). Level of ERK phosphorylation in pancreatic tissue of rats with T2DM was significantly higher than that of normal rats. Homer1 mRNA level in rat pancreatic tissue of T2DM was positively correlated with the area of pancreatic islets (r = 0.526, P = 0.014). Homer1 mRNA level was significantly inhibited in high-glucose and high-fat stimulated human monotypic THP-1 cells with interfered Homer1. Compared with controls, P-ERK phosphorylation was significantly decreased in THP-1 cells with interfered Homer1 (P < 0.05). Homer1 can promote the progression of T2DM, which may be achieved through affecting ERK phosphorylation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Jihong Gan
- Department of Cardiology, Lanzhou Military General Hospital in Urumqi, Urumqi, 830000, Xinjiang, China
| | - Guoqiang Fu
- Department of Emergency, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Lu Ding
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Qiangsun Zheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China.
| |
Collapse
|
17
|
Chen YC, Guo YF, He H, Lin X, Wang XF, Zhou R, Li WT, Pan DY, Shen J, Deng HW. Integrative Analysis of Genomics and Transcriptome Data to Identify Potential Functional Genes of BMDs in Females. J Bone Miner Res 2016; 31:1041-9. [PMID: 26748680 DOI: 10.1002/jbmr.2781] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/27/2015] [Accepted: 12/30/2015] [Indexed: 02/01/2023]
Abstract
Osteoporosis is known to be highly heritable. However, to date, the findings from more than 20 genome-wide association studies (GWASs) have explained less than 6% of genetic risks. Studies suggest that the missing heritability data may be because of joint effects among genes. To identify novel heritability for osteoporosis, we performed a system-level study on bone mineral density (BMD) by weighted gene coexpression network analysis (WGCNA), using the largest GWAS data set for BMD in the field, Genetic Factors for Osteoporosis Consortium (GEFOS-2), and a transcriptomic gene expression data set generated from transiliac bone biopsies in women. A weighted gene coexpression network was generated for 1574 genes with GWAS nominal evidence of association (p ≤ 0.05) based on dissimilarity measurement on the expression data. Twelve distinct gene modules were identified, and four modules showed nominally significant associations with BMD (p ≤ 0.05), but only one module, the yellow module, demonstrated a good correlation between module membership (MM) and gene significance (GS), suggesting that the yellow module serves an important biological role in bone regulation. Interestingly, through characterization of module content and topology, the yellow module was found to be significantly enriched with contractile fiber part (GO:044449), which is widely recognized as having a close relationship between muscle and bone. Furthermore, detailed submodule analyses of important candidate genes (HOMER1, SPTBN1) by all edges within the yellow module implied significant enrichment of functional connections between bone and cytoskeletal protein binding. Our study yielded novel information from system genetics analyses of GWAS data jointly with transcriptomic data. The findings highlighted a module and several genes in the model as playing important roles in the regulation of bone mass in females, which may yield novel insights into the genetic basis of osteoporosis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Yan-Fang Guo
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China.,Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, Guangzhou, PR China
| | - Hao He
- Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA.,Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Wen-Ting Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Dao-Yan Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, PR China.,Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| |
Collapse
|
18
|
Constantin B. Role of Scaffolding Proteins in the Regulation of TRPC-Dependent Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:379-403. [PMID: 27161237 DOI: 10.1007/978-3-319-26974-0_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Plasma membrane ion channels, and in particular TRPC channels need a specific membrane environment and association with scaffolding, signaling, and cytoskeleton proteins in order to play their important functional role. The molecular composition of TRPC channels is an important factor in determining channel activation mechanisms. TRPC proteins are incorporated in macromolecular complexes including several key Ca(2 +) signaling proteins as well as proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Evidence has been provided for association of TRPC with calmodulin (CaM), IP3R, PMCA, Gq/11, RhoA, and a variety of scaffolding proteins. The interaction between TRPC channels with adaptor proteins, determines their mode of regulation as well as their cellular localization and function. Adaptor proteins do not display any enzymatic activity but act as scaffold for the building of signaling complexes. The scaffolding proteins are involved in the assembling of these Ca(2+) signaling complexes, the correct sub-cellular localization of protein partners, and the regulation of the TRPC channelosome. In particular, these proteins, via their multiple protein-protein interaction motifs, can interact with various ion channels involved in the transmembrane potential, and membrane excitability. Scaffolding proteins are key components for the functional organization of TRPC channelosomes that serves as a platform regulating slow Ca(2+) entry, spatially and temporally controlled [Ca(2+)]i signals and Ca(2+) -dependent cellular functions.
Collapse
Affiliation(s)
- Bruno Constantin
- Laboratory STIM, ERL-7368 CNRS-Université de Poitiers, 1, rue Georges Bonnet, Bat. B36, Pôle Biologie-Santé, 86000, Poitiers, France.
| |
Collapse
|
19
|
Wu SY, Yu MX, Li XG, Xu SF, Shen J, Sun Z, Zhou X, Chen XZ, Tu JC. Identification of Homer1 as a potential prognostic marker for intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev 2015; 15:3299-304. [PMID: 24815486 DOI: 10.7314/apjcp.2014.15.7.3299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the present study was to analyze whether Homer1 is a potential prognostic marker for intrahepatic cholangiocarcinoma (ICC). MATERIALS AND METHODS The expression of Homer1 in ICC tissue was detected with immunohistochemistry and levels of protein in ICC and paratumor tissues were evaluated by Western blotting. Survival analysis by the Kaplan-Meier method was performed to assess prognostic significance. RESULTS Homer1 expression was high in 67.4% (58/86) of ICC samples, and there was significant difference between ICC and adjacent noncancerous tissues (p<0.001); high expression was associated with poor histologic differentiation (p=0.019), TNM stage (p=0.014), lymph node metastasis (p=0.040), and lymphatic invasion (p=0.025). On Kaplan-Meier analysis, a comparison of survival curves of low versus high expressors of Homer1 revealed a highly significant difference in OS (p=0.001) and DFS (p=0.006), indicating that high expression of Homer1 was linked with a worse prognosis. Multivariate analyses showed that Homer1 expression was an independent risk factor predicting overall survival[Hazard ratio(HR), 7.52; 95% confidence interval (CI), 2.63- 21.47; p=0.002] and disease-free survival (HR, 11.56; 95%CI, 5.17-25.96; p<0.001) in ICC. CONCLUSIONS Homer1 promotes lymphatic invasion and associates with lymph node metastasis and poor prognosis of ICC. The current study shows that Homer1 may be an independent prognostic factor for ICC patients after curative resection, and it provides an important basis for screening/treating high-risk patients.
Collapse
Affiliation(s)
- San-Yun Wu
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|