1
|
Peng D, Zhong W, Wang Y, Fu Y, Shang W. The Causal Relationship Between Immune Cells and Infertility: A Mendelian Randomisation Study. Am J Reprod Immunol 2024; 92:e13932. [PMID: 39320012 DOI: 10.1111/aji.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE Infertility has emerged as a significant global public health concern, with a multitude of complex underlying causes. Epidemiological evidence indicates that immunological factors are significant contributors to the aetiology of infertility. However, previous studies on the relationship between immune inflammation and infertility have yielded inconclusive results. METHODS Mendelian randomisation (MR) is an emerging statistical method that employs exposure-related genetic variation as an instrumental variable (IV) to infer causal relationships between immune cells and infertility by modelling the principle of random assignment in Mendelian genetics. In this study, MR was employed to assess the causal relationship between 731 immune cell signatures and infertility. The data utilized in this study were obtained from publicly available genome-wide association studies (GWAS) and validated IVs, which were employed to fulfil the essential assumptions of MR analysis. RESULTS The Mendelian randomisation analysis revealed a total of 27 statistically significant immune cell phenotypes out of 731. The risk factor with the largest odds ratio (OR) was CD28- CD25++ CD8+ %T cell [OR, 1.21; 95% confidence interval (CI), 1.04-1.42], while the protective factor with the largest OR was activated and resting Treg AC (OR, 0.89; 95% CI, 0.82-0.97). CONCLUSION The present study has demonstrated a correlation between certain characteristics of immune cells and female infertility. These results provide clues for further research into the immune mechanisms of infertility and may inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Dingchuan Peng
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Zhong
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yiyao Fu
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Wei Shang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
3
|
Abstract
Epithelial barriers, which include the gastrointestinal, respiratory, and genitourinary mucosa, compose the body’s front line of defense. Since barrier tissues are persistently exposed to microbial challenges, a rapid response that can deal with diverse invading pathogens is crucial. Because B cells have been perceived as indirectly contributing to immune responses through antibody production, B cells functioning in the peripheral organs have been outside the scope of researchers. However, recent evidence supports the existence of tissue-resident memory B cells (BRMs) in the lungs. This population’s defensive response was stronger and faster than that of their circulating counterparts and could resist heterogeneous strains. With such traits, BRMs could be a promising target for vaccine design, but much about them remains to be revealed, including their locations, origin, specific markers, and the mechanisms of their establishment and maintenance. There is evidence for resident B cells in organs other than the lungs, suggesting that B cells are directly involved in the immune reactions of multiple non-lymphoid organs. This review summarizes the history of the discovery of BRMs and discusses important unresolved questions. Unique characteristics of humoral immunity that play an important role in the peripheral organs will be described briefly. Future research on B cells residing in non-lymphoid organs will provide new insights to help solve major problems regarding human health.
Collapse
Affiliation(s)
- Choong Man Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- BioMedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Ji Eun Oh,
| |
Collapse
|
4
|
Effect of HLA-G5 Immune Checkpoint Molecule on the Expression of ILT-2, CD27, and CD38 in Splenic B cells. J Immunol Res 2022; 2022:4829227. [PMID: 35600048 PMCID: PMC9119744 DOI: 10.1155/2022/4829227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022] Open
Abstract
The human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with a complex network of interactions with several inhibitory receptors. Although the effect of HLA-G on T cells and NK cells is well studied, the effect of HLA-G on B cells is still largely elusive. B cells are of particular interest in the context of the HLA-G-ILT-2 interaction because the ILT-2 receptor is constitutively expressed on most B cells, whereas it is only present on some subsets of T and NK cells. To characterize the effect of HLA-G5 molecules on B cells, we studied splenic B cells derived from cytomegalovirus (CMV) sero-positive donors after CMV stimulation with antigens in the presence and absence of soluble HLA-G5. In the presence of HLA-G5, increased expression of the ITIM-bearing Ig-like transcript (ILT-2) was observed on B cells, but its expression was not affected by stimulation with CMV antigens. Moreover, it became evident that HLA-G5 exposure resulted in a decreased expression of CD27 and CD38 and, accordingly, in lower proportions of CD19+CD27+CD38+ and higher proportions of CD19+CD27-CD38- B cells. Taken together, our in vitro findings demonstrate that soluble HLA-G5 suppresses markers of B cell activation, suggesting that HLA-G5 has an impact on splenic B cell differentiation and activation. Based on these results, further investigation regarding the role of HLA-G as a prognostic factor and a potential therapeutic agent with respect to B cell function appears reasonable.
