1
|
Zhang D, Cao Y, Liu D, Zhang J, Guo Y. The Etiology and Molecular Mechanism Underlying Smooth Muscle Phenotype Switching in Intimal Hyperplasia of Vein Graft and the Regulatory Role of microRNAs. Front Cardiovasc Med 2022; 9:935054. [PMID: 35966541 PMCID: PMC9365958 DOI: 10.3389/fcvm.2022.935054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence suggests that the phenotypic transformation of venous smooth muscle cells (SMCs) from differentiated (contractile) to dedifferentiated (proliferative and migratory) phenotypes causes excessive proliferation and further migration to the intima leading to intimal hyperplasia, which represents one of the key pathophysiological mechanisms of vein graft restenosis. In recent years, numerous miRNAs have been identified as specific phenotypic regulators of vascular SMCs (VSMCs), which play a vital role in intimal hyperplasia in vein grafts. The review sought to provide a comprehensive overview of the etiology of intimal hyperplasia, factors affecting the phenotypic transformation of VSMCs in vein graft, and molecular mechanisms of miRNAs involved in SMCs phenotypic modulation in intimal hyperplasia of vein graft reported in recent years.
Collapse
Affiliation(s)
- Dengshen Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiran Cao
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Daxing Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yingqiang Guo,
| |
Collapse
|
2
|
miR-16-5p Is a Novel Mediator of Venous Smooth Muscle Phenotypic Switching. J Cardiovasc Transl Res 2022; 15:876-889. [PMID: 35501542 PMCID: PMC9622564 DOI: 10.1007/s12265-022-10208-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Vein graft failure after coronary artery bypass grafting (CABG) is primarily caused by intimal hyperplasia, which results from the phenotypic switching of venous smooth muscle cells (SMCs). This study investigates the role and underlying mechanism of miR-16-5p in the phenotypic switching of venous SMCs. In rats, neointimal thickness and area increased over time within 28 days after CABG, as did the time-dependent miR-16-5p downregulation and SMC phenotypic switching. Platelet-derived growth factor-BB-induced miR-16-5p downregulation in HSVSMCs was accompanied by and substantially linked with alterations in phenotypic switching indicators. Furthermore, miR-16-5p overexpression increased SMCs differentiation marker expression while suppressing HSVSMCs proliferation and migration and drastically inhibiting neointimal development in vein grafts. The miR-16-5p inhibited zyxin expression, which was necessary for HSVSMCs phenotypic switching. The miR-16-5p/zyxin axis is a novel, potentially therapeutic target for preventing and treating venous graft intimal hyperplasia.
Collapse
|
3
|
Wang X, Gong S, Pu D, Hu N, Wang Y, Fan P, Zhang J, Lu X. Up-regulation of miR-365 promotes the apoptosis and restrains proliferation of synoviocytes through downregulation of IGF1 and the inactivation of the PI3K/AKT/mTOR pathway in mice with rheumatoid arthritis. Int Immunopharmacol 2020; 79:106067. [DOI: 10.1016/j.intimp.2019.106067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023]
|
4
|
Ren W, Liang L, Li Y, Wei FY, Mu N, Zhang L, He W, Cao Y, Xiong D, Li H. Upregulation of miR‑423 improves autologous vein graft restenosis via targeting ADAMTS‑7. Int J Mol Med 2020; 45:532-542. [PMID: 31894258 PMCID: PMC6984782 DOI: 10.3892/ijmm.2019.4419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Coronary artery bypass graft (CABG) is one of the primary methods of treating coronary heart disease (CHD); however, vein graft restenosis is a major limiting factor of the effectiveness of CABG. Emerging evidence has indicated that miR‑423 is associated with vascular diseases. Additionally, upregulation of a disintegrin and metalloproteinase with thrombospondin motifs‑7 (ADAMTS‑7) contributes to neointima formation by promoting the proliferation and migration of vascular smooth muscle cells and inhibiting the proliferation and migration of endothelial cells. The aim of the present study was to examine the effects of miR‑423 target, ADAMTS‑7, on regulating vein graft disease and identify novel biomarkers for use in therapy of vein graft failure (VGF). Aberrant expression of miR‑423 in plasma of patients with CHD prior to and following CABG confirms that miR‑423 may be a suitable target for preventing VGF. Furthermore, a dual‑luciferase reporter gene assay indicated that miR‑423 directly interacted with ADAMTS‑7 and suppressed its expression. Ectopic expression of miR‑423 suppressed ADAMTS‑7, resulting in decreased proliferation and migration rates of human umbilical vein smooth muscle cells by targeting ADAMTS‑7, but resulted in increased proliferation and migration of human umbilical vein endothelial cells in vitro. Overexpression of miR‑423 also enhanced re‑endothelialization and decreased neointimal formation in a rat vein graft model. In conclusion, the results of the present study demonstrated that the miR‑423/ADAMTS‑7 axis may possess potential clinical value for the prevention and treatment of restenosis in patients with CHD following CABG.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Liwen Liang
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Fei-Yu Wei
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Ninghui Mu
- Department of Geriatrics/General Medical Science, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Wei He
- Department of Medical Services, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
5
|
Issue Highlights. IUBMB Life 2019. [DOI: 10.1002/iub.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|