1
|
Tejchman W, Kołodziej P, Kalinowska-Tłuścik J, Nitek W, Żuchowski G, Bogucka-Kocka A, Żesławska E. Discovery of Cinnamylidene Derivative of Rhodanine with High Anthelmintic Activity against Rhabditis sp. Molecules 2022; 27:2155. [PMID: 35408557 PMCID: PMC9000350 DOI: 10.3390/molecules27072155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of parasitic infections requires the application of chemotherapy. In view of increasing resistance to currently in-use drugs, there is a constant need to search for new compounds with anthelmintic activity. A series of 16 cinnamylidene derivatives of rhodanine, including newly synthesized methoxy derivatives (1-11) and previously obtained chloro, nitro, and diethylamine derivatives (12-16), was investigated towards anthelmintic activity. Compounds (1-16) were evaluated against free-living nematodes of the genus Rhabditis sp. In the tested group of rhodanine derivatives, only compound 2 shows very high biological activity (LC50 = 0.93 µg/µL), which is higher than the reference drug albendazole (LC50 = 19.24 µg/µL). Crystal structures of two compounds, active 2 and inactive 4, were determined by the X-ray diffraction method to compare molecular geometry and search for differences responsible for observed biological activity/inactivity. Molecular modelling and selected physicochemical properties prediction were performed to assess the potential mechanism of action and applied in the search for an explanation as to why amongst all similar compounds only one is active. We can conclude that the tested compound 2 can be further investigated as a potential anthelmintic drug.
Collapse
Affiliation(s)
- Waldemar Tejchman
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland;
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (P.K.); (A.B.-K.)
| | | | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (J.K.-T.); (W.N.)
| | - Grzegorz Żuchowski
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (P.K.); (A.B.-K.)
| | - Ewa Żesławska
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland;
| |
Collapse
|
2
|
Costa Júnior DB, Araújo JSC, Oliveira LDM, Neri FSM, Moreira POL, Taranto AG, Fonseca AL, Varotti FDP, Leite FHA. A novel antiplasmodial compound: integration of in silico and in vitro assays. J Biomol Struct Dyn 2021; 40:6295-6307. [PMID: 33554762 DOI: 10.1080/07391102.2021.1882339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Malaria is a disease caused by Plasmodium genus. which P. falciparum is responsible for the most severe form of the disease, cerebral malaria. In 2018, 405,000 people died of malaria. Antimalarial drugs have serious adverse effects and limited efficacy due to multidrug-resistant strains. One way to overcome these limitations is the use of computational approaches for prioritizing candidates to phenotypic assays and/or in vitro assays against validated targets. Plasmodium falciparum Enoyl-ACP reductase (PfENR) is noteworthy because it catalyzes the rate-limiting step of the biosynthetic pathway of fatty acid. Thus, the study aimed to identify potential PfENR inhibitors by ligand (2D molecular similarity and pharmacophore models) and structure-based virtual screening (molecular docking). 2D similarity-based virtual screening using Tanimoto Index (> 0.45) selected 29,236 molecules from natural products subset available in ZINC database (n = 181,603). Next, 10 pharmacophore models for PfENR inhibitors were generated and evaluated based on the internal statistical parameters from GALAHAD™ and ROC/AUC curve. These parameters selected a suitable pharmacophore model with one hydrophobic center and two hydrogen bond acceptors. The alignment of the filtered molecules on best pharmacophore model resulted in the selection of 10,977 molecules. These molecules were directed to the docking-based virtual screening by AutoDock Vina 1.1.2 program. These strategies selected one compound to phenotypic assays against parasite. ZINC630259 showed EC50 = 0.12 ± 0.018 µM in antiplasmodial assays and selective index similar to other antimalarial drugs. Finally, MM/PBSA method showed stability of molecule within PfENR binding site (ΔGbinding=-57.337 kJ/mol).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Bacelar Costa Júnior
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Larissa de Mattos Oliveira
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Flávio Simas Moreira Neri
- Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Alex Gutterres Taranto
- Laboratório de Bioinformática e Desenho de Fármacos, Universidade Federal de São João Del-Rei, Feira de Santana, Brazil
| | - Amanda Luisa Fonseca
- Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Feira de Santana, Brazil
| | - Fernando de Pilla Varotti
- Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Feira de Santana, Brazil
| | - Franco Henrique Andrade Leite
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Laboratório de Qumioinformática e Avaliação Biológica, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
3
|
Silva AR, Moraes BPT, Gonçalves-de-Albuquerque CF. Mediterranean Diet: Lipids, Inflammation, and Malaria Infection. Int J Mol Sci 2020; 21:ijms21124489. [PMID: 32599864 PMCID: PMC7350014 DOI: 10.3390/ijms21124489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet (MedDiet) consists of consumption of vegetables and healthy oils and have beneficial effects on metabolic and inflammatory diseases. Our goal here is to discuss the role of fatty acid content in MedDiet, mostly omega-3, omega-6, and omega-9 on malaria. Malaria affects millions of people around the globe. The parasite Plasmodium causes the disease. The metabolic and inflammatory alterations in the severe forms have damaging consequences to the host. The lipid content in the MedDiet holds anti-inflammatory and pro-resolutive features in the host and have detrimental effects on the Plasmodium. The lipids from the diet impact the balance of pro- and anti-inflammation, thus, lipids intake from the diet is critical to parasite elimination and host tissue damage caused by an immune response. Herein, we go into the cellular and molecular mechanisms and targets of the MedDiet fatty acids in the host and the parasite, reviewing potential benefits of the MedDiet, on inflammation, malaria infection progression, and clinical outcome.
