1
|
Identification of ubiquitination-related genes in human glioma as indicators of patient prognosis. PLoS One 2021; 16:e0250239. [PMID: 33914773 PMCID: PMC8084191 DOI: 10.1371/journal.pone.0250239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/04/2021] [Indexed: 11/21/2022] Open
Abstract
Ubiquitination is a dynamic and reversible process of a specific modification of target proteins catalyzed by a series of ubiquitination enzymes. Because of the extensive range of substrates, ubiquitination plays a crucial role in the localization, metabolism, regulation, and degradation of proteins. Although the treatment of glioma has been improved, the survival rate of patients is still not satisfactory. Therefore, we explore the role of ubiquitin proteasome in glioma. Survival-related ubiquitination related genes (URGs) were obtained through analysis of the Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA). Cox analysis was performed to construct risk model. The accuracy of risk model is verified by survival, Receiver operating characteristic (ROC) and Cox analysis. We obtained 36 differentially expressed URGs and found that 25 URGs were related to patient prognosis. We used the 25 URGs to construct a model containing 8 URGs to predict glioma patient risk by Cox analysis. ROC showed that the accuracy rate of this model is 85.3%. Cox analysis found that this model can be used as an independent prognostic factor. We also found that this model is related to molecular typing markers. Patients in the high-risk group were enriched in multiple tumor-related signaling pathways. In addition, we predicted TFs that may regulate the risk model URGs and found that the risk model is related to B cells, CD4 T cells, and neutrophils.
Collapse
|
2
|
Liu Y, Jin M, Gao Y, Wang Y, Xue S, Wang L, Xuan C. Prediction of Ubiquitin Ligase Nrdp1-Associated Proteins in Glioma Database. Cell Biochem Biophys 2020; 78:301-308. [PMID: 32562142 DOI: 10.1007/s12013-020-00926-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/09/2020] [Indexed: 01/24/2023]
Abstract
The ubiquitin proteasome pathway is conserved from yeast to mammals and is necessary for the targeted degradation of most short-lived proteins in eukaryotic cells. Its protein substrates include cell cycle regulatory proteins and proteins that are not properly folded in the endoplasmic reticulum. Owing to the ubiquity of its protein substrates, ubiquitination regulates a variety of cellular activities, including cell proliferation, apoptosis, autophagy, endocytosis, DNA damage repair, and immune response. With new genomic data continuously being obtained, ubiquitination through genomic data analysis will be an effective method. We obtained 83 overlapping genes from four glioma databases, which differed from ubiquitin ligase Nrdp1 expression, including 36 downregulated and 47 upregulated genes. The KEGG pathways, molecular functions, cellular components, and biological processes potentially associated with Nrdp1 were obtained using GSEA and Cytoscape. In human gliomas, differences in the expression of Nrdp1 were identified between nontumor brain tissue and different glioma tissues, but no difference in expression was found between low‑grade glioma (LGG) and anaplastic glioma (AG). In survival analysis, we found no significant association between Nrdp1 expression level and patient prognosis.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurosurgery, Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China
| | - Yong Gao
- Department of Orthopaedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China
| | - Shengbai Xue
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Lei Wang
- Department of Neurosurgery, Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China
| | - Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China.
| |
Collapse
|
3
|
Cheng S, Zhang Y, Chen S, Zhou Y. LncRNA HOTAIR Participates in Microglia Activation and Inflammatory Factor Release by Regulating the Ubiquitination of MYD88 in Traumatic Brain Injury. J Mol Neurosci 2020; 71:169-177. [PMID: 32602030 DOI: 10.1007/s12031-020-01623-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death worldwide. Long non-coding RNAs (LncRNAs) have been reported to be closely associated with various diseases, but their roles in TBI has not been fully elucidated. The purpose of this study was to elucidate the underlying mechanism of LncRNA HOTAIR in TBI-induced microglial activation and inflammatory factor release. In vivo mouse TBI model and in vitro microglia activation model were established by Feeney's free-fall impact method and by LPS stimulation, respectively. The expression of LncRNA HOTAIR in activated microglia was detected by qRT-PCR. After shRNA knocked down, the expressions of LncRNA HOTAIR and microglia activation marker Iba-1 in microglia were detected by qRT-PCR and Western blot and by ELISA that detected the concentration of inflammatory factor in cell culture supernatants. The relationship between LncRNA HOTAIR and MYD88 in mouse microglia BV2 cells was observed by RNA pull-down assay. Furthermore, the effect of LncRNA HOTAIR on MYD88 stability was assessed by cycloheximide (CHX)-chase and by immunoprecipitation and ubiquitination assays that analyzed MYD88 ubiquitination. LncRNA HOTAIR was abnormally highly expressed in activated microglia. By Western blot and ELISA, the knockdown of LncRNA HOTAIR in microglia significantly repressed microglia activation and inflammatory factor release. By RNA pull-down assay, LncRNA HOTAIR could bind to MYD88 protein. Besides, by cycloheximide (CHX)-chase and immunoprecipitation and ubiquitination assays, the overexpression of the LncRNA HOTAIR enhanced the stability of MYD88 protein and inhibited Nrdp1-mediated ubiquitination of MYD88 protein. After the transfection of shRNA-HOTAIR and shRNA-HOTAIR+pcDNA-MYD88 into microglia, shRNA-HOTAIR could significantly inhibit the activation of microglia and the release of inflammatory factors, while these effects were reversed after the transfection of pcDNA-MYD88. Our experimental data indicated that LncRNA HOTAIR was highly expressed in activated microglia, and our further studies had found that the interference with LncRNA HOTAIR could repress microglia activation and inflammatory factor release via promoting Nrdp1-mediated ubiquitination of MYD88 protein.