Collapse
|
5
|
Weaver KL, Blackwood CB, Horspool AM, Pyles GM, Sen-Kilic E, Grayson EM, Huckaby AB, Witt WT, DeJong MA, Wolf MA, Damron FH, Barbier M. Long-Term Analysis of Pertussis Vaccine Immunity to Identify Potential Markers of Vaccine-Induced Memory Associated With Whole Cell But Not Acellular Pertussis Immunization in Mice. Front Immunol 2022; 13:838504. [PMID: 35211125 PMCID: PMC8861382 DOI: 10.3389/fimmu.2022.838504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emily M. Grayson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Megan A. DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - M. Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States,*Correspondence: Mariette Barbier,
| |
Collapse
|
6
|
Martín D, Perdiguero P, Morel E, Soleto I, Herranz-Jusdado JG, Ramón LA, Abós B, Wang T, Díaz-Rosales P, Tafalla C. CD38 Defines a Subset of B Cells in Rainbow Trout Kidney With High IgM Secreting Capacities. Front Immunol 2021; 12:773888. [PMID: 34917087 PMCID: PMC8669677 DOI: 10.3389/fimmu.2021.773888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
CD38 is a multifunctional molecule that functions both as a transmembrane signaling receptor and as an ectoenzyme with important roles in cell adhesion, calcium regulation and signal transduction. Within the B cell linage, CD38 is expressed in diverse murine B cell subsets, with highest levels in innate B cell subpopulations such as marginal zone (MZ) B cells or B1 cells. In humans, however, CD38 is transiently expressed on early lymphocyte precursors, is lost on mature B cells and is consistently expressed on terminally differentiated plasma cells. In the present work, we have identified two homologues of mammalian CD38 in rainbow trout (Oncorhynchus mykiss), designating them as CD38A and CD38B. Although constitutively transcribed throughout different tissues in homeostasis, both CD38A and CD38B mRNA levels were significantly up-regulated in head kidney (HK) in response to a viral infection. In this organ, after the generation of a specific monoclonal antibody (mAb) against CD38A, the presence of CD38A+ populations among IgM+ B cells and IgM- leukocytes was investigated by flow cytometry. Interestingly, the percentage of IgM+CD38A+ B cells increased in response to an in vitro stimulation with inactivated Aeromonas salmonicida. Finally, we demonstrated that HK IgM+CD38A+ B cells had an increased IgM secreting capacity than that of cells lacking CD38A on the cell surface, also showing increased transcription levels of genes associated with B cell differentiation. This study strongly suggests a role for CD38 on the B cell differentiation process in teleosts, and provides us with novel tools to discern between B cell subsets in these species.
Collapse
Affiliation(s)
- Diana Martín
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Pedro Perdiguero
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Irene Soleto
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - J German Herranz-Jusdado
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Luis A Ramón
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Beatriz Abós
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Patricia Díaz-Rosales
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Farahany J, Tsukasaki Y, Mukhopadhyay A, Mittal M, Nepal S, Tiruppathi C, Malik AB. CD38-Mediated Inhibition of Bruton's Tyrosine Kinase in Macrophages Prevents Endotoxemic Lung Injury. Am J Respir Cell Mol Biol 2021; 66:183-195. [PMID: 34706199 DOI: 10.1165/rcmb.2021-0272oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
TLR4 signaling via endotoxemia in macrophages promotes macrophage transition to the inflammatory phenotype through NLRP3 inflammasome activation. This transition event has the potential to trigger acute lung injury (ALI). However, relatively little is known about the regulation of NLRP3 and its role in the pathogenesis of ALI. Here we interrogated the signaling pathway activated by CD38, an ectoenzyme expressed in macrophages, in preventing ALI through suppressing NLRP3 activation. Wild type and Cd38 knockout (Cd38─/─) mice were used to assess inflammatory lung injury and isolated macrophages were used to delineate underlying TLR4 signaling pathway. We showed that CD38 suppressed TLR4 signaling in macrophages by inhibiting Bruton's tyrosine kinase (Btk) through the recruitment of protein tyrosine phosphatase SHP2 and resulting in the dephosphorylation of activated Btk. Cd38─/─ mice show enhanced lung PMN extravasation and severe lung injury. LPS- or polymicrobial sepsis-induced mortality in Cd38─/─ mice were markedly augmented compared with WT. CD38 in macrophages functioned by inhibiting Btk activation through activation of SHP2 and resulting dephosphorylation of Btk, and thereby preventing activation of downstream targets NF-ΚB and NLRP3. Cd38─/─ macrophages displayed markedly increased activation of Btk, NF-ΚB, and NLRP3 whereas in vivo administration of the Btk inhibitor ibrutinib (a FDA approved drug) prevented augmented TLR4-induced inflammatory lung injury seen in Cd38─/─ mice. Our findings together show that upregulation of CD38 activity and inhibition of Btk activation downstream of TLR4 activation as potential strategies to prevent endotoxemic ALI.
