1
|
Ma H, Stanford D, Freeman WM, Ding XQ. Transcriptomic Analysis Reveals That Excessive Thyroid Hormone Signaling Impairs Phototransduction and Mitochondrial Bioenergetics and Induces Cellular Stress in Mouse Cone Photoreceptors. Int J Mol Sci 2024; 25:7435. [PMID: 39000540 PMCID: PMC11242393 DOI: 10.3390/ijms25137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid hormone (TH) plays an essential role in cell proliferation, differentiation, and metabolism. Experimental and clinical studies have shown a potential association between TH signaling and retinal degeneration. The suppression of TH signaling protects cone photoreceptors in mouse models of retinal degeneration, whereas excessive TH signaling induces cone degeneration, manifested as reduced light response and a loss of cones. This work investigates the genes/transcriptomic alterations that might be involved in TH-induced cone degeneration in mice using single-cell RNA sequencing (scRNAseq) analysis. One-month-old C57BL/6 mice received triiodothyronine (T3, 20 µg/mL in drinking water) for 4 weeks as a model of hyperthyroidism/excessive TH signaling. At the end of the experiments, retinal cells were dissociated, and cell viability was analyzed before being subjected to scRNAseq. The resulting data were analyzed using the Seurat package and visualized using the Loupe browser. Among 155,866 single cells, we identified 14 cell clusters, representing various retinal cell types, with rod and cone clusters comprising 76% and 4.1% of the total cell population, respectively. Cone cluster transcriptomes demonstrated the most alterations after the T3 treatment, with 450 differentially expressed genes (DEGs), accounting for 38.5% of the total DEGs. Statistically significant changes in the expression of genes in the cone cluster revealed that phototransduction and oxidative phosphorylation were impaired after the T3 treatment, along with mitochondrial dysfunction. A pathway analysis also showed the activation of the sensory neuronal/photoreceptor stress pathways after the T3 treatment. Specifically, the eukaryotic initiation factor-2 signaling pathway and the cAMP response element-binding protein signaling pathway were upregulated. Thus, excessive TH signaling substantially affects cones at the transcriptomic level. The findings from this work provide an insight into how excessive TH signaling induces cone degeneration.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA
| | - David Stanford
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 553, Oklahoma, OK 73104, USA
| |
Collapse
|
2
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
3
|
Sagliocchi S, Restolfer F, Cossidente A, Dentice M. The key roles of thyroid hormone in mitochondrial regulation, at interface of human health and disease. J Basic Clin Physiol Pharmacol 2024; 35:231-240. [PMID: 39023546 PMCID: PMC11522957 DOI: 10.1515/jbcpp-2024-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Mitochondria are highly plastic and dynamic organelles long known as the powerhouse of cellular bioenergetics, but also endowed with a critical role in stress responses and homeostasis maintenance, supporting and integrating activities across multifaced cellular processes. As a such, mitochondria dysfunctions are leading causes of a wide range of diseases and pathologies. Thyroid hormones (THs) are endocrine regulators of cellular metabolism, regulating intracellular nutrients fueling of sugars, amino acids and fatty acids. For instance, THs regulate the balance between the anabolism and catabolism of all the macro-molecules, influencing energy homeostasis during different nutritional conditions. Noteworthy, not only most of the TH-dependent metabolic modulations act via the mitochondria, but also THs have been proved to regulate the mitochondrial biosynthesis, dynamics and function. The significance of such an interplay is different in the context of specific tissues and strongly impacts on cellular homeostasis. Thus, a comprehensive understanding of THs-dependent mitochondrial functions and dynamics is required to develop more precise strategies for targeting mitochondrial function. Herein, we describe the mechanisms of TH-dependent metabolic regulation with a focus on mitochondrial action, in different tissue contexts, thus providing new insights for targeted modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Federica Restolfer
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Alessandro Cossidente
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
4
|
Liu X, Wang Y, Ma L, Wang D, Peng Z, Mao Z. High prevalence of erectile dysfunction in men with hyperthyroidism: a meta-analysis. BMC Endocr Disord 2024; 24:58. [PMID: 38689308 PMCID: PMC11059661 DOI: 10.1186/s12902-024-01585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/04/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the association between hyperthyroidism and the risk of developing erectile dysfunction (ED). METHODS A comprehensive search of multiple databases, including PubMed, Embase, Cochrane, and Web of Science, was conducted to identify relevant studies investigating the relationship between hyperthyroidism and ED in men. The quality of the included studies was assessed using the Newcastle‒Ottawa Quality Rating Scale, and a meta-analysis was performed using Stata 16.0 and RevMan 5.3 software. RESULTS A total of four papers encompassing 25,519 study subjects were included in the analysis. Among these, 6,429 individuals had hyperthyroidism, while 19,090 served as controls. The overall prevalence of ED in patients with hyperthyroidism was determined to be 31.1% (95% CI 0.06-0.56). In patients with uncomplicated hyperthyroidism, the incidence of ED was 21.9% (95% CI 0.05-0.38). The combined odds ratio (OR) for the four studies was 1.73 (OR: 1.73; 95% CI [1.46-2.04]; p < .00001). CONCLUSION Our findings demonstrate a higher incidence of ED in patients with hyperthyroidism. These results provide valuable information for healthcare professionals and can facilitate discussions surrounding appropriate treatment options for ED in patients with hyperthyroidism.
Collapse
Affiliation(s)
- Xiaowen Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care, Hunan Normal University, Changsha, China.
| | - Yanling Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care, Hunan Normal University, Changsha, China
| | - Li Ma
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care, Hunan Normal University, Changsha, China
| | - Danhui Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care, Hunan Normal University, Changsha, China
| | - Zhihong Peng
- College of Health Science and Engineering, Hubei University, Wuhan, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care, Hunan Normal University, Changsha, China.
| |
Collapse
|
5
|
Olszewska AM, Nowak JI, Król O, Flis D, Żmijewski MA. Different impact of vitamin D on mitochondrial activity and morphology in normal and malignant keratinocytes, the role of genomic pathway. Free Radic Biol Med 2024; 210:286-303. [PMID: 38040270 DOI: 10.1016/j.freeradbiomed.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Oliwia Król
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Damian Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland.
| |
Collapse
|
6
|
Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev 2024; 93:102145. [PMID: 38030089 DOI: 10.1016/j.arr.2023.102145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The theory that oxidative damage caused by mitochondrial free radicals leads to aging has brought mitochondria into the forefront of aging research. Psychological stress that encompasses many different experiences and exposures across the lifespan has been identified as a catalyst for accelerated aging. Mitochondria, known for their dynamic nature and adaptability, function as a highly sensitive stress sensor and central hub in the process of accelerated aging. In this review, we explore how mitochondria as sensors respond to psychological stress and contribute to the molecular processes in accelerated aging by viewing mitochondria as hormonal, mechanosensitive and immune suborganelles. This understanding of the key role played by mitochondria and their close association with accelerated aging helps us to distinguish normal aging from accelerated aging, correct misconceptions in aging studies, and develop strategies such as exercise and mitochondria-targeted nutrients and drugs for slowing down accelerated aging, and also hold promise for prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Sabatino L. Nrf2-Mediated Antioxidant Defense and Thyroid Hormone Signaling: A Focus on Cardioprotective Effects. Antioxidants (Basel) 2023; 12:1177. [PMID: 37371907 DOI: 10.3390/antiox12061177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Thyroid hormones (TH) perform a plethora of actions in numerous tissues and induce an overall increase in metabolism, with an augmentation in energy demand and oxygen expenditure. Oxidants are required for normal thyroid-cell proliferation, as well as for the synthesis of the main hormones secreted by the thyroid gland, triiodothyronine (T3) and thyroxine (T4). However, an uncontrolled excess of oxidants can cause oxidative stress, a major trigger in the pathogenesis of a broad spectrum of diseases, including inflammation and cancer. In particular, oxidative stress is implicated in both hypo- and hyper-thyroid diseases. Furthermore, it is important for the TH system to rely on efficient antioxidant defense, to maintain balance, despite sustained tissue exposure to oxidants. One of the main endogenous antioxidant responses is the pathway centered on the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present review is to explore the multiple links between Nrf2-related pathways and various TH-associated conditions. The main aspect of TH signaling is described and the role of Nrf2 in oxidant-antioxidant homeostasis in the TH system is evaluated. Next, the antioxidant function of Nrf2 associated with oxidative stress induced by TH pathological excess is discussed and, subsequently, particular attention is given to the cardioprotective role of TH, which also acts through the mediation of Nrf2. In conclusion, the interaction between Nrf2 and most common natural antioxidant agents in altered states of TH is briefly evaluated.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
8
|
Abstract
Glucocorticoids act through the glucocorticoid receptor (GR) and exert pleiotropic effects in different cancer types. In prostate cancer cells, GR and androgen receptor (AR) share overlapping transcriptomes and cistromes. Under enzalutamide treatment, GR signaling can bypass AR activation and promote castration resistance via the expression of a subset of AR-target genes. However, GR-dependent growth under enhanced antiandrogen inhibition occurs only in a subset of primed cells. On the other hand, glucocorticoids have been used successfully in the treatment of prostate cancer for many years. In the context of AR signaling, GR competes with AR for DNA-binding and has the potential to halt the proliferation rate of prostate cancer cells. Their target genes overlap by <50% and they execute unique functions in vivo. In addition, even when AR and GR upregulate the same transcriptional target gene, the effect might not be identical in magnitude. Besides being able to drive tumor proliferation, GR is also a key player in prostate cancer cell survival. Stimulation of GR activity can undermine the effects of enhanced antiandrogen treatment, chemotherapy and radiotherapy. GR activation in prostate cancer can increase prosurvival gene expression. Identifying the full spectrum of GR activity will inform the optimal use of glucocorticosteroids in prostate cancer. It will also determine the best strategies to target the protumorigenic effects of GR.