Collapse
Affiliation(s)
- Shiqi Cheng
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92, Aiguo Road, Nanchang, 330006, Jiangxi Province, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Shuzhen Chen
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92, Aiguo Road, Nanchang, 330006, Jiangxi Province, China
| | - Yongliang Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92, Aiguo Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Lian YF, Huang YL, Zhang YJ, Chen DM, Wang JL, Wei H, Bi YH, Jiang ZW, Li P, Chen MS, Huang YH. CACYBP Enhances Cytoplasmic Retention of P27 Kip1 to Promote Hepatocellular Carcinoma Progression in the Absence of RNF41 Mediated Degradation. Am J Cancer Res 2019; 9:8392-8408. [PMID: 31754404 PMCID: PMC6857042 DOI: 10.7150/thno.36838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023] Open
Abstract
Calcyclin-binding protein (CACYBP) is a multi-ligand protein implicated in the progression of various human cancers. However, its function in hepatocellular carcinoma (HCC) remains unknown. Methods: The expression of CACYBP and RNF41 (RING finger protein 41) in HCC cancer and adjacent non-tumor tissues was detected by immunohistochemistry. CCK-8 assays, colony formation assays, flow cytometry detection and xenograft models were used to evaluate the impact of CACYBP expression on HCC cell growth, apoptosis and cell cycle regulation. Immunoprecipitation and ubiquitination assays were performed to determine how RNF41 regulates CACYBP. The regulatory mechanism of RNF41-CACYBP signaling axis on P27Kip1 was investigated by western blotting and immunofluorescence. Results: CACYBP was highly expressed and associated with poor prognosis in HCC. CACYBP expression was required for HCC cell growth in vitro and in vivo. Moreover, we identified RNF41 as a specific binding partner of CACYBP at exogenous and endogenous levels. RNF41 recruited CACYBP by its C-terminal substrate binding domain, subsequently ubiquitinating CACYBP and promoting its degradation in both proteasome- and lysosome-dependent pathways. In HCC tissues, RNF41 expression was reduced and conferred a negative correlation with CACYBP expression. Mechanistically, CACYBP overexpression stimulated the Ser10, Thr157 and Thr198 phosphorylation of P27Kip1 and its cytoplasmic retention, and RNF41 co-expression attenuated this phenomenon. CACYBP depletion led to decreased levels of cyclin D1, cyclin A2, CDK2 and CDK4, causing a typical cell cycle arrest at G1/S phase and increasing apoptosis in HCC cells. P27Kip1-S10D but not P27Kip1-S10A reconstitution rescued partially the cell cycle function and apoptotic feature after CACYBP depletion. Conclusion: Our findings provide novel insights into the functional role and regulatory mechanism of CACYBP in HCC.