Collapse
Affiliation(s)
- Joseph Farahany
- University of Illinois At Chicago, Chicago, Illinois, United States
| | | | | | - Manish Mittal
- University of Illinois At Chicago, Chicago, Illinois, United States
| | - Saroj Nepal
- University of Illinois At Chicago, Chicago, Illinois, United States
| | | | - Asrar B Malik
- University of Illinois At Chicago, Chicago, Illinois, United States
| |
Collapse
|
8
|
Piedra-Quintero ZL, Wilson Z, Nava P, Guerau-de-Arellano M. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity. Front Immunol 2020; 11:597959. [PMID: 33329591 PMCID: PMC7734206 DOI: 10.3389/fimmu.2020.597959] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
CD38 is a molecule that can act as an enzyme, with NAD-depleting and intracellular signaling activity, or as a receptor with adhesive functions. CD38 can be found expressed either on the cell surface, where it may face the extracellular milieu or the cytosol, or in intracellular compartments, such as endoplasmic reticulum, nuclear membrane, and mitochondria. The main expression of CD38 is observed in hematopoietic cells, with some cell-type specific differences between mouse and human. The role of CD38 in immune cells ranges from modulating cell differentiation to effector functions during inflammation, where CD38 may regulate cell recruitment, cytokine release, and NAD availability. In line with a role in inflammation, CD38 appears to also play a critical role in inflammatory processes during autoimmunity, although whether CD38 has pathogenic or regulatory effects varies depending on the disease, immune cell, or animal model analyzed. Given the complexity of the physiology of CD38 it has been difficult to completely understand the biology of this molecule during autoimmune inflammation. In this review, we analyze current knowledge and controversies regarding the role of CD38 during inflammation and autoimmunity and novel molecular tools that may clarify current gaps in the field.
Collapse
Affiliation(s)
- Zayda L. Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Zachary Wilson
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Biomedical Science Undergraduate Program, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), México City, México
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Abstract
CD38 is a transmembrane glycoprotein that is widely expressed in a variety of human tissues and cells, especially those in the immune system. CD38 protein was previously considered as a cell activation marker, and today monoclonal antibodies targeting CD38 have witnessed great achievements in multiple myeloma and promoted researchers to conduct research on other tumors. In this review, we provide a wide-ranging review of the biology and function of the human molecule outside the field of myeloma. We focus mainly on current research findings to summarize and update the findings gathered from diverse areas of study. Based on these findings, we attempt to extend the role of CD38 in the context of therapy of solid tumors and expand the role of the molecule from a simple marker to an immunomodulator.
Collapse
Affiliation(s)
- Yanli Li
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Rui Yang
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Limo Chen
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009 USA
| | - Sufang Wu
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| |
Collapse
|
10
|
Steffen E, Mayer von Wittgenstein WBE, Hennig M, Niepmann ST, Zietzer A, Werner N, Rassaf T, Nickenig G, Wassmann S, Zimmer S, Steinmetz M. Murine sca1/flk1-positive cells are not endothelial progenitor cells, but B2 lymphocytes. Basic Res Cardiol 2020; 115:18. [PMID: 31980946 PMCID: PMC6981106 DOI: 10.1007/s00395-020-0774-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Circulating sca1+/flk1+ cells are hypothesized to be endothelial progenitor cells (EPCs) in mice that contribute to atheroprotection by replacing dysfunctional endothelial cells. Decreased numbers of circulating sca1+/flk1+ cells correlate with increased atherosclerotic lesions and impaired reendothelialization upon electric injury of the common carotid artery. However, legitimate doubts remain about the identity of the putative EPCs and their contribution to endothelial restoration. Hence, our study aimed to establish a phenotype for sca1+/flk1+ cells to gain a better understanding of their role in atherosclerotic disease. In wild-type mice, sca1+/flk1+ cells were mobilized into the peripheral circulation by granulocyte-colony stimulating factor (G-CSF) treatment and this movement correlated with improved endothelial regeneration upon carotid artery injury. Multicolor flow cytometry analysis revealed that sca1+/flk1+ cells predominantly co-expressed surface markers of conventional B cells (B2 cells). In RAG2-deficient mice and upon B2 cell depletion, sca1+/flk1+ cells were fully depleted. In the absence of monocytes, sca1+/flk1+ cell levels were unchanged. A PCR array focused on cell surface markers and next-generation sequencing (NGS) of purified sca1+/flk1+ cells confirmed their phenotype to be predominantly that of B cells. Finally, the depletion of B2 cells, including sca1+/flk1+ cells, in G-CSF-treated wild-type mice partly abolished the endothelial regenerating effect of G-CSF, indicating an atheroprotective role for sca1+/flk1+ B2 cells. In summary, we characterized sca1+/flk1+ cells as a subset of predominantly B2 cells, which are apparently involved in endothelial regeneration.