Collapse
Affiliation(s)
- Minas Sakellakis
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States
- *Correspondence: Minas Sakellakis, Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd., Houston, TX 77030 (e-mail: )
| | - Laura Jacqueline Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States
| |
Collapse
|
9
|
Takahashi K, Kitaoka Y, Hatta H. Effects of endurance training on metabolic enzyme activity and transporter protein levels in the skeletal muscles of orchiectomized mice. J Physiol Sci 2022; 72:14. [PMID: 35768774 PMCID: PMC10717707 DOI: 10.1186/s12576-022-00839-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022]
Abstract
This study investigated whether endurance training attenuates orchiectomy (ORX)-induced metabolic alterations. At 7 days of recovery after sham operation or ORX surgery, the mice were randomized to remain sedentary or undergo 5 weeks of treadmill running training (15-20 m/min, 60 min, 5 days/week). ORX decreased glycogen concentration in the gastrocnemius muscle, enhanced phosphofructokinase activity in the plantaris muscle, and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. Mitochondrial enzyme activities and protein content in the plantaris and soleus muscles were also decreased after ORX, but preserved, in part, by endurance training. In the treadmill running test (15 m/min, 60 min) after 4 weeks of training, orchiectomized sedentary mice showed impaired exercise performance, which was restored by endurance training. Thus, endurance training could be a potential therapeutic strategy to prevent the hypoandrogenism-induced decline in muscle mitochondrial content and physical performance.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
10
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
11
|
Olszewska AM, Sieradzan AK, Bednarczyk P, Szewczyk A, Żmijewski MA. Mitochondrial potassium channels: A novel calcitriol target. Cell Mol Biol Lett 2022; 27:3. [PMID: 34979905 PMCID: PMC8903690 DOI: 10.1186/s11658-021-00299-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calcitriol (an active metabolite of vitamin D) modulates the expression of hundreds of human genes by activation of the vitamin D nuclear receptor (VDR). However, VDR-mediated transcriptional modulation does not fully explain various phenotypic effects of calcitriol. Recently a fast non-genomic response to vitamin D has been described, and it seems that mitochondria are one of the targets of calcitriol. These non-classical calcitriol targets open up a new area of research with potential clinical applications. The goal of our study was to ascertain whether calcitriol can modulate mitochondrial function through regulation of the potassium channels present in the inner mitochondrial membrane. METHODS The effects of calcitriol on the potassium ion current were measured using the patch-clamp method modified for the inner mitochondrial membrane. Molecular docking experiments were conducted in the Autodock4 program. Additionally, changes in gene expression were investigated by qPCR, and transcription factor binding sites were analyzed in the CiiiDER program. RESULTS For the first time, our results indicate that calcitriol directly affects the activity of the mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa) from the human astrocytoma (U-87 MG) cell line but not the mitochondrial calcium-independent two-pore domain potassium channel (mitoTASK-3) from human keratinocytes (HaCaT). The open probability of the mitoBKCa channel in high calcium conditions decreased after calcitriol treatment and the opposite effect was observed in low calcium conditions. Moreover, using the AutoDock4 program we predicted the binding poses of calcitriol to the calcium-bound BKCa channel and identified amino acids interacting with the calcitriol molecule. Additionally, we found that calcitriol influences the expression of genes encoding potassium channels. Such a dual, genomic and non-genomic action explains the pleiotropic activity of calcitriol. CONCLUSIONS Calcitriol can regulate the mitochondrial large-conductance calcium-regulated potassium channel. Our data open a new chapter in the study of non-genomic responses to vitamin D with potential implications for mitochondrial bioenergetics and cytoprotective mechanisms.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdańsk, 1a Dębinki, 80-211, Gdańsk, Poland.
| |
Collapse
|
12
|
Park J, Kang E, Kang S, Kim D, Kim D, Park SJ, Jhang WK. Mitochondrial gene mutations in pediatric septic shock. Pediatr Res 2021; 90:1016-1022. [PMID: 33504965 DOI: 10.1038/s41390-020-01358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/31/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND There has been a growing interest in the association between mitochondrial dysfunction and sepsis. However, most studies have focused on mitochondrial structural damage, functional aspects, or the clinical phenotypes in sepsis. The purpose of this study was to evaluate mitochondrial DNA (mtDNA) gene mutations in critically ill pediatric patients with septic shock. METHOD Thirteen patients with severe sepsis or septic shock admitted to the pediatric intensive care unit (PICU) of a tertiary children's hospital were enrolled in this prospective observational study. Clinical data from electronic medical records were obtained. Whole-blood samples were collected within 24 h of PICU admission to perform PBMC isolation, mtDNA extraction, and mtDNA sequencing using next-generation sequencing. RESULTS mtDNA sequencing revealed mutations in 9 of the 13 patients, presenting 27 point mutations overall, with 15 (55.6%) located in the locus related to adenosine triphosphate production and superoxide metabolism, including electron transport. CONCLUSION In this pilot study, significant numbers of mtDNA point mutations were detected in critically ill pediatric patients with septic shock. These mutations could provide promising evidence for mitochondrial dysfunction in sepsis and a basis for further large-scale studies. IMPACT This study is the first to examine mitochondrial DNA mutations in pediatric patients with septic shock using next-generation sequencing. A high frequency of mitochondrial DNA mutations was detected in these patients indicating an association with septic shock. This pilot study may provide a potential explanation for the association between mitochondrial dysfunction and septic shock on a genetic basis.
Collapse
Affiliation(s)
- Junsung Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dahyun Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong Jong Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Kyoung Jhang
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Shen H, Holliday M, Sheikh-Hamad D, Li Q, Tong Q, Hamad CD, Pan JS. Sirtuin-3 mediates sex differences in kidney ischemia-reperfusion injury. Transl Res 2021; 235:15-31. [PMID: 33789208 DOI: 10.1016/j.trsl.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/26/2023]
Abstract
Studies suggest that biological sex influences susceptibility to kidney diseases with males demonstrating greater risk for developing ischemic acute kidney injury (AKI). Sex-related differences in mitochondrial function and homeostasis exist, likely contributing to sexual dimorphism in kidney injury, but the mechanisms are not well characterized. Our observations reveal lower baseline expression of Sirtuin-3 (Sirt3, a major mitochondrial acetyltransferase) in the kidneys of male mice versus females. We tested the hypothesis that differential expression of kidney Sirt3 may mediate sexual dimorphism in AKI using a bilateral kidney ischemia-reperfusion injury (IRI) model and three transgenic mouse models: (1) mice with global transgenic overexpression of Sirt3; (2) mice with inducible, kidney tubule-specific Sirt3 knockdown (iKD); and (3) mice with global Sirt3 knockout. Low mitochondrial Sirt3 (mtSirt3) in males versus females is associated with development of kidney tubular epithelium vacuoles, increased mitochondrial ROS and susceptibility to IRI. Transgenic overexpression of Sirt3 in males protects against kidney IRI and development of tubular epithelium vacuoles. In both sexes, mice with partial kidney tubular epithelium-specific Sirt3 knockdown display intermediate - while global Sirt3 knockout mice display the highest susceptibility to IRI. Female Sirt3 iKD mice demonstrate decreased survival and kidney function after IRI indistinguishable from control males, abolishing the protective effects observed in females. Mechanistically, observed differences in kidney mtSirt3 are sex hormone-dependent; estradiol increases - while testosterone decreases mtSirt3 protein. Our results demonstrate that Sirt3 is an important contributor to the observed sex-related differences in IRI susceptibility, and a potential therapeutic target in the clinical management of AKI.
