1
|
Lee HJ, Tomasini-Johansson BR, Gupta N, Kwon GS. Fibronectin-targeted FUD and PEGylated FUD peptides for fibrotic diseases. J Control Release 2023; 360:69-81. [PMID: 37315694 PMCID: PMC10527082 DOI: 10.1016/j.jconrel.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) molecules. Fibronectin (FN) is a glycoprotein found in the blood and tissues, a key player in the assembly of ECM through interaction with cellular and extracellular components. Functional Upstream Domain (FUD), a peptide derived from an adhesin protein of bacteria, has a high binding affinity for the N-terminal 70-kDa domain of FN that plays a crucial role in FN polymerization. In this regard, FUD peptide has been characterized as a potent inhibitor of FN matrix assembly, reducing excessive ECM accumulation. Furthermore, PEGylated FUD was developed to prevent rapid elimination of FUD and enhance its systemic exposure in vivo. Herein, we summarize the development of FUD peptide as a potential anti-fibrotic agent and its application in experimental fibrotic diseases. In addition, we discuss how modification of the FUD peptide via PEGylation impacts pharmacokinetic profiles of the FUD peptide and can potentially contribute to anti-fibrosis therapy.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Bianca R Tomasini-Johansson
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Avenue, WIMRII, Madison, WI 53705, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin - Madison, 777 Highland Avenue, Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
2
|
0.1% RGN-259 (Thymosin ß4) Ophthalmic Solution Promotes Healing and Improves Comfort in Neurotrophic Keratopathy Patients in a Randomized, Placebo-Controlled, Double-Masked Phase III Clinical Trial. Int J Mol Sci 2022; 24:ijms24010554. [PMID: 36613994 PMCID: PMC9820614 DOI: 10.3390/ijms24010554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022] Open
Abstract
We determined the efficacy and safety of 0.1% RGN-259 ophthalmic solution (containing the regenerative protein thymosin ß4) in promoting the healing of persistent epithelial defects in patients with Stages 2 and 3 neurotrophic keratopathy. Complete healing occurred after 4 weeks in 6 of the 10 RGN-259-treated subjects and in 1 of the 8 placebo-treated subjects (p = 0.0656), indicating a strong efficacy trend. Additional efficacy was seen in the significant healing (p = 0.0359) with no recurrent defects observed at day 43, two weeks after cessation of treatment, while the one healed placebo-treated subject at day 28 suffered a recurrence at day 43. The Mackie classification disease stage improved in the RGN-259-treated group at Days 29, 36, and 43 (p = 0.0818, 0.0625, and 0.0467, respectively). Time to complete healing also showed a trend towards efficacy (p = 0.0829, Kaplan-Meier) with 0.1% RGN-259. RGN-259-treated subjects had significant improvements at multiple time points in ocular discomfort, foreign body sensation, and dryness which were not seen in the placebo group. No significant adverse effects were observed. In summary, the use of 0.1% RGN-259 promotes rapid healing of epithelial defects in neurotrophic keratopathy, improves ocular comfort, and is safe for treating this challenging population of patients.
Collapse
|
3
|
Guo W, Hu Z. SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling. Immunopharmacol Immunotoxicol 2022; 45:203-212. [PMID: 36226860 DOI: 10.1080/08923973.2022.2134789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Sepsis is the most common cause of death in intensive care unit. Moreover, sepsis is the leading cause of acute lung injury (ALI). Serine-arginine protein kinase 1 (SRPK1) was demonstrated to promote the development of ALI. However, the potentials of SRPK1 in sepsis-induced ALI are still unknown. This study aimed to investigate the potentials of SRPK1 in sepsis-induced ALI and the underlying mechanisms. METHODS Cecal ligation and puncture (CLP) was performed to establish sepsis-induced ALI model in vivo. Primary human pulmonary microvascular endothelial cells (HPMECs) were exposed to lipopolysaccharide (LPS) to construct sepsis-induced ALI model in vitro. Gene expression was detected using western blot and qRT-PCR. The interaction between forkhead box O3 (FOXO3) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was detected using luciferase and Chromatin immunoprecipitation (ChIP) assay. Cellular functions were CCK-8, colony formation, PI staining, and flow cytometry assay. RESULTS SRPK1 was downregulated in patients with sepsis-induced ALI. Overexpression of SRPK1 suppressed the pyroptosis of HPMECs as well as promoted cell proliferation. Additionally, SRPK1 overexpression alleviated sepsis-induced ALI in vivo. SRPK1 activated phosphatidylinositol3-kinase (PI3K) signaling pathways. Blocking the activation of PI3K degraded the cellular functions of HPMECs. Moreover, FOXO3 transcriptionally inactivated NLRP3 and suppressed its mRNA and protein expression. CONCLUSION Taken together, SRPK1 suppressed sepsis-induced ALI via regulating PI3K/AKT/FOXO3/NLRP3 signaling. SRPK1 may be the potential biomarker for sepsis-induced ALI.