Collapse
Affiliation(s)
- Eva Steffen
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | | | - Marie Hennig
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sven Thomas Niepmann
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Andreas Zietzer
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Nikos Werner
- Krankenhaus der Barmherzigen Brüder, Innere Medizin III, Trier, Germany
| | - Tienush Rassaf
- Westdeutsches Herz- und Gefäßzentrum, Klinik für Kardiologie und Angiologie, Universitätsklinikum Essen, Essen, Germany
| | - Georg Nickenig
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sven Wassmann
- Cardiology Pasing, Munich, Germany.,University of the Saarland, Homburg, Saar, Germany
| | - Sebastian Zimmer
- Herzzentrum Bonn, Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Martin Steinmetz
- Westdeutsches Herz- und Gefäßzentrum, Klinik für Kardiologie und Angiologie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
11
|
Glaría E, Valledor AF. Roles of CD38 in the Immune Response to Infection. Cells 2020; 9:cells9010228. [PMID: 31963337 PMCID: PMC7017097 DOI: 10.3390/cells9010228] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
CD38 is a multifunctional protein widely expressed in cells from the immune system and as a soluble form in biological fluids. CD38 expression is up-regulated by an array of inflammatory mediators, and it is frequently used as a cell activation marker. Studies in animal models indicate that CD38 functional expression confers protection against infection by several bacterial and parasitic pathogens. In addition, infectious complications are associated with anti-CD38 immunotherapy. Although CD38 displays receptor and enzymatic activities that contribute to the establishment of an effective immune response, recent work raises the possibility that CD38 might also enhance the immunosuppressive potential of regulatory leukocytes. This review integrates the current knowledge on the diversity of functions mediated by CD38 in the host defense to infection.
Collapse
|
12
|
Lucchesi S, Nolfi E, Pettini E, Pastore G, Fiorino F, Pozzi G, Medaglini D, Ciabattini A. Computational Analysis of Multiparametric Flow Cytometric Data to Dissect B Cell Subsets in Vaccine Studies. Cytometry A 2019; 97:259-267. [PMID: 31710181 PMCID: PMC7079172 DOI: 10.1002/cyto.a.23922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
The generation of the B cell response upon vaccination is characterized by the induction of different functional and phenotypic subpopulations and is strongly dependent on the vaccine formulation, including the adjuvant used. Here, we have profiled the different B cell subsets elicited upon vaccination, using machine learning methods for interpreting high‐dimensional flow cytometry data sets. The B cell response elicited by an adjuvanted vaccine formulation, compared to the antigen alone, was characterized using two automated methods based on clustering (FlowSOM) and dimensional reduction (t‐SNE) approaches. The clustering method identified, based on multiple marker expression, different B cell populations, including plasmablasts, plasma cells, germinal center B cells and their subsets, while this profiling was more difficult with t‐SNE analysis. When undefined phenotypes were detected, their characterization could be improved by integrating the t‐SNE spatial visualization of cells with the FlowSOM clusters. The frequency of some cellular subsets, in particular plasma cells, was significantly higher in lymph nodes of mice primed with the adjuvanted formulation compared to antigen alone. Thanks to this automatic data analysis it was possible to identify, in an unbiased way, different B cell populations and also intermediate stages of cell differentiation elicited by immunization, thus providing a signature of B cell recall response that can be hardly obtained with the classical bidimensional gating analysis. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Simone Lucchesi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Emanuele Nolfi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Gabiria Pastore
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| |
Collapse
|
13
|
Soh KT, Wallace PK. Monitoring of Measurable Residual Disease in Multiple Myeloma by Multiparametric Flow Cytometry. ACTA ACUST UNITED AC 2019; 90. [PMID: 31608132 DOI: 10.1002/cpcy.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent interest in high sensitivity multiple myeloma (MM) measurable residual disease (MRD) testing is a direct consequence of the high-quality responses achieved using novel therapeutic agents and better treatment strategies. Traditional diagnostic measures such as immunohistochemistry and morphology have detection sensitivities of only 10-2 - 10-3, which do not reliably predict progression free survival (PFS) or overall survival (OS) after these treatments. Contemporary monitoring of MM MRD has switched to more sensitive platforms such as quantitative allele-specific oligonucleotide polymerase chain reaction (ASO-qPCR), next-generation sequencing (NGS), and multiparametric flow cytometry (MFC). Though both ASO-qPCR and NGS have excellent detection sensitivities (10-5 - 10-6), both technologies have lower applicability when compared to MFC. Conventional MFC can easily reach a detection sensitivity of 10-4 and when optimized can achieve a sensitivity of 10-5 - 10-6. Current consensus guidelines require a minimum of 2 million and recommend 5 million events be acquired to reach a minimum sensitivity of 10-5. As conventional immunophenotyping protocols are unable to attain these numbers, alternative MFC staining procedures are required. This manuscript describes two high-sensitivity MFC approaches that can be used for MM MRD testing.