Collapse
Affiliation(s)
- Huiyun Shen
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Michael Holliday
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas; Renal Section and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - David Sheikh-Hamad
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas; Renal Section and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Qingtian Li
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Christopher David Hamad
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Jenny S Pan
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas; Renal Section and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas.
| |
Collapse
|
14
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
15
|
Lenaers G, Neutzner A, Le Dantec Y, Jüschke C, Xiao T, Decembrini S, Swirski S, Kieninger S, Agca C, Kim US, Reynier P, Yu-Wai-Man P, Neidhardt J, Wissinger B. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog Retin Eye Res 2021; 83:100935. [PMID: 33340656 DOI: 10.1016/j.preteyeres.2020.100935] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.
Collapse
Affiliation(s)
- Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France.
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Yannick Le Dantec
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Christoph Jüschke
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ting Xiao
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Sarah Decembrini
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Swirski
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sinja Kieninger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey; Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Ungsoo S Kim
- Kim's Eye Hospital, Seoul, South Korea; Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France; Department of Biochemistry, University Hospital of Angers, Angers, France
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - John Neidhardt
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany.
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Sharma VK, Singh TG. Navigating Alzheimer's Disease via Chronic Stress: The Role of Glucocorticoids. Curr Drug Targets 2021; 21:433-444. [PMID: 31625472 DOI: 10.2174/1389450120666191017114735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic intensifying incurable progressive disease leading to neurological deterioration manifested as impairment of memory and executive brain functioning affecting the physical ability like intellectual brilliance, common sense in patients. The recent therapeutic approach in Alzheimer's disease is only the symptomatic relief further emerging the need for therapeutic strategies to be targeted in managing the underlying silent killing progression of dreaded pathology. Therefore, the current research direction is focused on identifying the molecular mechanisms leading to the evolution of the understanding of the neuropathology of Alzheimer's disease. The resultant saturation in the area of current targets (amyloid β, τ Protein, oxidative stress etc.) has led the scientific community to rethink of the mechanistic neurodegenerative pathways and reprogram the current research directions. Although, the role of stress has been recognized for many years and contributing to the development of cognitive impairment, the area of stress has got the much-needed impetus recently and is being recognized as a modifiable menace for AD. Stress is an unavoidable human experience that can be resolved and normalized but chronic activation of stress pathways unsettle the physiological status. Chronic stress mediated activation of neuroendocrine stimulation is generally linked to a high risk of developing AD. Chronic stress-driven physiological dysregulation and hypercortisolemia intermingle at the neuronal level and leads to functional (hypometabolism, excitotoxicity, inflammation) and anatomical remodeling of the brain architecture (senile plaques, τ tangles, hippocampal atrophy, retraction of spines) ending with severe cognitive deterioration. The present review is an effort to collect the most pertinent evidence that support chronic stress as a realistic and modifiable therapeutic earmark for AD and to advocate glucocorticoid receptors as therapeutic interventions.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India.,Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab-140401, India
| |
Collapse
|
17
|
Jusic A, Salgado-Somoza A, Paes AB, Stefanizzi FM, Martínez-Alarcón N, Pinet F, Martelli F, Devaux Y, Robinson EL, Novella S. Approaching Sex Differences in Cardiovascular Non-Coding RNA Research. Int J Mol Sci 2020; 21:E4890. [PMID: 32664454 PMCID: PMC7402336 DOI: 10.3390/ijms21144890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Ana B. Paes
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Núria Martínez-Alarcón
- INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain; (A.B.P.); (N.M.-A.)
| | - Florence Pinet
- INSERM, CHU Lille, Institut Pasteur de Lille, University of Lille, U1167 F-59000 Lille, France;
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milan, Italy;
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (A.S.-S.); (F.M.S.); (Y.D.)
| | - Emma Louise Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, and INCLIVA Biomedical Research Institute, Menéndez Pelayo 4 Accesorio, 46010 Valencia, Spain
| |
Collapse
|
18
|
Sellitto A, D’Agostino Y, Alexandrova E, Lamberti J, Pecoraro G, Memoli D, Rocco D, Coviello E, Giurato G, Nassa G, Tarallo R, Weisz A, Rizzo F. Insights into the Role of Estrogen Receptor β in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12061477. [PMID: 32516978 PMCID: PMC7353068 DOI: 10.3390/cancers12061477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that play different roles in gene regulation and show both overlapping and specific tissue distribution patterns. ERβ, contrary to the oncogenic ERα, has been shown to act as an oncosuppressor in several instances. However, while the tumor-promoting actions of ERα are well-known, the exact role of ERβ in carcinogenesis and tumor progression is not yet fully understood. Indeed, to date, highly variable and even opposite effects have been ascribed to ERβ in cancer, including for example both proliferative and growth-inhibitory actions. Recently ERβ has been proposed as a potential target for cancer therapy, since it is expressed in a variety of breast cancers (BCs), including triple-negative ones (TNBCs). Because of the dependence of TNBCs on active cellular signaling, numerous studies have attempted to unravel the mechanism(s) behind ERβ-regulated gene expression programs but the scenario has not been fully revealed. We comprehensively reviewed the current state of knowledge concerning ERβ role in TNBC biology, focusing on the different signaling pathways and cellular processes regulated by this transcription factor, as they could be useful in identifying new diagnostic and therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Domenico Rocco
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Elena Coviello
- Genomix4Life, via S. Allende 43/L, 84081 Baronissi (SA), Italy;
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Italy; (A.S.); (Y.D.); (E.A.); (J.L.); (G.P.); (D.M.); (D.R.); (G.G.); (G.N.); (R.T.)
- CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (F.R.); Tel.: (39+)-089-965043 (A.W.); Tel.: (39+)-089-965221 (F.R.)
| |
Collapse
|
19
|
Ridout KK, Coe JL, Parade SH, Marsit CJ, Kao HT, Porton B, Carpenter LL, Price LH, Tyrka AR. Molecular markers of neuroendocrine function and mitochondrial biogenesis associated with early life stress. Psychoneuroendocrinology 2020; 116:104632. [PMID: 32199200 PMCID: PMC7887859 DOI: 10.1016/j.psyneuen.2020.104632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Glucocorticoid receptor gene (NR3C1) promoter methylation influences cellular expression of the glucocorticoid receptor and is a proposed mechanism by which early life stress impacts neuroendocrine function. Mitochondria are sensitive and responsive to neuroendocrine stress signaling through the glucocorticoid receptor, and recent evidence with this sample and others shows that mitochondrial DNA copy number (mtDNAcn) is increased in adults with a history of early stress. No prior work has examined the role of NR3C1 methylation in the association between early life stress and mtDNAcn alterations. METHODS Adult participants (n = 290) completed diagnostic interviews and questionnaires characterizing early stress and lifetime psychiatric symptoms. Medical conditions, active substance abuse, and prescription medications other than oral contraceptives were exclusionary. Subjects with a history of lifetime bipolar, obsessive-compulsive, or psychotic disorders were excluded; individuals with other forms of major psychopathology were included. Whole blood mtDNAcn was measured using qPCR; NR3C1 methylation was measured via pyrosequencing. Multiple regression and bootstrapping procedures tested NR3C1 methylation as a mediator of effects of early stress on mtDNAcn. RESULTS The positive association between early adversity and mtDNAcn (p = .02) was mediated by negative associations of early adversity with NR3C1 methylation (p = .02) and NR3C1 methylation with mtDNAcn (p < .001). The indirect effect involving early adversity, NR3C1 methylation, and mtDNAcn was significant (95 % CI [.002, .030]). CONCLUSIONS NR3C1 methylation significantly mediates the association between early stress and mtDNAcn, suggesting that glucocorticoid receptor signaling may be a mechanistic pathway underlying mtDNAcn alterations of interest for future longitudinal work.
Collapse
Affiliation(s)
- Kathryn K Ridout
- Departments of Psychiatry and Family Medicine, Kaiser Permanente, San Jose, CA, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Jesse L Coe
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Stephanie H Parade
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, USA; Bradley/Hasbro Children's Research Center, E. P. Bradley Hospital, East Providence, RI, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara Porton
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Linda L Carpenter
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Lawrence H Price
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
20
|
Di Florio DN, Sin J, Coronado MJ, Atwal PS, Fairweather D. Sex differences in inflammation, redox biology, mitochondria and autoimmunity. Redox Biol 2020; 31:101482. [PMID: 32197947 PMCID: PMC7212489 DOI: 10.1016/j.redox.2020.101482] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are characterized by circulating antibodies and immune complexes directed against self-tissues that result in both systemic and organ-specific inflammation and pathology. Most autoimmune diseases occur more often in women than men. One exception is myocarditis, which is an inflammation of the myocardium that is typically caused by viral infections. Sex differences in the immune response and the role of the sex hormones estrogen and testosterone are well established based on animal models of autoimmune viral myocarditis as well as in mitochondrial function leading to reactive oxygen species production. RNA viruses like coxsackievirus B3, the primary cause of myocarditis in the US, activate the inflammasome through mitochondrial antiviral signaling protein located on the mitochondrial outer membrane. Toll-like receptor 4 and the inflammasome are the primary signaling pathways that increase inflammation during myocarditis, which is increased by testosterone. This review describes what is known about sex differences in inflammation, redox biology and mitochondrial function in the male-dominant autoimmune disease myocarditis and highlights gaps in the literature and future directions.
