1
|
Li G, Fang X, Liu Y, Lu X, Liu Y, Li Y, Zhao Z, Liu B, Yang R. Lipid Regulatory Element Interact with CD44 on Mitochondrial Bioenergetics in Bovine Adipocyte Differentiation and Lipometabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17481-17498. [PMID: 39072486 DOI: 10.1021/acs.jafc.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The CD44 gene is a critical factor in animal physiological processes and has been shown to affect insulin resistance and fat accumulation in mammals. Nevertheless, little research has been conducted on its precise functions in lipid metabolism and adipogenic differentiation in beef cattle. This study analyzed the expression of CD44 and miR-199a-3p during bovine preadipocyte differentiation. The luciferase reporter assay demonstrated that CD44 was a direct target of miR-199a-3p. Increased accumulation of lipid droplets and triglyceride levels, altered fatty acid metabolism, and accelerated preadipocyte differentiation were all caused by the upregulation of miR-199a-3p or a reduction in CD44 expression. CD44 knockdown upregulated the expression of adipocyte-specific genes (LPL and FABP4) and altered the levels of lipid metabolites (SOPC, l-arginine, and heptadecanoic acid). Multiomics highlights enriched pathways involved in energy metabolism (MAPK, cAMP, and calcium signaling) and shifts in mitochondrial respiration and glycolysis, indicating that CD44 plays a regulatory role in lipid metabolism. The findings show that intracellular lipolysis, glycolysis, mitochondrial respiration, fat deposition, and lipid droplet composition are all impacted by miR-199a-3p, which modulates CD44 in bovine adipocytes.
Collapse
Affiliation(s)
- Guanghui Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Xibi Fang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yinuo Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Xin Lu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 1 Haida Road, Zhanjiang, Guangdoong 524000, People's Republic of China
| | - Boqun Liu
- College of Food Science and Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, People's Republic of China
| | - Runjun Yang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
2
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
3
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Koutela A, Loudos G, Rouchota M, Kletsas D, Karameris A, Vilaras G, Zografos GC, Myoteri D, Dougenis D, Papalois AE. Mesenchymal Stem Cell Transplantation Has a Regenerative Effect in Ischemic Myocardium: An Experimental Rat Model Evaluated by SPECT-CT Assessment. Diagnostics (Basel) 2024; 14:401. [PMID: 38396441 PMCID: PMC10888262 DOI: 10.3390/diagnostics14040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Translational perspective: Ischemic heart disease remains a major medical problem with high mortality rates. Beside the great efforts devoted to research worldwide and the use of numerous experimental models, an absolute understanding of myocardial infarction and tissue loss has not yet been achieved. Furthermore, the regeneration of myocardial tissue and the improvement of myocardial activity after ischemia is one of the major areas of interest in the medical (and especially cardiovascular) community. In a novel experimental rat model, the beneficial effect of mesenchymal stem cell transplantation (MSCT) in a surgically induced ischemic myocardium was documented. From a clinical perspective, this work supports the surgical administration of MSCT in the infarcted area during coronary artery bypass surgery. AIMS The regeneration of myocardial tissue and the improvement of myocardial activity after ischemia is one of the major areas of interest in cardiovascular research. We developed a novel experimental rat model and used it to examine the effect of mesenchymal stem cell transplantation (MSCT) on myocardial ischemia evaluated by SPECT-CT and immunohistochemistry. METHODS AND RESULTS An open thoracotomy took place for forty adult female Wistar rats with (n = 30) or without (n = 10) surgical ligation of the left anterior descending coronary artery (LAD) in order to cause myocardial ischemia. Myocardial viability was evaluated via SPECT/CT 7 days before surgery, as well as at 7 and 14 days post-surgery. At day 0, 15 animals received homologous stem cells injected at the ischemic myocardium area. A SPECT/CT evaluation showed decreased activity of the myocardial cells in the left ventricle one week post-infarction. Regeneration of the ischemic myocardium fifteen days post-infarction was recorded only in animals subjected to stem cell transplantation. These findings were also confirmed by histology and immunohistochemical analysis, with the significantly higher expression of GATA4 and Nkx2.5. CONCLUSIONS The positive effect of mesenchymal stem cell transplantation in the ischemic myocardium was recorded. The application of SPECT-CT allowed a clear evaluation of both the quality and quantity of the living myocardium post-infarction, leading to a new approach in the research of cardiovascular diseases. From a clinical perspective, MSCT may be beneficial when accompanied by myocardial revascularization procedures.
Collapse
Affiliation(s)
- Antonella Koutela
- 1st Department of Propaedeutic Surgery, Hippokratio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.C.Z.); (A.E.P.)
- Department of Cardiac Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Department of Thoracic Surgery, Red Cross Hospital, 11527 Athens, Greece
- Experimental, Educational and Research Centre ELPEN, ELPEN, 11527 Athens, Greece
| | - George Loudos
- BIOMTECH Laboratories, 15341 Athens, Greece; (G.L.); (M.R.)
| | | | - Dimitrios Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, NCSR “Demokritos”, 15341 Athens, Greece;
| | - Andreas Karameris
- Department of Pathology, NIMTS Hospital, 11521 Athens, Greece; (A.K.); (G.V.)
| | - George Vilaras
- Department of Pathology, NIMTS Hospital, 11521 Athens, Greece; (A.K.); (G.V.)
| | - George C. Zografos
- 1st Department of Propaedeutic Surgery, Hippokratio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.C.Z.); (A.E.P.)
| | - Despoina Myoteri
- Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Dimitrios Dougenis
- Department of Cardiac Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Apostolos E. Papalois
- 1st Department of Propaedeutic Surgery, Hippokratio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.C.Z.); (A.E.P.)
- Experimental, Educational and Research Centre ELPEN, ELPEN, 11527 Athens, Greece
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
5
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|