Collapse
Affiliation(s)
- Kah Teong Soh
- Roswell Park Comprehensive Cancer Center, Department of Flow and Image Cytometry, Elm & Carlton Streets, Buffalo, New York 14263
| | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Department of Flow and Image Cytometry, Elm & Carlton Streets, Buffalo, New York 14263
| |
Collapse
|
14
|
Kummari E, Nichols JM, Yang EJ, Kaplan BLF. Neuroinflammation and B-Cell Phenotypes in Cervical and Lumbosacral Regions of the Spinal Cord in Experimental Autoimmune Encephalomyelitis in the Absence of Pertussis Toxin. Neuroimmunomodulation 2019; 26:198-207. [PMID: 31454809 PMCID: PMC7368493 DOI: 10.1159/000501765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The active experimental autoimmune encephalomyelitis (EAE) model is often initiated using myelin oligodendrocyte glycoprotein (MOG) immunization followed by pertussis toxin (PTX) to study multiple sclerosis. However, PTX inactivates G protein-coupled receptors, and with increasing knowledge of the role that various G protein-coupled receptors play in immune homeostasis, it is valuable to establish neuroimmune endpoints for active EAE without PTX. METHODS Female C57BL/6 mice were immunized with MOG35-55 peptide in Complete Freund's Adjuvant and neuroinflammation, including central nervous system B-cell infiltration, was compared to saline-injected mice. Since it was anticipated that disease onset would be slower and less robust than EAE in the presence of PTX, both cervical and lumbosacral sections of the spinal cord were evaluated. RESULTS Immunohistochemical analysis showed that EAE without PTX induced immune infiltration, CCL2 and VCAM-1 upregulation. Demyelination in the cervical region correlated with the infiltration of CD19+ B cells in the cervical region. There was upregulation of IgG, CD38, and PDL1 on B cells in cervical and lumbosacral regions of the spinal cord in EAE without PTX. Interestingly, IgG was expressed predominantly by CD19- cells. CONCLUSIONS These data demonstrate that many neuroimmune endpoints are induced in EAE without PTX and although clinical disease is mild, this can be used as an autoimmune model when PTX inactivation of G protein-coupled receptors is not desired.
Collapse
Affiliation(s)
- Evangel Kummari
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - James M Nichols
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Eun-Ju Yang
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA,
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA,
| |
Collapse
|
15
|
Yoshikawa Y, Katayanagi Y, Kamiya M, Yamamoto Y, Fukutomi R, Imai S, Miyoshi N, Ohashi N. Tomato saponin supplementation ameliorates the development of experimental arthritis by regulating inflammatory responses. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
17
|
Domínguez-Pantoja M, López-Herrera G, Romero-Ramírez H, Santos-Argumedo L, Chávez-Rueda AK, Hernández-Cueto Á, Flores-Muñoz M, Rodríguez-Alba JC. CD38 protein deficiency induces autoimmune characteristics and its activation enhances IL-10 production by regulatory B cells. Scand J Immunol 2018; 87:e12664. [DOI: 10.1111/sji.12664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 01/09/2023]
Affiliation(s)
- M. Domínguez-Pantoja
- Programa de Doctorado en Ciencias de la Salud; Instituto de Ciencias de la Salud; Universidad Veracruzana; Xalapa Veracruz México
- Unidad de Citometría de Flujo; Instituto de Ciencias de la Salud; Universidad Veracruzana; Xalapa Veracruz México
| | - G. López-Herrera
- Unidad de Investigación en Inmunodeficiencias; Instituto Nacional de Pediatría; Ciudad de México México
| | - H. Romero-Ramírez
- Departamento de Biomedicina Molecular; CINVESTAV-IPN; Ciudad de México México
| | - L. Santos-Argumedo
- Departamento de Biomedicina Molecular; CINVESTAV-IPN; Ciudad de México México
| | - A. K. Chávez-Rueda
- IM en Inmunología; Hospital de Pediatría; CMN Siglo XXI, IMSS; Ciudad de México México
| | - Á. Hernández-Cueto
- Laboratorio Central de Epidemiología; CMN La Raza; IMSS; Ciudad de México México
| | - M. Flores-Muñoz
- Programa de Doctorado en Ciencias de la Salud; Instituto de Ciencias de la Salud; Universidad Veracruzana; Xalapa Veracruz México
- Unidad Quirúrgica Animal, Instituto de Ciencias de la Salud; Universidad Veracruzana; Xalapa Veracruz México
| | - J. C. Rodríguez-Alba
- Programa de Doctorado en Ciencias de la Salud; Instituto de Ciencias de la Salud; Universidad Veracruzana; Xalapa Veracruz México
- Unidad de Citometría de Flujo; Instituto de Ciencias de la Salud; Universidad Veracruzana; Xalapa Veracruz México
| |
Collapse
|
18
|