Collapse
Affiliation(s)
- Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA.
| | - Jon Sin
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, CA, USA.
| | | | | | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA; Department of Immunology, Mayo Clinic, Jacksonville, FL, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
21
|
Varkuti BH, Liu Z, Kepiro M, Pacifico R, Gai Y, Kamenecka T, Davis RL. High-Throughput Small Molecule Screen Identifies Modulators of Mitochondrial Function in Neurons. iScience 2020; 23:100931. [PMID: 32146326 PMCID: PMC7063260 DOI: 10.1016/j.isci.2020.100931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
We developed a high-throughput assay for modulators of mitochondrial function in neurons measuring inner mitochondrial membrane potential (ΔΨm) and ATP production. The assay was used to screen a library of small molecules, which led to the identification of structural/functional classes of mitochondrial modulators such as local anesthetics, isoflavones, COXII inhibitors, adrenergic receptor blockers, and neurotransmitter system effectors. Our results show that some of the isolated compounds promote mitochondrial health, enhance oxygen consumption rate, and protect neurons against toxic insults found in the cellular environment of Alzheimer disease. These studies offer a set of compounds that may provide efficacy in protecting the mitochondrial system in neurodegenerative disorders.
Collapse
Affiliation(s)
- Boglarka H Varkuti
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ze Liu
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Miklos Kepiro
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Rodrigo Pacifico
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Yunchao Gai
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ted Kamenecka
- Department of Molecular Medicine, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
22
|
Jankauskaitė E, Ambroziak AM, Hajieva P, Ołdak M, Tońska K, Korwin M, Bartnik E, Kodroń A. Testosterone increases apoptotic cell death and decreases mitophagy in Leber's hereditary optic neuropathy cells. J Appl Genet 2020; 61:195-203. [PMID: 32157656 PMCID: PMC7148285 DOI: 10.1007/s13353-020-00550-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
Leber’s hereditary optic neuropathy (LHON) is one of the most common mitochondrial diseases caused by point mutations in mitochondrial DNA (mtDNA). The majority of diagnosed LHON cases are caused by a point mutation at position 11,778 in the mitochondrial genome. LHON mainly affects young men in their 20s and 30s with usually poor visual prognosis. It remains unexplained why men are more likely to develop the disease and why only retinal ganglion cells are affected. In this study, a cell model was used for the first time to investigate the influence of testosterone on the cell death mechanism apoptosis and on an autophagy/mitophagy. Cells with m.11778G > A were found to be significantly more susceptible to nucleosome formation and effector caspase activation that serve as hallmarks of apoptotic cell death. Cells having this mutation expressed higher levels of mitophagic receptors BNIP3 and BNIP3L/Nix in a medium with testosterone. Moreover, cells having the mutation exhibited greater mitochondrial mass, which suggests these cells have a decreased cell survival. The observed decrease in cell survival was supported by the observed increase in apoptotic cell death. Autophagy was analyzed after inhibition with Bafilomycin A1 (Baf A1). The results indicate impairment in autophagy in LHON cells due to lower autophagic flux supported by observed lower levels of autophagosome marker LC3-II. The observed impaired lower autophagic flux in mutant cells correlated with increased levels of BNIP3 and BNIP3L/Nix in mutant cells.
Collapse
Affiliation(s)
- Elona Jankauskaitė
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Anna Maria Ambroziak
- Faculty of Physics, University of Warsaw, 5 Pasteur Str., 02-093, Warsaw, Poland
| | - Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55099, Mainz, Germany
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Str., 02-042, Warsaw, Poland.,Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 5 Chałubińskiego Str., 02-004, Warsaw, Poland
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland
| | - Magdalena Korwin
- Department of Ophthalmology, Medical University of Warsaw, 13 Sierakowskiego Str., 03-709, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland
| | - Agata Kodroń
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Str., 02-106, Warsaw, Poland
| |
Collapse
|
23
|
Jahani M, Shahlaei M, Norooznezhad F, Miraghaee SS, Hosseinzadeh L, Moasefi N, Khodarahmi R, Farokhi A, Mahnam A, Mansouri K. TSGA10 Over Expression Decreases Metastasic and Metabolic Activity by Inhibiting HIF-1 in Breast Cancer Cells. Arch Med Res 2020; 51:41-53. [PMID: 32086108 DOI: 10.1016/j.arcmed.2019.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2019] [Revised: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS HIF-1 is an important factor that play critical roles in metabolic and metastasis activity of cancer cells. HIF-1 activity can have regulated by TSGA10. Although decreased metastatic activity of cancer cells through TSGA10 inhibitory effect on HIF-1 have already been demonstrated, changes in cancer metabolism and its impact on metastasis in breast cancer is still not determined. So, we aimed to investigate TSGA10 overexpression effect on breast cancer metabolism as well as metastasis. METHODS TSGA10 vector was designed and stable transfected into MCF-7 cells. The efficiency of transfection was assessed by Real-time PCR and western blot. After HIF-1 induction at high and low glucose conditions, cell proliferation, cell cycle profile, metabolic and metastasis activity of cells were assessed. Furthermore, biomarker expressions of ER, PR, HER2, Ki67 and E-cadherin in cancer cells were measured. RESULTS Our results showed decrease of cell proliferation and cell cycle arrest in G2/M phase. Reduce expression of GLUT1, lactate production and reactive oxygen species (ROS) below their basal level indicated decreased metabolic activity. Furthermore, metastatic activity reduction was shown by decrease expression of different involve genes in metastasis, protelytic activity of MMOLP-2/9, carbonic anhydrase (CA) IX activity and increase of wound closure. Moreover, except for E-cadherin, expression of ER, PR, HER2 and Ki67 was declined in cells. CONCLUSION Our findings indicated that TSGA10 overexpression could decrease the metastatic and metabolic activity of cancer cells through its inhibitory effect on HIF-1 activity. Therefore, TSGA10 could be considered in the research for therapeutic candidates in cancer.
Collapse
Affiliation(s)
- Mozhgan Jahani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Sayyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Leila Hosseinzadeh
- Department of Toxicology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Alireza Farokhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Azadeh Mahnam
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran; Department of Molecular Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
Dowling DK, Adrian RE. Challenges and Prospects for Testing the Mother's Curse Hypothesis. Integr Comp Biol 2020; 59:875-889. [PMID: 31225591 DOI: 10.1093/icb/icz110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
Maternal inheritance of mitochondrial DNA (mtDNA) renders selection blind to mutations whose effects are limited to males. Evolutionary theory predicts this will lead to the accumulation of a male-specific genetic load within the mitochondrial genomes of populations; that is, a pool of mutations that negatively affects male, but not female, fitness components. This principle has been termed the Mother's Curse hypothesis. While the hypothesis has received some empirical support, its relevance to natural populations of metazoans remains unclear, and these ambiguities are compounded by the lack of a clear predictive framework for studies attempting to test Mother's Curse. Here, we seek to redress this by outlining the core predictions of the hypothesis, as well as the key features of the experimental designs that are required to enable direct testing of the predictions. Our goal is to provide a roadmap for future research seeking to elucidate the evolutionary significance of the Mother's Curse hypothesis.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca E Adrian
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Tsialtas I, Gorgogietas VA, Michalopoulou M, Komninou A, Liakou E, Georgantopoulos A, Kalousi FD, Karra AG, Protopapa E, Psarra AMG. Neurotoxic effects of aluminum are associated with its interference with estrogen receptors signaling. Neurotoxicology 2020; 77:114-126. [PMID: 31945389 DOI: 10.1016/j.neuro.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Aluminum compounds have been observed in various brain regions, and their accumulation has been associated with many neurodegenerative disorders. Neurotoxic effects of aluminum are attributed to reactive oxygen species generation, induction of apoptosis and inflammatory reactions activation. Metalloestrogen activity of aluminum has also been linked to breast cancer progression and metastasis. In this study, taking into account the anti-apoptotic and anti-oxidant activities of estrogens in neuronal cells, which are mediated by estrogen receptors, the possible estrogenic activity of aluminum in SH-SY5Y neuroblastoma cells was studied. Our results showed that aluminum in the form of aluminum chlorohydrate (ACH) exhibited no effect on estrogen receptors transcriptional activation, and differential effect on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) protein levels. ACH caused reduction in ERβ protein levels, and increase in its mitochondrial localization. ACH-induced reduction in ERβ protein level may be linked, at least in part, to the ACH-induced increase in ERα protein level. This statement is based on our observations showing aluminum-induced reduction in the E2-induced increase in ERα S118 phosphorylation, in MCF-7 and SH-SH5Y cells. Phosphorylation at S118 residue is known to be associated with inhibition of the ubiquitin-induced proteolytic degradation of ERα, leading to its accumulation. Since it is known that ERα negatively regulate ERβ expression, increase in ERα, may contribute to reduction in ERβ levels and subsequent weakening of its anti-apoptotic and anti-oxidant activity, justified by the observed reduction in procaspase 9, mitochondrial cytochrome c, Bcl-2, Bcl-xL and mitochondrial thioredoxin protein level, as well as by the increase in proapoptotic BAX level, in ACH treated SH-SY5Y cells. In addition, increase in mitochondrial ERβ localization may also trigger mitochondrial metabolism, suppress biosynthetic process of gluconeogenesis, as indicated by the observed reduction in the phosphoenolpyruvate carboxykinase protein level, and eventually lead to increase in reactive oxygen species (ROS) generation, known to be implicated in aluminum induced neurodegeneration. This statement was verified by the observed ACH-induced increase in ERβ mitochondrial localization, induction of the mitochondrial membrane depolarization and increase in ROS production, in neuronal-like differentiated SH-SY5Y cells.