Collapse
Affiliation(s)
- Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| | - Bianca P. T. Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, UNIRIO, Rio de Janeiro 20210-010, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| |
Collapse
|
4
|
Khaldoun K, Safer A, Boukabcha N, Dege N, Ruchaud S, Souab M, Bach S, Chouaih A, Saidi-Besbes S. Synthesis and evaluation of new isatin-aminorhodanine hybrids as PIM1 and CLK1 kinase inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Rocha-Roa C, Molina D, Cardona N. A Perspective on Thiazolidinone Scaffold Development as a New Therapeutic Strategy for Toxoplasmosis. Front Cell Infect Microbiol 2018; 8:360. [PMID: 30386743 PMCID: PMC6198644 DOI: 10.3389/fcimb.2018.00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Toxoplasma gondii is one of the most successful parasites due to its ability to infect a wide variety of warm-blooded animals. It is estimated that one-third of the world's population is latently infected. The generic therapy for toxoplasmosis has been a combination of antifolates such as pyrimethamine or trimethoprim with either sulfadiazine or antibiotics such as clindamycin with a combination with leucovorin to prevent hematologic toxicity. This therapy shows limitations such as drug intolerance, low bioavailability or drug resistance by the parasite. There is a need for the development of new molecules with the capacity to block any stage of the parasite's life cycle in humans or in a different type of hosts. Heterocyclic compounds are promissory drugs due to its reported biological activity; for this reason, thiazolidinone and its derivatives are presented as a new alternative not only for its inhibitory activity against the parasite but also for its high selectivity-level with high therapeutic index. Thiazolidinones are an important scaffold known to be associated with anticancer, antibacterial, antifungal, antiviral, antioxidant, and antidiabetic activities. The molecule possesses an imidazole ring that has been described as an antiprotozoal agent with antiparasitic properties and less toxicity. Thiazolidinone derivatives have been reportedly as building blocks in organic chemistry and as scaffolds for drug discovery. Here we present a perspective of how structural modifications of the thiazolidinone core could generate new compounds with high anti-parasitic effect and less toxic results.
Collapse
Affiliation(s)
- Cristian Rocha-Roa
- Centre for Biomedical Research CIBM, University of Quindío, Armenia, Colombia
| | - Diego Molina
- Centre for Biomedical Research CIBM, University of Quindío, Armenia, Colombia
| | - Néstor Cardona
- Centre for Biomedical Research CIBM, University of Quindío, Armenia, Colombia.,Dentistry Faculty, University Antonio Nariño, Armenia, Colombia
| |
Collapse
|
6
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
7
|
Sharma D, Soni R, Rai P, Sharma B, Bhatt TK. Relict plastidic metabolic process as a potential therapeutic target. Drug Discov Today 2017; 23:134-140. [PMID: 28987288 DOI: 10.1016/j.drudis.2017.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/03/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
The alignment of the evolutionary history of parasites with that of plants provides a different panorama in the drug development process. The housing of different metabolic processes, essential for parasite survival, adds to the indispensability of the apicoplast. The different pathways responsible for fueling the apicoplast and parasite offer a myriad of proteins responsible for the apicoplast function. The studies emphasizing the target-based approaches might help in the discovery of antimalarials. The different putative drug targets and their roles are highlighted. In addition, the origin of the apicoplast and metabolic processes are reviewed and the different drugs acting upon the enzymes of the apicoplast are discussed.
Collapse
Affiliation(s)
- Drista Sharma
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Rajasthan 305801, India
| | - Rani Soni
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Rajasthan 305801, India
| | - Praveen Rai
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Rajasthan 305801, India
| | - Bhaskar Sharma
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Rajasthan 305801, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Rajasthan 305801, India.
| |
Collapse
|
8
|
Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 2015; 199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
|
9
|
Effect of degree of unsaturation of fatty acids on the activity of FabI (enoyl-acyl carrier protein reductase) enzyme from Plasmodium falciparum: an enzoinformatics study. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Zinglé C, Tritsch D, Grosdemange-Billiard C, Rohmer M. Catechol–rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg Med Chem 2014; 22:3713-9. [DOI: 10.1016/j.bmc.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/27/2022]
|
11
|
Integrating molecular docking, CoMFA analysis, and machine-learning classification with virtual screening toward identification of novel scaffolds as Plasmodium falciparum enoyl acyl carrier protein reductase inhibitor. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0910-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Neves BJ, Bueno RV, Braga RC, Andrade CH. Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches. Bioorg Med Chem Lett 2013; 23:2436-41. [DOI: 10.1016/j.bmcl.2013.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 11/16/2022]
|
13
|
Qidwai T, Khan F. Antimalarial Drugs and Drug Targets Specific to Fatty Acid Metabolic Pathway of Plasmodium falciparum. Chem Biol Drug Des 2012; 80:155-72. [DOI: 10.1111/j.1747-0285.2012.01389.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|