van Rensburg IC, Wagman C, Stanley K, Beltran C, Ronacher K, Walzl G, Loxton AG. Successful TB treatment induces B-cells expressing FASL and IL5RA mRNA. Oncotarget 2018; 8:2037-2043. [PMID: 27682872 PMCID: PMC5356777 DOI: 10.18632/oncotarget.12184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Activated B-cells increase T-cell behaviour during autoimmune disease and other infections by means of cytokine production and antigen-presentation. Functional studies in experimental autoimmune encephalomyelitis (EAE) indicate that B-cell deficiencies, and a lack of IL10 and IL35 leads to a poor prognosis. We hypothesised that B-cells play a role during tuberculosis. We evaluated B-cell mRNA expression using real-time PCR from healthy community controls, individuals with other lung diseases and newly diagnosed untreated pulmonary TB patients at three different time points (diagnosis, month 2 and 6 of treatment). We show that FASLG, IL5RA, CD38 and IL4 expression was lower in B-cells from TB cases compared to healthy controls. The changes in expression levels of CD38 may be due to a reduced activation of B-cells from TB cases at diagnosis. By month 2 of treatment, there was a significant increase in the expression of APRIL and IL5RA in TB cases. Furthermore, after 6 months of treatment, APRIL, FASLG, IL5RA and CD19 were upregulated in B-cells from TB cases. The increase in the expression of APRIL and CD19 suggests that there may be restored activation of B-cells following anti-TB treatment. The upregulation of FASLG and IL5RA indicates that B-cells expressing regulatory genes may play an important role in the protective immunity against M.tb infection. Our results show that increased activation of B-cells is present following successful TB treatment, and that the expression of FASLG and IL5RA could potentially be utilised as a signature to monitor treatment response.
Collapse
Affiliation(s)
- Ilana C van Rensburg
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chandre Wagman
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kim Stanley
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caroline Beltran
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
DiSano KD, Stohlman SA, Bergmann CC. An optimized method for enumerating CNS derived memory B cells during viral-induced inflammation. J Neurosci Methods 2017; 285:58-68. [PMID: 28495370 PMCID: PMC5545894 DOI: 10.1016/j.jneumeth.2017.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/26/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022]
Abstract
Memory B cell markers characterizing peripheral B cell phenotypes show more diverse expression patterns in the infected central nervous system (CNS). TLR7/8 stimulation for 2 days prior to ELISPOT analysis achieves optimal conversion of CNS-derived memory B cells to ASC while minimizing cell loss. In vitro stimulation allows simultaneous assessment of antibody secreting cell and memory B cell isotype, antigen specificity, and temporal alterations during CNS inflammation.
Background CNS inflammation resulting from infection, injury, or neurodegeneration leads to accumulation of diverse B cell subsets. Although antibody secreting cells (ASC) within the inflamed CNS have been extensively examined, memory B cell (Bmem) characterization has been limited as they do not secrete antibody without stimulation. Moreover, unlike human Bmem, reliable surface markers for murine Bmem remain elusive. New method Using a viral encephalomyelitis model we developed a modified limiting dilution in vitro stimulation assay to convert CNS-derived virus specific Bmem into ASC. Comparison with existing methods Stimulation methods established for lymphoid tissue cells using prolonged stimulation with viral lysate resulted in substantial ASC loss and minimal Bmem to ASC conversion of CNS-derived cells. By varying stimulation duration, TLR activators, and culture supplements, we achieved optimal conversion by culturing cells with TLR7/8 agonist R848 in the presence of feeder cells for 2 days. Results Flow cytometry markers CD38 and CD73 characterizing murine Bmem from lymphoid tissue showed more diverse expression patterns on corresponding CNS-derived B cell subsets. Using the optimized TLR7/8 stimulation protocol, we compared virus-specific IgG Bmem versus pre-existing ASC within the brain and spinal cord. Increasing Bmem frequencies during chronic infection mirrored kinetics of ASC. However, despite initially similar Bmem and ASC accumulation, Bmem prevailed in the brain, but were lower than ASC in the spinal cord during persistence. Conclusion Simultaneous enumeration of antigen-specific Bmem and ASC using the Bmem assay optimized for CNS-derived cells enables characterization of temporal changes during microbial or auto-antigen induced neuroinflammation.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States; School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
| | - Stephen A Stohlman
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Cornelia C Bergmann
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States.