Collapse
Affiliation(s)
- Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Vyron A Gorgogietas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Maria Michalopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aggeliki Komninou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Eleni Liakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aikaterini G Karra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Evagelia Protopapa
- Department of Aesthetics and Cosmetology, Faculty of Health & Caring Professions, University of West Attica, Egaleo, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
26
|
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual Evolution of Cell Signaling. Int J Mol Sci 2019; 20:E3292. [PMID: 31277491 PMCID: PMC6651758 DOI: 10.3390/ijms20133292] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.
Collapse
Affiliation(s)
- Arathi Nair
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Prashant Chauhan
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Zhang Y, Zhao W, Xu H, Hu M, Guo X, Jia W, Liu G, Li J, Cui P, Lager S, Sferruzzi-Perri AN, Li W, Wu XK, Han Y, Brännström M, Shao LR, Billig H. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome. J Physiol 2019; 597:3927-3950. [PMID: 31206177 DOI: 10.1113/jp277879] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Women with polycystic ovary syndrome (PCOS) commonly suffer from miscarriage, but the underlying mechanisms remain unknown. Herein, pregnant rats chronically treated with 5α-dihydrotestosterone (DHT) and insulin exhibited hyperandrogenism and insulin resistance, as well as increased fetal loss, and these features are strikingly similar to those observed in pregnant PCOS patients. Fetal loss in our DHT+insulin-treated pregnant rats was associated with mitochondrial dysfunction, disturbed superoxide dismutase 1 and Keap1/Nrf2 antioxidant responses, over-production of reactive oxygen species (ROS) and impaired formation of the placenta. Chronic treatment of pregnant rats with DHT or insulin alone indicated that DHT triggered many of the molecular pathways leading to placental abnormalities and fetal loss, whereas insulin often exerted distinct effects on placental gene expression compared to co-treatment with DHT and insulin. Treatment of DHT+insulin-treated pregnant rats with the antioxidant N-acetylcysteine improved fetal survival but was deleterious in normal pregnant rats. Our results provide insight into the fetal loss associated with hyperandrogenism and insulin resistance in women and suggest that physiological levels of ROS are required for normal placental formation and fetal survival during pregnancy. ABSTRACT Women with polycystic ovary syndrome (PCOS) commonly suffer from miscarriage, but the underlying mechanism of PCOS-induced fetal loss during pregnancy remains obscure and specific therapies are lacking. We used pregnant rats treated with 5α-dihydrotestosterone (DHT) and insulin to investigate the impact of hyperandrogenism and insulin resistance on fetal survival and to determine the molecular link between PCOS conditions and placental dysfunction during pregnancy. Our study shows that pregnant rats chronically treated with a combination of DHT and insulin exhibited endocrine aberrations such as hyperandrogenism and insulin resistance that are strikingly similar to those in pregnant PCOS patients. Of pathophysiological significance, DHT+insulin-treated pregnant rats had greater fetal loss and subsequently decreased litter sizes compared to normal pregnant rats. This negative effect was accompanied by impaired trophoblast differentiation, increased glycogen accumulation, and decreased angiogenesis in the placenta. Mechanistically, we report that over-production of reactive oxygen species (ROS) in the placenta, mitochondrial dysfunction, and disturbed superoxide dismutase 1 (SOD1) and Keap1/Nrf2 antioxidant responses constitute important contributors to fetal loss in DHT+insulin-treated pregnant rats. Many of the molecular pathways leading to placental abnormalities and fetal loss in DHT+insulin treatment were also seen in pregnant rats treated with DHT alone, whereas pregnant rats treated with insulin alone often exerted distinct effects on placental gene expression compared to insulin treatment in combination with DHT. We also found that treatment with the antioxidant N-acetylcysteine (NAC) improved fetal survival in DHT+insulin-treated pregnant rats, an effect related to changes in Keap1/Nrf2 and nuclear factor-κB signalling. However, NAC administration resulted in fetal loss in normal pregnant rats, most likely due to PCOS-like endocrine abnormality induced by the treatment. Our results suggest that the deleterious effects of hyperandrogenism and insulin resistance on fetal survival are related to a constellation of mitochondria-ROS-SOD1/Nrf2 changes in the placenta. Our findings also suggest that physiological levels of ROS are required for normal placental formation and fetal survival during pregnancy.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Wei Zhao
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Hongfei Xu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiaozhu Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Wenyan Jia
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Guoqi Liu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Juan Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Wei Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Xiao-Ke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Yanhua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| |
Collapse
|
28
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
29
|
Mocayar Marón FJ, Ferder L, Saraví FD, Manucha W. Hypertension linked to allostatic load: from psychosocial stress to inflammation and mitochondrial dysfunction. Stress 2019; 22:169-181. [PMID: 30547701 DOI: 10.1080/10253890.2018.1542683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2023] Open
Abstract
Although a large number of available treatments and strategies, the prevalence of cardiovascular diseases continues to grow worldwide. Emerging evidence supports the notion of counteracting stress as a critical component of a comprehensive therapeutic strategy for cardiovascular disease. Indeed, an unhealthy lifestyle is a burden to biological variables such as plasma glucose, lipid profile, and blood pressure control. Recent findings identify allostatic load as a new paradigm for an integrated understanding of the importance of psychosocial stress and its impact on the development and maintenance of cardiovascular disease. Allostasis complement homeostasis and integrates behavioral and physiological mechanisms by which genes, early experiences, environment, lifestyle, diet, sleep, and physical exercise can modulate and adapt biological responses at the cellular level. For example, variability is a physiological characteristic of blood pressure necessary for survival and the allostatic load in hypertension can contribute to its related cardiovascular morbidity and mortality. Therefore, the current review will focus on the mechanisms that link hypertension to allostatic load, which includes psychosocial stress, inflammation, and mitochondrial dysfunction. We will describe and discuss new insights on neuroendocrine-immune effects linked to allostatic load and its impact on the cellular and molecular responses; the links between allostatic load, inflammation, and endothelial dysfunction; the epidemiological evidence supporting the pathophysiological origins of hypertension; and the biological embedding of allostatic load and hypertension with an emphasis on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- a Área de Química Biológica, Departamento de Morfofisiología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - León Ferder
- b Department of Pediatrics , Nephrology Division, Miller School of Medicine, University of Miami , FL , USA
| | - Fernando Daniel Saraví
- c Instituto de Fisiología, Departamento de Morfofisiología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - Walter Manucha
- d Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
- e Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) , Mendoza , Argentina
| |
Collapse
|
30
|
Bajpai P, Koc E, Sonpavde G, Singh R, Singh KK. Mitochondrial localization, import, and mitochondrial function of the androgen receptor. J Biol Chem 2019; 294:6621-6634. [PMID: 30792308 DOI: 10.1074/jbc.ra118.006727] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
Nuclear localization of androgen receptor (AR) directs transcriptional regulation of a host of genes, referred to as genomic signaling. Additionally, nonnuclear or nongenomic activities of the AR have long been described, but understanding of these activities remains elusive. Here, we report that AR is imported into and localizes to mitochondria and has a novel role in regulating multiple mitochondrial processes. Employing complementary experimental approaches of AR knockdown in AR-expressing cells and ectopic AR expression in AR-deficient cells, we demonstrate an inverse relationship between AR expression and mitochondrial DNA (mtDNA) content and transcription factor A, mitochondrial (TFAM), a regulator of mtDNA content. We show that AR localizes to mitochondria in prostate tissues and cell lines and is imported into mitochondria in vitro We also found that AR contains a 36-amino-acid-long mitochondrial localization sequence (MLS) capable of targeting a passenger protein (GFP) to the mitochondria and that deletion of the MLS abolishes the import of AR into the mitochondria. Ectopic AR expression reduced the expression of oxidative phosphorylation (OXPHOS) subunits. Interestingly, AR also controlled translation of mtDNA-encoded genes by regulating expression of multiple nuclear DNA-encoded mitochondrial ribosomal proteins. Consistent with these observations, OXPHOS supercomplexes were destabilized, and OXPHOS enzymatic activities were reduced in AR-expressing cells and restored upon AR knockdown. Moreover, mitochondrial impairment induced AR expression and increased its translocation into mitochondria. We conclude that AR localizes to mitochondria, where it controls multiple mitochondrial functions and mitonuclear communication. Our studies also suggest that mitochondria are novel players in nongenomic activities of AR.
