1
|
Takemon Y, LeBlanc VG, Song J, Chan SY, Lee SD, Trinh DL, Ahmad ST, Brothers WR, Corbett RD, Gagliardi A, Moradian A, Cairncross JG, Yip S, Aparicio SAJR, Chan JA, Hughes CS, Morin GB, Gorski SM, Chittaranjan S, Marra MA. Multi-Omic Analysis of CIC's Functional Networks Reveals Novel Interaction Partners and a Potential Role in Mitotic Fidelity. Cancers (Basel) 2023; 15:2805. [PMID: 37345142 PMCID: PMC10216487 DOI: 10.3390/cancers15102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada;
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Véronique G. LeBlanc
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Jungeun Song
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Susanna Y. Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Stephen Dongsoo Lee
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Diane L. Trinh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Shiekh Tanveer Ahmad
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - William R. Brothers
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Richard D. Corbett
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Alessia Gagliardi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Annie Moradian
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - J. Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen Yip
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Samuel A. J. R. Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Jennifer A. Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
2
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Zabolian A, Hashemi M, Hushmandi K, Ashrafizadeh M, Aref AR, Samarghandian S. Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies. Biomed Pharmacother 2021; 144:112335. [PMID: 34700233 DOI: 10.1016/j.biopha.2021.112335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth common gynecologic cancer and is considered as second leading cause of death among women. Various strategies are applied in treatment of cervical cancer including radiotherapy, chemotherapy and surgery. However, cervical cancer cells demonstrate aggressive behavior in advanced phases, requiring novel strategies in their elimination. On the other hand, SOX proteins are transcription factors capable of regulating different molecular pathways and their expression varies during embryogenesis, disease development and carcinogenesis. In the present review, our aim is to reveal role of SOX transcription factors in cervical cancer. SOX transcription factors play like a double-edged sword in cancer. For instance, SOX9 possesses both tumor-suppressor and tumor-promoting role in cervical cancer. Therefore, exact role of each SOX members in cervical cancer has been discussed to direct further experiments for revealing other functions. SOX proteins can regulate proliferation and metastasis of cervical cancer cells. Furthermore, response of cervical cancer cells to chemotherapy and radiotherapy is tightly regulated by SOX transcription factors. Different downstream targets of SOX proteins such as Wnt signaling, EMT and Hedgehog have been identified. Besides, upstream mediators such as microRNAs, lncRNAs and circRNAs can regulate SOX expression in cervical cancer. In addition to pre-clinical studies, role of SOX transcription factors as prognostic and diagnostic tools in cervical cancer has been shown.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
4
|
Yang WT, Feng Q, Ma HM, Lei D, Zheng PS. NF-YA promotes the cell proliferation and tumorigenic properties by transcriptional activation of SOX2 in cervical cancer. J Cell Mol Med 2020; 24:12464-12475. [PMID: 32954681 PMCID: PMC7686972 DOI: 10.1111/jcmm.15777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
NF‐YA is considered as a crucial regulator for the maintenance of cancer stem cell (CSC) and involved in various types of malignant tumours. However, the exact function and molecular mechanisms of NF‐YA in the progression of cervical cancer remains poorly understood. Here, the expression of NF‐YA detected by immunohistochemistry was gradually increased from normal cervical tissues, to the high‐grade squamous intraepithelial lesions, and then to cervical cancer tissues. NF‐YA promoted the cell proliferation and tumorigenic properties of cervical cancer cells as well as tumorsphere formation and chemoresistance in vitro. The luciferase reporter assay combined with mutagenesis analyses and Western blotting showed that NF‐YA trans‐activated the expression of SOX2 in cervical cancer. Furthermore, quantitative chromatin immunoprecipitation (qChIP) and electrophoretic mobility shift assay (EMSA) confirmed that NF‐YA protein directly bound to the CCAAT box region located upstream of the SOX2 promoter. Together, our data demonstrated that NF‐YA was highly expressed in cervical cancer and promoted the cell proliferation, tumorigenicity and CSC characteristic by trans‐activating the expression of SOX2.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Shaanxi, Xi'an, China
| |
Collapse
|
5
|
Libetti D, Bernardini A, Sertic S, Messina G, Dolfini D, Mantovani R. The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation. Cells 2020; 9:cells9030789. [PMID: 32214056 PMCID: PMC7140862 DOI: 10.3390/cells9030789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/19/2022] Open
Abstract
NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, “long” (NF-YAl) and “short” (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and—to a lesser extent, MyoD— levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.