Collapse
Affiliation(s)
- Wei Guo
- Department of Medicine, Soochow University, Shizi Street, Gusu District, Suzhou, Jiangsu 215006, China.,Emergency Department, The first affiliated hospital of JinZhou Medical University, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning 121000, China
| | - Zhansheng Hu
- Critical Care Medicine Department, The first affiliated hospital of JinZhou Medical University, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning 121000, China
| |
Collapse
|
4
|
Zhang A, Zou Y, Xu Q, Tian S, Wang J, Li Y, Dong R, Zhang L, Jiang J, Wang L, Tao K, Meng Z, Liu Y. Investigation of the Pharmacological Effect and Mechanism of Jinbei Oral Liquid in the Treatment of Idiopathic Pulmonary Fibrosis Using Network Pharmacology and Experimental Validation. Front Pharmacol 2022; 13:919388. [PMID: 35784749 PMCID: PMC9240387 DOI: 10.3389/fphar.2022.919388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Overview: Idiopathic pulmonary fibrosis (IPF) is a disease caused by many factors, eventually resulting in lung function failure. Jinbei oral liquid (JBOL) is a traditional Chinese clinical medicine used to treat pulmonary diseases. However, the pharmacological effects and mechanism of the action of JBOL on IPF remain unclear. This study investigated the protective effects and mechanism of the action of JBOL on IPF using network pharmacology analysis, followed by in vivo and in vitro experimental validation. Methods: The components of JBOL and their targets were screened using the TCMSP database. IPF-associated genes were obtained using DisGeNET and Drugbank. The common targets of JBOL and IPF were identified with the STRING database, and a protein-protein interaction (PPI) network was constructed. GO and KEGG analyses were performed. Sprague-Dawley rats were injected with bleomycin (BLM) to establish an IPF model and treated orally with JBOL at doses of 5.4, 10.8, and 21.6 ml/kg. A dose of 54 mg/kg of pirfenidone was used as a control. All rats were treated for 28 successive days. Dynamic pulmonary compliance (Cdyn), minute ventilation volume (MVV), vital capacity (VC), and lung resistance (LR) were used to evaluate the efficacy of JBOL. TGF-β-treated A549 cells were exposed to JBOL, and epithelial-to-mesenchymal transition (EMT) changes were assessed. Western blots were performed. Results: Two hundred seventy-eight compounds and 374 targets were screened, and 103 targets related to IPF were identified. Core targets, including MAPK1 (ERK2), MAPK14 (p38), JUN, IL-6, AKT, and others, were identified by constructing a PPI network. Several pathways were involved, including the MAPK pathway. Experimentally, JBOL increased the levels of the pulmonary function indices (Cdyn, MVV, and VC) in a dose-dependent manner and reduced the RL level in the BLM-treated rats. JBOL increased the epithelial marker E-cadherin and suppressed the mesenchymal marker vimentin expression in the TGF-β-treated A549 cells. The suppression of ERK1/2, JNK, and p38 phosphorylation by JBOL was validated. Conclusion: JBOL had therapeutic effects against IPF by regulating pulmonary function and EMT through a systemic network mechanism, thus supporting the need for future clinical trials of JBOL.
Collapse
Affiliation(s)
- Aijun Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yixuan Zou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingcui Xu
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renchao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangzong Zhang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Juanjuan Jiang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Lili Wang
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Kai Tao
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Zhaoqing Meng
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Yanqiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|