Collapse
Affiliation(s)
| | - Emine Koc
- the Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia 25701
| | - Guru Sonpavde
- the Dana Farber Cancer Institute, Boston, Massachusetts 02215, and
| | | | - Keshav K Singh
- From the Department of Genetics, .,Departments of Pathology and Environmental Health.,Center for Free Radical Biology.,Center for Aging, and.,UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294.,the Veterans Affairs Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
31
|
Lapp HE, Bartlett AA, Hunter RG. Stress and glucocorticoid receptor regulation of mitochondrial gene expression. J Mol Endocrinol 2019; 62:R121-R128. [PMID: 30082335 DOI: 10.1530/jme-18-0152] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Glucocorticoids have long been recognized for their role in regulating the availability of energetic resources, particularly during stress. Furthermore, bidirectional connections between glucocorticoids and the physiology and function of mitochondria have been discovered over the years. However, the precise mechanisms by which glucocorticoids act on mitochondria have only recently been explored. Glucocorticoids appear to regulate mitochondrial transcription via activation of glucocorticoid receptors (GRs) with elevated circulating glucocorticoid levels following stress. While several mechanistic questions remain, GR and other nuclear transcription factors appear to have the capacity to substantially alter mitochondrial transcript abundance. The regulation of mitochondrial transcripts by stress and glucocorticoids will likely prove functionally relevant in many stress-sensitive tissues including the brain.
Collapse
|
32
|
Yao Y, Chang X, Wang D, Ma H, Wang H, Zhang H, Li C, Wang J. Roles of ERK1/2 and PI3K/AKT signaling pathways in mitochondria-mediated apoptosis in testes of hypothyroid rats. Toxicol Res (Camb) 2018; 7:1214-1224. [PMID: 30542605 PMCID: PMC6240896 DOI: 10.1039/c8tx00122g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2018] [Accepted: 08/25/2018] [Indexed: 12/27/2022] Open
Abstract
The absence of the thyroid hormone (TH) could impair testicular function, but its mechanism is still rudimentary. This study aims to explore the roles of estrogen receptor (ER α, β) and G protein-coupled receptor 30 (GPR30), extracellular signal regulated kinase (ERK1/2) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in apoptosis in testes of hypothyroidism rats. Male Wistar rats were randomly divided into control (C), low-(L) and high-hypothyroidism (H) groups [1 mL per 100 g BW per day normal saline, 0.001% and 0.1% propylthiouracil (PTU), respectively] by intragastrical gavage for 60 days. The levels of triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) in serum were measured. Expressions of ERα, ERβ and GPR30, pathway related protein expressions of ERK1/2 and PI3 K/AKT and apoptosis were detected in testicular homogenates. The results showed that T3 and T4 levels were decreased, and the TSH level was increased significantly in the H group. Protein expressions of ERα, ERβ and GPR30 decreased significantly in the H group. Significantly decreased protein expressions of p-ERK1/2, p-PI3K p85, p-AKT Ser473, Ras, p-Raf-1 Ser259, p-Raf-1 Ser338 and cyclin D1 in L and H groups as well PI3K p85, p-AKT and Thr308 in the H group were observed. Moreover, there was a significant increase in the Bad protein expression in L and H groups. In addition, there was a significant increase in the expression of Bax/Bcl-2, caspase 9 and cleaved caspase 3 and a significant decrease in the total caspase 3 protein expression in the H group. These results suggested that ERK1/2 and PI3K/AKT signaling pathways could be suppressed by hypothyroidism via inhibiting the expressions of ERs and could finally induce apoptosis in testes.
Collapse
Affiliation(s)
- Yueli Yao
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Xiaoru Chang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Dong Wang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Haitao Ma
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology , Gansu Provincial Maternity and Child-care Hospital , Lanzhou , 730050 , China
| | - Haojun Zhang
- Department of Hospital Infection , Gansu Provincial Hospital , Lanzhou , 730000 , China
| | - Chengyun Li
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Junling Wang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| |
Collapse
|
33
|
Lassiter K, Dridi S, Greene E, Kong B, Bottje W. Identification of mitochondrial hormone receptors in avian muscle cells. Poult Sci 2018; 97:2926-2933. [DOI: 10.3382/ps/pey126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2017] [Accepted: 03/14/2018] [Indexed: 01/16/2023] Open
|
34
|
Nesterov SV, Skorobogatova YA, Panteleeva AA, Pavlik LL, Mikheeva IB, Yaguzhinsky LS, Nartsissov YR. NMDA and GABA receptor presence in rat heart mitochondria. Chem Biol Interact 2018; 291:40-46. [PMID: 29883723 DOI: 10.1016/j.cbi.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to demonstrate the presence of three more receptors in mitochondria. Two N-methyl-d-aspartate receptor (NMDAR) subunits (NR1 and NR2B) are found by protein immunoblot and immunogold labeling in mitochondria fraction isolated from rat heart. These data allow supposing NMDAR presence and functioning in the inner mitochondrial membrane. There are no signs of receptor presence obtained in heart tissue lysate, that indicates the receptor localization exactly in mitochondria. The possible receptor functions discussed are its participation in calcium transport and in excitation-metabolism coupling. Besides, preliminary evidence is obtained of GABAA and GABAB receptors presence in heart mitochondria. One can surmise their role in metabolism regulation and their possible co-operation with NMDAR just as in the nervous system.
Collapse
Affiliation(s)
- Semen V Nesterov
- Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Yulia A Skorobogatova
- Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Alisa A Panteleeva
- Belozersky Research Institute for Physico Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Lyubov L Pavlik
- Institute of Theoretical and Experimental Biophisics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophisics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Lev S Yaguzhinsky
- Institute of Cytochemistry and Molecular Pharmacology, 6-th Radialnaya str. 24-14, Moscow, 115404, Russia; Belozersky Research Institute for Physico Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Yaroslav R Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology, 6-th Radialnaya str. 24-14, Moscow, 115404, Russia.
| |
Collapse
|
35
|
Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids 2018; 133:2-7. [PMID: 29155216 PMCID: PMC5864526 DOI: 10.1016/j.steroids.2017.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/02/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/30/2023]
Abstract
Steroid hormones are lipophilic molecules produced in one cell that can travel great distances within the body to elicit biological effects in another cell. In the canonical pathway, steroid hormone binding to a nuclear receptor (NR), often in the cytoplasm, causes the receptor to undergo a conformational change and translocate to the nucleus, where it interacts with specific sequences of DNA to regulate transcription. In addition to the classical genomic mechanism of action, alternate mechanisms of steroid activity have emerged that involve rapid, non-genomic signaling. The distinction between these two major mechanisms of action lies in the subcellular location of the initiating steroid hormone action. Importantly, the mechanisms of action are not exclusive, in that each can affect the activity of the other. Here, we describe the different types of genomic and non-genomic steroid hormone signaling mechanisms and how they can influence one another to ultimately regulate biology. Further, we discuss the approaches being used to study the non-genomic signaling events and address important caveats to be considered when designing new experiments. Thus, this minireview can serve as an introduction to the diverse signaling mechanisms of steroid hormones and offers initial, experimental guidance to those entering the field.