| |
Collapse
|
20
|
Baxter VK, Griffin DE. Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J Gen Virol 2016; 97:2908-2925. [PMID: 27667782 DOI: 10.1099/jgv.0.000613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ (Ifng-/-) or IFN-γ receptor (Ifngr1-/-) were studied in comparison to WT mice. Maximum production of Ifng mRNA and IFN-γ protein in the CNS of WT and Ifngr1-/- mice occurred 5-7 days after infection, with higher levels of IFN-γ in Ifngr1-/- mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although Ifngr1-/- mice recovered more rapidly. Ifng-/- and Ifngr1-/- mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in Ifngr1-/- and Ifng-/- mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.
Collapse
Affiliation(s)
- Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Gray M, Gray D. Regulatory B cells mediate tolerance to apoptotic self in health: implications for disease. Int Immunol 2015; 27:505-11. [PMID: 26306497 DOI: 10.1093/intimm/dxv045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
B cells are able to regulate immune responses through the secretion of IL-10 and other inhibitory cytokines, though no transcription factor that can define 'regulatory B cells' as a separate lineage has yet been found. Instead it is likely that this function arises as a result of the immune context in which B cells find themselves and the stimuli they perceive. However, some B cells found within the B1a and the marginal zone subsets have a greater propensity to produce IL-10 than others. What are the natural stimuli for these cells to induce immune regulation? We discuss the role that the recognition of autoantigens exposed by apoptotic cells plays in stimulating IL-10 production in mouse and human studies. This mechanism involves the recognition and uptake of self-antigens by autoreactive BCRs, for delivery to endocytic compartments, where apoptosis-derived DNA binds to TLR9, driving IL-10 production. These 'natural' regulatory B cells represent a way of maintaining tolerance to self. We discuss how this may operate in inflammatory lesions where there is an excess of apoptotic leukocytes and how this impacts on our understanding of autoimmune disease.
Collapse
Affiliation(s)
- Mohini Gray
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David Gray
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
22
|
Romero-Ramírez H, Morales-Guadarrama MT, Pelayo R, López-Santiago R, Santos-Argumedo L. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology 2015; 144:271-81. [PMID: 25155483 DOI: 10.1111/imm.12370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 01/06/2023] Open
Abstract
CD38 is a 45,000 molecular weight transmembrane protein that is expressed in immature and mature lymphocytes. However, the expression and function of CD38 during B-cell differentiation in mice is poorly understood. Here, we report that CD38 is expressed from the earliest stages of B-cell development. Pre-pro-B, pro-B, pre-B and immature B cells from murine bone marrow all stained positive for CD38. Interestingly, CD38 expression increases with B-cell maturation. To assess the role of CD38 during B-cell maturation, CD38-deficient mice were analysed. CD38(-/-) mice showed a significant increase in both the frequency of B-lineage cells and the absolute numbers of pre-pro-B cells in bone marrow; however, no other differences were observed at later stages. CD38 cross-linking in Ba/F3 cells promoted apoptosis and marked extracellular signal-regulated kinase (ERK) phosphorylation, and these effects were reduced by treatment with the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and similar effects were observed in B-cell precursors from bone marrow. These data demonstrate that B-cell precursors in mouse bone marrow express functional CD38 and implicate the early ligation of CD38 in the ERK-associated regulation of the B-lineage differentiation pathway.