Collapse
|
6
|
Demin DE, Uvarova AN, Klepikova AV, Schwartz AM. The Influence of the Minor Short Isoform of Securin (PTTG1) on Transcription is Significantly Different from the Impact of the Full Isoform. Mol Biol 2020. [DOI: 10.1134/s0026893320010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Sachdeva R, Wu M, Johnson K, Kim H, Celebre A, Shahzad U, Graham MS, Kessler JA, Chuang JH, Karamchandani J, Bredel M, Verhaak R, Das S. BMP signaling mediates glioma stem cell quiescence and confers treatment resistance in glioblastoma. Sci Rep 2019; 9:14569. [PMID: 31602000 PMCID: PMC6787003 DOI: 10.1038/s41598-019-51270-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/28/2019] [Indexed: 01/17/2023] Open
Abstract
Despite advances in therapy, glioblastoma remains an incurable disease with a dismal prognosis. Recent studies have implicated cancer stem cells within glioblastoma (glioma stem cells, GSCs) as mediators of therapeutic resistance and tumor progression. In this study, we investigated the role of the transforming growth factor-β (TGF-β) superfamily, which has been found to play an integral role in the maintenance of stem cell homeostasis within multiple stem cell systems, as a mediator of stem-like cells in glioblastoma. We find that BMP and TGF-β signaling define divergent molecular and functional identities in glioblastoma, and mark relatively quiescent and proliferative GSCs, respectively. Treatment of GSCs with BMP inhibits cell proliferation, but does not abrogate their stem-ness, as measured by self-renewal and tumorigencity. Further, BMP pathway activation confers relative resistance to radiation and temozolomide chemotherapy. Our findings define a quiescent cancer stem cell population in glioblastoma that may be a cellular reservoir for tumor recurrence following cytotoxic therapy.
Collapse
Affiliation(s)
- Rohit Sachdeva
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada
| | - Megan Wu
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada
| | - Kevin Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Hyunsoo Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Angela Celebre
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Uswa Shahzad
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Maya Srikanth Graham
- Department of Neurology, Memorial Sloan Kettering, New York City, New York, USA.,Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, Illinois, USA
| | - John A Kessler
- Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jason Karamchandani
- Department of Laboratory Medicine, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Sunit Das
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada. .,Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
NF-YA transcriptionally activates the expression of SOX2 in cervical cancer stem cells. PLoS One 2019; 14:e0215494. [PMID: 31365524 PMCID: PMC6668781 DOI: 10.1371/journal.pone.0215494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Roles for SOX2 have been extensively studied in several types of cancer, including colorectal cancer, glioblastoma and breast cancer, with particular emphasis placed on the roles of SOX2 in cancer stem cell. Our previous study identified SOX2 as a marker in cervical cancer stem cells driven by a full promoter element of SOX2 EGFP reporter. Here, dual-luciferase reporter and mutagenesis analyses were employed, identifying key cis-elements in the SOX2 promoter, including binding sites for SOX2, OCT4 and NF-YA factors in SOX2 promoter. Mutagenesis analysis provided additional evidence to show that one high affinity-binding domain CCAAT box was precisely recognized and bound by the transcription factor NF-YA. Furthermore, overexpression of NF-YA in primitive cervical cancer cells SiHa and C33A significantly activated the transcription and the protein expression of SOX2. Collectively, our data identified NF-YA box CCAAT as a key cis-element in the SOX2 promoter, suggesting that NF-YA is a potent cellular regulator in the maintenance of SOX2-positive cervical cancer stem cell by specific transcriptional activation of SOX2.