Collapse
Affiliation(s)
- Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Chenchu Lin
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
36
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
37
|
Chang JS, Ha K. A truncated PPAR gamma 2 localizes to mitochondria and regulates mitochondrial respiration in brown adipocytes. PLoS One 2018; 13:e0195007. [PMID: 29566074 PMCID: PMC5864067 DOI: 10.1371/journal.pone.0195007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of brown adipocyte differentiation and thermogenesis. The PPARγ gene produces two isoforms, PPARγ1 and PPARγ2. PPARγ2 is identical to PPARγ1 except for additional 30 amino acids present in the N-terminus of PPARγ2. Here we report that the C-terminally truncated form of PPARγ2 is predominantly present in the mitochondrial matrix of brown adipocytes and that it binds to the D-loop region of mitochondrial DNA (mtDNA), which contains the promoter for mitochondrial electron transport chain (ETC) genes. Expression of mitochondrially targeted MLS-PPARγ2 in brown adipocytes increases mtDNA-encoded ETC gene expression concomitant with enhanced mitochondrial respiration. These results suggest that direct regulation of mitochondrially encoded ETC gene expression by mitochondrial PPARγ2, in part, underlies the isoform-specific role for PPARγ2 in brown adipocytes.
Collapse
Affiliation(s)
- Ji Suk Chang
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
- * E-mail:
| | - Kyoungsoo Ha
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
38
|
Koch RE, Hill GE. Behavioural mating displays depend on mitochondrial function: a potential mechanism for linking behaviour to individual condition. Biol Rev Camb Philos Soc 2018; 93:1387-1398. [DOI: 10.1111/brv.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
39
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
40
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
41
|
Yan Y, Yu L, Castro L, Dixon D. ERα36, a variant of estrogen receptor α, is predominantly localized in mitochondria of human uterine smooth muscle and leiomyoma cells. PLoS One 2017; 12:e0186078. [PMID: 29020039 PMCID: PMC5636123 DOI: 10.1371/journal.pone.0186078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
ERα36 is a naturally occurring, membrane-associated, isoform of estrogen receptor α. The expression of ERα36 is due to alternative splicing and different promoter usage. ERα36 is a dominant-negative effector of ERα66-mediated transactivational activities and has the potential to trigger membrane-initiated mitogenic, nongenomic, estrogen signaling; however, the subcellular localization of ERα36 remains controversial. To determine the cellular localization of ERα36 in estrogen-responsive human uterine smooth muscle (ht-UtSMC) and leiomyoma (fibroid; ht-UtLM) cells, we conducted systematic confocal microscopy and subcellular fractionation analysis using ERα36 antibodies. With Image J colocalizaton analysis plugin, confocal images were analyzed to obtain a Pearson’s Correlation Coefficient (PCC) to quantify signal colocalization of ERα36 with mitochondrial, endoplasmic reticulum, and cytoskeletal components in both cell lines. When cells were double-stained with an ERα36 antibody and a mitochondrial-specific dye, MitoTracker, the PCC for the two channel signals were both greater than 0.75, indicating strong correlation between ERα36 and mitochondrial signals in the two cell lines. A blocking peptide competition assay confirmed that the mitochondria-associated ERα36 signal detected by confocal analysis was specific for ERα36. In contrast, confocal images double-stained with an ERα36 antibody and endoplasmic reticulum or cytoskeletal markers, had PCCs that were all less than 0.4, indicating no or very weak signal correlation. Fractionation studies showed that ERα36 existed predominantly in membrane fractions, with minimal or undetected amounts in the cytosol, nuclear, chromatin, and cytoskeletal fractions. With isolated mitochondrial preparations, we confirmed that a known mitochondrial protein, prohibitin, was present in mitochondria, and by co-immunoprecipitation analysis that ERα36 was associated with prohibitin in ht-UtLM cells. The distinctive colocalization pattern of ERα36 with mitochondria in ht-UtSMC and ht-UtLM cells, and the association of ERα36 with a mitochondrial-specific protein suggest that ERα36 is localized primarily in mitochondria and may play a pivotal role in non-genomic signaling and mitochondrial functions.
Collapse
Affiliation(s)
- Yitang Yan
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
42
|
Irgebay Z, Yeszhan B, Sen B, Tuleukhanov S, Brooks AD, Sensenig R, Orynbayeva Z. Danazol alters mitochondria metabolism of fibrocystic breast Mcf10A cells. Breast 2017. [PMID: 28649033 DOI: 10.1016/j.breast.2017.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Abstract
Fibrocystic Breast Disease (FBD) or Fibrocystic change (FC) affects about 60% of women at some time during their life. Although usually benign, it is often associated with pain and tenderness (mastalgia). The synthetic steroid danazol has been shown to be effective in reducing the pain associated with FBD, but the cellular and molecular mechanisms for its action have not been elucidated. We investigated the hypothesis that danazol acts by affecting energy metabolism. Effects of danazol on Mcf10A cells homeostasis, including mechanisms of oxidative phosphorylation, cytosolic calcium signaling and oxidative stress, were assessed by high-resolution respirometry and flow cytometry. In addition to fast physiological responses the associated genomic modulations were evaluated by Affimetrix microarray analysis. The alterations of mitochondria membrane potential and respiratory activity, downregulation of energy metabolism transcripts result in suppression of energy homeostasis and arrest of Mcf10A cells growth. The data obtained in this study impacts the recognition of direct control of mitochondria by cellular mechanisms associated with altered energy metabolism genes governing the breast tissue susceptibility and response to medication by danazol.
Collapse
Affiliation(s)
- Zhazira Irgebay
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Banu Yeszhan
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA, USA; Department of Biophysics and Biomedicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bhaswati Sen
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sultan Tuleukhanov
- Department of Biophysics and Biomedicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ari D Brooks
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Sensenig
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Zulfiya Orynbayeva
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
43
|
He Y, Zhang L, Zhu Z, Xiao A, Yu H, Gan X. Blockade of cyclophilin D rescues dexamethasone-induced oxidative stress in gingival tissue. PLoS One 2017; 12:e0173270. [PMID: 28273124 PMCID: PMC5342226 DOI: 10.1371/journal.pone.0173270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoids (GCs) are frequently used for the suppression of inflammation in chronic inflammatory diseases. Excessive GCs usage is greatly associated with several side effects, including gingival ulceration, the downward migration of the epithelium, attachment loss and disruption of transeptal fibers. The mechanisms underlying GCs-induced impairments in gingival tissue remains poorly understood. Mitochondrial dysfunction is associated with various oral diseases, such as chronic periodontitis, age-related alveolar bone loss and hydrogen peroxide-induced cell injury in gingival. Here, we reported an unexplored role of cyclophilin D (CypD), the major component of mitochondrial permeability transition pore (mPTP), in dexamethasone (Dex)-induced oxidative stress accumulation and cell dysfunctions in gingival tissue. We demonstrated that the expression level of CypD significantly increased under Dex treatment. Blockade of CypD by pharmaceutical inhibitor cyclosporine A (CsA) significantly protected against Dex-induced oxidative stress accumulation in gingival tissue. And the protective effects of blocking CypD in Dex-induced gingival fibroblasts dysfunction were evidenced by rescued mitochondrial function and suppressed production of reactive oxygen species (ROS). In addition, blockade of CypD by pharmaceutical inhibitor CsA or gene knockdown also restored Dex-induced cell toxicity in HGF-1 cells, as shown by suppressed mitochondrial ROS production, increased CcO activity and decreased apoptosis. We also suggested a role of oxidative stress-mediated p38 signal transduction in this event, and antioxidant N-acety-l-cysteine (NAC) could obviously blunted Dex-induced oxidative stress. These findings provide new insights into the role of CypD-dependent mitochondrial pathway in the Dex-induced gingival injury, indicating that CypD may be potential therapeutic strategy for preventing Dex-induced oxidative stress and cell injury in gingival tissue.