Collapse
|
5
|
Gao Y, Xuan C, Jin M, An Q, Zhuo B, Chen X, Wang L, Wang Y, Sun Q, Shi Y. Ubiquitin ligase RNF5 serves an important role in the development of human glioma. Oncol Lett 2019; 18:4659-4666. [PMID: 31611975 PMCID: PMC6781729 DOI: 10.3892/ol.2019.10801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/06/2019] [Indexed: 11/05/2022] Open
Abstract
The ubiquitin ligase ring finger protein 5 (RNF5) has previously been associated with the development of breast cancer. Patients with breast cancer and high RNF5 expression have been demonstrated to have a shorter survival time compared with patients with low RNF5 expression. However, the role of RNF5 in human glioma has not been determined. The present study analyzed the role of RNF5 in gliomas using bioinformatics analysis. The results revealed that RNF5 was differentially expressed in non-cancerous brain tissues and different grades of glioma. Furthermore, a high RNF5 expression in patients with glioma was associated with an improved prognosis compared with patients with low expression. Gene Set Enrichment Analysis revealed that RNF5 was particularly associated with 'Wnt signaling pathway', 'apoptosis', 'focal adhesion' and 'cytokine-cytokine receptor interaction' in patients with glioma. Additionally, 4 potential ubiquitination substrates for RNF5 were predicted, including sorting nexin 10, proprotein convertase subtilisin/kexin type 1, leucine rich glioma inactivated 1 and solute carrier family 39 member 12. These findings provided the basis for further investigation on the role of RNF5 in tumors.
Collapse
Affiliation(s)
- Yong Gao
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qi An
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Baobiao Zhuo
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Xincheng Chen
- Department of Neurosurgery, Xinyi People's Hospital, Xinyi, Jiangsu 221400, P.R. China
| | - Lei Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
6
|
Masschaele D, Wauman J, Vandemoortele G, De Sutter D, De Ceuninck L, Eyckerman S, Tavernier J. High-Confidence Interactome for RNF41 Built on Multiple Orthogonal Assays. J Proteome Res 2018; 17:1348-1360. [PMID: 29560723 DOI: 10.1021/acs.jproteome.7b00704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ring finger protein 41 (RNF41) is an E3 ubiquitin ligase involved in the ubiquitination and degradation of many proteins including ErbB3 receptors, BIRC6, and parkin. Next to this, RNF41 regulates the intracellular trafficking of certain JAK2-associated cytokine receptors by ubiquitinating and suppressing USP8, which, in turn, destabilizes the ESCRT-0 complex. To further elucidate the function of RNF41 we used different orthogonal approaches to reveal the RNF41 protein complex: affinity purification-mass spectrometry, BioID, and Virotrap. We combined these results with known data sets for RNF41 obtained with microarray MAPPIT and Y2H screens. This way, we establish a comprehensive high-resolution interactome network comprising 175 candidate protein partners. To remove potential methodological artifacts from this network, we distilled the data into a high-confidence interactome map by retaining a total of 19 protein hits identified in two or more of the orthogonal methods. AP2S1, a novel RNF41 interaction partner, was selected from this high-confidence interactome for further functional validation. We reveal a role for AP2S1 in leptin and LIF receptor signaling and show that RNF41 stabilizes and relocates AP2S1.
Collapse
Affiliation(s)
- Delphine Masschaele
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Joris Wauman
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Giel Vandemoortele
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Delphine De Sutter
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Leentje De Ceuninck
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Sven Eyckerman
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| | - Jan Tavernier
- Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium.,Center for Medical Biotechnology, VIB , Albert Baertsoenkaai 3 , B-9000 Ghent , Belgium
| |
Collapse
|
7
|
Wald JH, Hatakeyama J, Printsev I, Cuevas A, Fry WH, Saldana MJ, Vorst KV, Rowson-Hodel A, Angelastro JM, Sweeney C, Carraway KL. Suppression of planar cell polarity signaling and migration in glioblastoma by Nrdp1-mediated Dvl polyubiquitination. Oncogene 2017; 36:5158-5167. [PMID: 28481871 PMCID: PMC5589482 DOI: 10.1038/onc.2017.126] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/15/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022]
Abstract
The lethality of the aggressive brain tumor glioblastoma multiforme (GBM) results in part from its strong propensity to invade surrounding normal brain tissue. Although oncogenic drivers such as epidermal growth factor receptor activation and Phosphatase and Tensin homolog inactivation are thought to promote the motility and invasiveness of GBM cells via phosphatidylinostitol 3-kinase activation, other unexplored mechanisms may also contribute to malignancy. Here we demonstrate that several components of the planar cell polarity (PCP) arm of non-canonical Wnt signaling including VANGL1, VANGL2 and FZD7 are transcriptionally upregulated in glioma and correlate with poorer patient outcome. Knockdown of the core PCP pathway component VANGL1 suppresses the motility of GBM cell lines, pointing to an important mechanistic role for this pathway in glioblastoma malignancy. We further observe that restoration of Nrdp1, a RING finger type E3 ubiquitin ligase whose suppression in GBM also correlates with poor prognosis, reduces GBM cell migration and invasiveness by suppressing PCP signaling. Our observations indicate that Nrdp1 physically interacts with the Vangl1 and Vangl2 proteins to mediate the K63-linked polyubiquitination of the Dishevelled, Egl-10 and Pleckstrin (DEP) domain of the Wnt pathway protein Dishevelled (Dvl). Ubiquitination hinders Dvl binding to phosphatidic acid, an interaction necessary for efficient Dvl recruitment to the plasma membrane upon Wnt stimulation of Fzd receptor and for the propagation of downstream signals. We conclude that the PCP pathway contributes significantly to the motility and hence the invasiveness of GBM cells, and that Nrdp1 acts as a negative regulator of PCP signaling by inhibiting Dvl through a novel polyubiquitination mechanism. We propose that the upregulation of core PCP components, together with the loss of the key negative regulator Nrdp1, act coordinately to promote GBM invasiveness and malignancy.