Collapse
Affiliation(s)
- Héctor Romero-Ramírez
- Department of Molecular Biomedicine, Centre for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico; Department of Immunology, National School of Biological Sciences, IPN, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
23
|
Chen Q, Ross AC. All-trans-retinoic acid and CD38 ligation differentially regulate CD1d expression and α-galactosylceramide-induced immune responses. Immunobiology 2014; 220:32-41. [PMID: 25248321 DOI: 10.1016/j.imbio.2014.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
The MHC class-I like molecule CD1d presents glycolipid antigens and thereby activates invariant natural killer-T (NKT) cells. However, little is understood regarding the regulation of its expression. All-trans-retinoic acid (RA) and CD38, which is itself a target of RA, both independently regulate the differentiation of antigen presenting cells. In the current study, we treated human THP-1 cells and murine splenic cells with RA, with and without antibody-mediated ligation of cell-surface CD38. Whereas a physiological concentration (20 nM) of RA alone rapidly and markedly increased CD1d protein in THP-1 cells, there was a marked synergy between RA and ligation of CD38 with antibody to CD38. Moreover, RA and CD38 ligation differentially regulated CD1d protein distribution between the cell surface and intracellular compartments, as, whereas RA mainly increased intracellular CD1d protein, ligation of CD38 increased CD1d protein both at the cell surface and intracellularly. By confocal microscopy, CD1d was located close to the plasma membrane but only partially overlapped with LAMP1, a late endosomes/lysosomal marker. Furthermore, RA and/or CD38 ligation increased splenocyte proliferation and differentiation after treatment with the CD1 ligand α-galactosylceramide (αGalCer), evidenced by an increase in the number of splenic dendritic cells, NKT cells, and germinal center plasmacytes. RA also differentially regulated αGalCer-induced cytokine expression, increasing IL-4 and decreasing IFNγ production by total spleen cells and the NKT cell population. Our results indicate a previously unknown mechanism in which RA and CD38 differentially yet cooperatively regulate CD1d expression and antigen-presenting function, which could be important for the enhancement of immunity.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, United States; Center for Immunology and Infectious Diseases, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
24
|
Gene expression profiling in peripheral blood mononuclear cells of patients with common variable immunodeficiency: modulation of adaptive immune response following intravenous immunoglobulin therapy. PLoS One 2014; 9:e97571. [PMID: 24831519 PMCID: PMC4022614 DOI: 10.1371/journal.pone.0097571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/21/2014] [Indexed: 12/11/2022] Open
Abstract
Background Regular intravenous immunoglobulin treatment is used to replace antibody deficiency in primary immunodeficiency diseases; however the therapeutic effect seems to be related not only to antibody replacement but also to an active role in the modulation of the immune response. Common variable immunodeficiency is the most frequent primary immunodeficiency seen in clinical practice. Methods We have studied the effect of intravenous immunoglobulin replacement in patients with common variable immunodeficiency by evaluating the gene-expression profiles from Affimetrix HG-U133A. Some of the gene array results were validated by real time RT-PCR and by the measurement of circulating cytokines and chemokines by ELISA. Moreover we performed FACS analysis of blood mononuclear cells from the patients enrolled in the study. Results A series of genes involved in innate and acquired immune responses were markedly up- or down-modulated before therapy. Such genes included CD14, CD36, LEPR, IRF-5, RGS-1, CD38, TNFRSF25, IL-4, CXCR4, CCR3, IL-8. Most of these modulated genes showed an expression similar to that of normal controls after immunoglobulin replacement. Real time RT-PCR of selected genes and serum levels of IL-4, CXCR4 before and after therapy changed accordingly to gene array results. Interestingly, serum levels of IL-8 remained unchanged, as the corresponding gene, before and after treatment. FACS analysis showed a marked decrease of CD8+T cells and an increase of CD4+T cells following treatment. Moreover we observed a marked increase of CD23−CD27−IgM−IgG− B cells (centrocytes). Conclusions Our results are in accordance with previous reports and provide further support to the hypothesis that the benefits of intravenous immunoglobulin therapy are not only related to antibody replacement but also to its ability to modulate the immune response in common variable immunodeficiency.
Collapse
|
25
|
Vences-Catalán F, Rajapaksa R, Levy S, Santos-Argumedo L. The CD19/CD81 complex physically interacts with CD38 but is not required to induce proliferation in mouse B lymphocytes. Immunology 2012; 137:48-55. [PMID: 22564057 DOI: 10.1111/j.1365-2567.2012.03602.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In B lymphocytes, the cell surface receptor CD38 is involved in apoptosis of immature B cells, proliferation and differentiation of mature B cells. Although CD38 has been establish as a receptor, its signaling has been only partially characterized. As a result of the lack of signaling motifs in the cytoplasmic domain, CD38 must use a co-receptor to induce signaling within the cell. Accordingly, CD38 has been associated with different receptors such as the T-cell receptor/CD3 complex on T cells, CD16 on natural killer cells and MHC class II molecules on monocytes. The CD19/CD81 complex has been proposed as a co-receptor for CD38 in human B lymphocytes, but little or no characterization has been performed in mice. In this study the contribution of the CD19/CD81 complex in murine CD38 signaling was evaluated. Proliferation assays were performed using CD19(-/-) or CD81(-/-) deficient mice; CFSE-labeled B lymphocytes from wild-type mice and CD19(-/-) , CD81(-/-) and CD38(-/-) deficient mice were stimulated with agonistic antibodies against CD38. Immunoprecipitation and immunofluorescence were also performed to detect protein-protein interactions. Our results indicate that the CD19/CD81 complex interacts with CD38 but this interaction is not required to induce proliferation in mouse B lymphocytes, suggesting that other receptors may contribute to the proliferation induced by CD38 in B lymphocytes.
Collapse
|