Collapse
Affiliation(s)
- Yuting He
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoli Zhu
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueqi Gan
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Pavón N, Cabrera-Orefice A, Gallardo-Pérez JC, Uribe-Alvarez C, Rivero-Segura NA, Vazquez-Martínez ER, Cerbón M, Martínez-Abundis E, Torres-Narvaez JC, Martínez-Memije R, Roldán-Gómez FJ, Uribe-Carvajal S. In female rat heart mitochondria, oophorectomy results in loss of oxidative phosphorylation. J Endocrinol 2017; 232:221-235. [PMID: 27872198 DOI: 10.1530/joe-16-0161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
Oophorectomy in adult rats affected cardiac mitochondrial function. Progression of mitochondrial alterations was assessed at one, two and three months after surgery: at one month, very slight changes were observed, which increased at two and three months. Gradual effects included decrease in the rates of oxygen consumption and in respiratory uncoupling in the presence of complex I substrates, as well as compromised Ca2+ buffering ability. Malondialdehyde concentration increased, whereas the ROS-detoxifying enzyme Mn2+ superoxide dismutase (MnSOD) and aconitase lost activity. In the mitochondrial respiratory chain, the concentration and activity of complex I and complex IV decreased. Among other mitochondrial enzymes and transporters, adenine nucleotide carrier and glutaminase decreased. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase also decreased. Data strongly suggest that in the female rat heart, estrogen depletion leads to progressive, severe mitochondrial dysfunction.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de FarmacologíaInstituto Nacional de Cardiología Ignacio Chávez, México, Mexico
| | - Alfredo Cabrera-Orefice
- Departamento de Genética MolecularInstituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | - Cristina Uribe-Alvarez
- Departamento de Genética MolecularInstituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Nadia A Rivero-Segura
- Unidad de Investigación en Reproducción HumanaInstituto Nacional de Perinatología-Facultad de Química UNAM, México D.F., Mexico
| | - Edgar Ricardo Vazquez-Martínez
- Unidad de Investigación en Reproducción HumanaInstituto Nacional de Perinatología-Facultad de Química UNAM, México D.F., Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción HumanaInstituto Nacional de Perinatología-Facultad de Química UNAM, México D.F., Mexico
| | - Eduardo Martínez-Abundis
- División Académica Multidisciplinaria de ComalcalcoUniversidad Juárez Autónoma de Tabasco, México, Mexico
| | | | - Raúl Martínez-Memije
- Departamento de Instrumentación ElectromecánicaInstituto Nacional de Cardiología Ignacio Chávez, Tlalpan DF, México, Mexico
| | | | - Salvador Uribe-Carvajal
- Departamento de Genética MolecularInstituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|
45
|
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple Roles of Mitochondria in Aging Processes. Physiol Res 2016; 65:S519-S531. [DOI: 10.33549/physiolres.933538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - J. KUNCOVA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
46
|
Lema SC, Chow MI, Resner EJ, Westman AA, May D, Dittman AH, Hardy KM. Endocrine and metabolic impacts of warming aquatic habitats: differential responses between recently isolated populations of a eurythermal desert pupfish. CONSERVATION PHYSIOLOGY 2016; 4:cow047. [PMID: 27833749 PMCID: PMC5100229 DOI: 10.1093/conphys/cow047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/26/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Temperatures of inland aquatic habitats are increasing with climate change, and understanding how fishes respond physiologically to thermal stress will be crucial for identifying species most susceptible to these changes. Desert fishes may be particularly vulnerable to rising temperatures because many species occupy only a fraction of their historical range and occur in habitats with already high temperatures. Here, we examined endocrine and metabolic responses to elevated temperature in Amargosa pupfish, Cyprinodon nevadensis amargosae. We studied C. n. amargosae from two habitats with distinct thermal conditions: the Amargosa River, which experiences diurnally and seasonally variable temperatures (0.2-40°C); and Tecopa Bore, a spring and marsh fed by hot groundwater (47.5°C) from an artesian borehole. These allopatric populations differ in morphology, and prior evidence suggests that temperature might contribute to these differences via altered thyroid hormone (TH) regulation of morphological development. Here, we document variation in hepatic iodothyronine deiodinase type 2 (dio2) and type 3 (dio3) and TH receptor β (trβ) gene transcript abundance between the Amargosa River and Tecopa Bore wild populations. Fish from these populations acclimated to 24 or 34°C retained differences in hepatic dio2, dio3 and trβ mRNAs and also varied in transcripts encoding the TH membrane transporters monocarboxylate transporter 8 (mct8) and organic anion-transporting protein 1c1 (oatp1c1). Tecopa Bore pupfish also exhibited higher dio2 and trβ mRNA levels in skeletal muscle relative to Amargosa River fish. Muscle citrate synthase activity was lower at 34°C for both populations, whereas lactate dehydrogenase activity and lactate dehydrogenase A-chain (ldhA) transcripts were both higher and 3,5,3'-triiodothryonine responsive in Tecopa Bore pupfish only. These findings reveal that local population variation and thermal experience interact to shape how pupfish respond to elevated temperatures, and point to the need to consider such interactions in management actions for desert fishes under a changing climate.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Michelle I Chow
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Alex A Westman
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98112, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
47
|
Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells. PLoS One 2016; 11:e0164407. [PMID: 27732649 PMCID: PMC5061422 DOI: 10.1371/journal.pone.0164407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormone (TH) receptors (TRs α and β) are homologous ligand-dependent transcription factors (TFs). While the TRs display distinct actions in development, metabolic regulation and other processes, comparisons of TRα and TRβ dependent gene regulation mostly reveal similar mechanisms of action and few TR subtype specific genes. Here, we show that TRα predominates in multipotent human adipose derived stem cells (hADSC) whereas TRβ is expressed at lower levels and is upregulated during hADSC differentiation. The TRs display several unusual properties in parental hADSC. First, TRs display predominantly cytoplasmic intracellular distribution and major TRα variants TRα1 and TRα2 colocalize with mitochondria. Second, knockdown experiments reveal that endogenous TRs influence hADSC cell morphology and expression of hundreds of genes in the absence of hormone, but do not respond to exogenous TH. Third, TRα and TRβ affect hADSC in completely distinct ways; TRα regulates cell cycle associated processes while TRβ may repress aspects of differentiation. TRα splice variant specific knockdown reveals that TRα1 and TRα2 both contribute to TRα-dependent gene expression in a gene specific manner. We propose that TRs work in a non-canonical and hormone independent manner in hADSC and that prominent subtype-specific activities emerge in the context of these unusual actions.
Collapse
|
48
|
Affiliation(s)
| | - Eva Kassi
- Deparment of Biological Chemistry, Medical Scholl, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
49
|
Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci U S A 2016; 113:9099-104. [PMID: 27457949 DOI: 10.1073/pnas.1602185113] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria.
Collapse
|
50
|
Kong BW, Lassiter K, Piekarski-Welsher A, Dridi S, Reverter-Gomez A, Hudson NJ, Bottje WG. Proteomics of Breast Muscle Tissue Associated with the Phenotypic Expression of Feed Efficiency within a Pedigree Male Broiler Line: I. Highlight on Mitochondria. PLoS One 2016; 11:e0155679. [PMID: 27244447 PMCID: PMC4887024 DOI: 10.1371/journal.pone.0155679] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
As feed represents 60 to 70% of the cost of raising an animal to market weight, feed efficiency (the amount of dry weight intake to amount of wet weight gain) remains an important genetic trait in animal agriculture. To gain greater understanding of cellular mechanisms of feed efficiency (FE), shotgun proteomics was conducted using in-gel trypsin digestion and tandem mass spectrometry on breast muscle samples obtained from pedigree male (PedM) broilers exhibiting high feed efficiency (FE) or low FE phenotypes (n = 4 per group). The high FE group had greater body weight gain (P = 0.004) but consumed the same amount of feed (P = 0.30) from 6 to 7 wk resulting in higher FE (P < 0.001). Over 1800 proteins were identified, of which 152 were different (P < 0.05) by at least 1.3 fold and ≤ 15 fold between the high and low FE phenotypes. Data were analyzed for a modified differential expression (DE) metric (Phenotypic Impact Factors or PIF) and interpretation of protein expression data facilitated using the Ingenuity Pathway Analysis (IPA) program. In the entire data set, 228 mitochondrial proteins were identified whose collective expression indicates a higher mitochondrial expression in the high FE phenotype (binomial probability P < 0.00001). Within the top up and down 5% PIF molecules in the dataset, there were 15 mitoproteome proteins up-regulated and only 5 down-regulated in the high FE phenotype. Pathway enrichment analysis also identified mitochondrial dysfunction and oxidative phosphorylation as the number 1 and 5 differentially expressed canonical pathways (up-regulated in high FE) in the proteomic dataset. Upstream analysis (based on DE of downstream molecules) predicted that insulin receptor, insulin like growth receptor 1, nuclear factor, erythroid 2-like 2, AMP activated protein kinase (α subunit), progesterone and triiodothyronine would be activated in the high FE phenotype whereas rapamycin independent companion of target of rapamycin, mitogen activated protein kinase 4, and serum response factor would be inhibited in the high FE phenotype. The results provide additional insight into the fundamental molecular landscape of feed efficiency in breast muscle of broilers as well as further support for a role of mitochondria in the phenotypic expression of FE. Funding provided by USDA-NIFA (#2013–01953), Arkansas Biosciences Institute (Little Rock, AR), McMaster Fellowship (AUS to WB) and the Agricultural Experiment Station (Univ. of Arkansas, Fayetteville).
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Alissa Piekarski-Welsher
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Antonio Reverter-Gomez
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Nicholas James Hudson
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Walter Gay Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
- * E-mail:
| |
Collapse
|