Collapse
Affiliation(s)
- Jessica H. Wald
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Antonio Cuevas
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - William H.D. Fry
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Matthew J. Saldana
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey Vander Vorst
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ashley Rowson-Hodel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M. Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
8
|
Voigt A, Nowick K, Almaas E. A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma. PLoS Comput Biol 2017; 13:e1005739. [PMID: 28957313 PMCID: PMC5634634 DOI: 10.1371/journal.pcbi.1005739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 10/10/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Differential co-expression network analyses have recently become an important step in the investigation of cellular differentiation and dysfunctional gene-regulation in cell and tissue disease-states. The resulting networks have been analyzed to identify and understand pathways associated with disorders, or to infer molecular interactions. However, existing methods for differential co-expression network analysis are unable to distinguish between various forms of differential co-expression. To close this gap, here we define the three different kinds (conserved, specific, and differentiated) of differential co-expression and present a systematic framework, CSD, for differential co-expression network analysis that incorporates these interactions on an equal footing. In addition, our method includes a subsampling strategy to estimate the variance of co-expressions. Our framework is applicable to a wide variety of cases, such as the study of differential co-expression networks between healthy and disease states, before and after treatments, or between species. Applying the CSD approach to a published gene-expression data set of cerebral cortex and basal ganglia samples from healthy individuals, we find that the resulting CSD network is enriched in genes associated with cognitive function, signaling pathways involving compounds with well-known roles in the central nervous system, as well as certain neurological diseases. From the CSD analysis, we identify a set of prominent hubs of differential co-expression, whose neighborhood contains a substantial number of genes associated with glioblastoma. The resulting gene-sets identified by our CSD analysis also contain many genes that so far have not been recognized as having a role in glioblastoma, but are good candidates for further studies. CSD may thus aid in hypothesis-generation for functional disease-associations.
Collapse
Affiliation(s)
- André Voigt
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Human Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Eivind Almaas
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Hatakeyama J, Wald JH, Rafidi H, Cuevas A, Sweeney C, Carraway KL. The ER structural protein Rtn4A stabilizes and enhances signaling through the receptor tyrosine kinase ErbB3. Sci Signal 2016; 9:ra65. [PMID: 27353365 DOI: 10.1126/scisignal.aaf1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ErbB3 and ErbB4 are receptor tyrosine kinases that are activated by the neuregulin (NRG) family of growth factors. These receptors govern various developmental processes, and their dysregulation contributes to several human disease states. The abundance of ErbB3 and ErbB4, and thus signaling through these receptors, is limited by the E3 ubiquitin ligase Nrdp1, which targets ErbB3 and ErbB4 for degradation. Reticulons are proteins that influence the morphology of the endoplasmic reticulum (ER) by promoting the formation of tubules, a response of cells to some stressors. We found that the ER structural protein reticulon 4A (Rtn4A, also known as Nogo-A) increased ErbB3 abundance and proliferative signaling by suppressing Nrdp1 function. Rtn4A interacted with Nrdp1 and stabilized ErbB3 in an Nrdp1-dependent manner. Rtn4A overexpression induced the redistribution of Nrdp1 from a cytosolic or perinuclear localization to ER tubules. Rtn4A knockdown in human breast tumor cells decreased ErbB3 abundance, NRG-stimulated signaling, and cellular proliferation and migration. Because proteins destined for the plasma membrane are primarily synthesized in the sheet portions of the ER, our observations suggest that Rtn4A counteracts the Nrdp1-mediated degradation of ErbB3 by sequestering the ubiquitin ligase into ER tubules. The involvement of a reticulon suggests a molecular link between ER structure and the sensitivity of cells to receptor tyrosine kinase-mediated survival signals at the cell surface.