Collapse
|
9
|
Sachdeva R, Wu M, Smiljanic S, Kaskun O, Ghannad-Zadeh K, Celebre A, Isaev K, Morrissy AS, Guan J, Tong J, Chan J, Wilson TM, Al-Omaishi S, Munoz DG, Dirks PB, Moran MF, Taylor MD, Reimand J, Das S. ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. Cancer Res 2019; 79:4057-4071. [PMID: 31292163 DOI: 10.1158/0008-5472.can-18-1357] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/06/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most common primary brain tumor in adults. While the introduction of temozolomide chemotherapy has increased long-term survivorship, treatment failure and rapid tumor recurrence remains universal. The transcriptional regulatory protein, inhibitor of DNA-binding-1 (ID1), is a key regulator of cell phenotype in cancer. We show that CRISPR-mediated knockout of ID1 in glioblastoma cells, breast adenocarcinoma cells, and melanoma cells dramatically reduced tumor progression in all three cancer systems through transcriptional downregulation of EGF, which resulted in decreased EGFR phosphorylation. Moreover, ID1-positive cells were enriched by chemotherapy and drove tumor recurrence in glioblastoma. Addition of the neuroleptic drug pimozide to inhibit ID1 expression enhanced the cytotoxic effects of temozolomide therapy on glioma cells and significantly prolonged time to tumor recurrence. Conclusively, these data suggest ID1 could be a promising therapeutic target in patients with glioblastoma. SIGNIFICANCE: These findings show that the transcriptional regulator ID1 is critical for glioblastoma initiation and chemoresistance and that inhibition of ID1 enhances the effect of temozolomide, delays tumor recurrence, and prolongs survival.
Collapse
Affiliation(s)
- Rohit Sachdeva
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Megan Wu
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Sandra Smiljanic
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Oleksandra Kaskun
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kimia Ghannad-Zadeh
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Angela Celebre
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Keren Isaev
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - A Sorana Morrissy
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Jennifer Guan
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Jeffrey Chan
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Taylor M Wilson
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Sayf Al-Omaishi
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - David G Munoz
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Peter B Dirks
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sunit Das
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada. .,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Amirteimouri S, Ashini M, Ramazanali F, Aflatoonian R, Afsharian P, Shahhoseini M. Epigenetic role of the nuclear factor NF-Y on ID gene family in endometrial tissues of women with endometriosis: a case control study. Reprod Biol Endocrinol 2019; 17:32. [PMID: 30876429 PMCID: PMC6419829 DOI: 10.1186/s12958-019-0476-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND A predominant difference between endometrial and normal cells is higher proliferation rate in the former cells which is benign. The genes of inhibitor of differentiation (ID) family play a major role in cell proliferation regulation which might be targeted by the nuclear transcription factor Y (NF-Y) for subsequent epigenetic modifications through the CCAAT box regulatory region. The present study was designed to investigate the epigenetic role of NF-Y on ID gene family in endometrial tissue of patients with endometriosis. MATERIALS & METHODS In this case-control study, 20 patients with endometriosis and 20 normal women were examined for the relative expression of the NF-YA, NF-YB, NF-YC and ID genes by real-time PCR during the proliferative phase. The occupancy of NF-Y on CCAAT box region of ID genes was investigated using chromatin immunoprecipitation (ChIP) followed by real-time PCR. RESULTS The NF-YA was over-expressed in eutopic endometrium during the proliferative phase. Although the expression level of NF-YB and NF-YC were unchanged in eutopic samples, they were remarkably higher in ectopic group (P<0.05). The ID2 and ID3 genes were up-regulated in ectopic and eutopic tissues, however ID1 and ID4 genes were down-regulated in these samples (P<0.05). The ChIP analysis revealed significant enrichment of NF-Y on regulatory regions of ID2,3 genes in eutopic group, but reduced binding level of NF-Y to the ID1,3 promoters in ectopic specimens (P<0.05). CONCLUSION The ability of NF-Y to regulate ID genes via CCAAT box region suggests the possible role of NF-Y transcription factor in epigenetic changes in endometrial tissues which may open novel avenues in finding new therapeutic strategies.
Collapse
Affiliation(s)
- Shirin Amirteimouri
- Department of Basic Sciences and Advanced Technologies in biology, University of Science and Culture, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
| | - Manan Ashini
- Department of Basic Sciences and Advanced Technologies in biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
| | - Fariba Ramazanali
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
| | - Maryam Shahhoseini
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran.
| |
Collapse
|
11
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
12
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|