Collapse
Affiliation(s)
- Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hanine Rafidi
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Antonio Cuevas
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
10
|
Chen SJ, Lin JH, Yao XD, Peng B, Xu YF, Liu M, Zheng JH. Nrdp1-mediated degradation of BRUCE decreases cell viability and induces apoptosis in human 786-O renal cell carcinoma cells. Exp Ther Med 2016; 12:597-602. [PMID: 27446249 PMCID: PMC4950747 DOI: 10.3892/etm.2016.3356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/30/2016] [Indexed: 12/20/2022] Open
Abstract
Neuregulin receptor degradation protein-1 (Nrdp1) is involved in a plethora of cellular processes and plays an essential role in the development and progression of human cancers. However, its role in renal cell carcinoma (RCC) remains unclear. Therefore, the present study aimed to explore the biological significance of Nrdp1 in RCC. Western blot analyses of tissue samples from 24 patients with primary RCC revealed lower Nrdp1 and higher baculovirus inhibitor of apoptosis repeat-containing ubiquitin-conjugating enzyme (BRUCE) protein levels in RCC tissues compared with adjacent normal tissues. In addition, MTT and apoptosis assays demonstrated that Nrdp1 overexpression resulted in decreased cell viability and enhanced apoptosis in RCC 786-O cells; conversely, Nrdp1 knockdown increased 786-O cell viability and inhibited apoptosis. Further analysis showed that BRUCE downregulation partially attenuated the effects of Nrdp1 knockdown on RCC cell viability and apoptosis. Moreover, an inverse association was obtained between BRUCE and Nrdp1 protein levels. These findings suggest that Nrdp1-mediated degradation of BRUCE decreases cell viability and induces apoptosis in RCC cells, highlighting Nrdp1 as a potential target for RCC treatment.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jian-Hai Lin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xu-Dong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yun-Fei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Min Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jun-Hua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
11
|
Shi H, Gong H, Cao K, Zou S, Zhu B, Bao H, Wu Y, Gao Y, Tang Y, Yu R. Nrdp1-mediated ErbB3 degradation inhibits glioma cell migration and invasion by reducing cytoplasmic localization of p27(Kip1). J Neurooncol 2015; 124:357-64. [PMID: 26088461 DOI: 10.1007/s11060-015-1851-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/12/2015] [Indexed: 01/22/2023]
Abstract
We previously reported that loss of Nrdp1 contributes to human glioma progression by reducing apoptosis. However, the role of Nrdp1 in glioma migration and invasion has not been investigated. Here, we report that ErbB3, a substrate of Nrdp1, is undetectable in normal brain tissues and grade II/III glioma tissues, but is abundant in a certain percentage of grade IV glioma tissues and is associated with the loss of Nrdp1. This suggests that Nrdp1 may be involved in glioma migration and invasion by regulating ErbB3. Thus, the role of Nrdp1/ErbB3 signaling in glioma cell migration and invasion was investigated using Nrdp1 loss- and gain-of-function. The results show that down-regulation of Nrdp1 by use of short hairpin RNA promoted glioma cell migration and invasion. In contrast, overexpression of Nrdp1 significantly inhibited glioma cell migration and invasion. Further investigation on molecular targets revealed that Nrdp1 decreased the level of ErbB3, which resulted in decreasing p-AKT thereby reducing cytoplasmic p27(Kip1). Taken together, these findings suggest that Nrdp1-mediated ErbB3 degradation suppresses glioma migration and invasion and that loss of Nrdp1 may amplify ErbB3 signaling to contribute to glioma migration and invasion. These findings suggest that Nrdp1 may be a target for glioma therapy.
Collapse
Affiliation(s)
- Hengliang Shi
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hui Gong
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
- Neurosurgery Department of Jiangsu Haimen People's Hospital, Nantong, People's Republic of China
| | - Kuan Cao
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Shenshan Zou
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Bingxin Zhu
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Hanmo Bao
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Yuxuan Wu
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Yong Gao
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
- Neurosurgery Department of Jiangsu Xinyi People's Hospital, Xuzhou, People's Republic of China
| | - Yuan Tang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China.
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|