1
|
Qiao Z, Yokoyama T, Yan XF, Beh IT, Shi J, Basak S, Akiyama Y, Gao YG. Cryo-EM structure of the entire FtsH-HflKC AAA protease complex. Cell Rep 2022; 39:110890. [PMID: 35649372 DOI: 10.1016/j.celrep.2022.110890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
The membrane-bound AAA protease FtsH is the key player controlling protein quality in bacteria. Two single-pass membrane proteins, HflK and HflC, interact with FtsH to modulate its proteolytic activity. Here, we present structure of the entire FtsH-HflKC complex, comprising 12 copies of both HflK and HflC, all of which interact reciprocally to form a cage, as well as four FtsH hexamers with periplasmic domains and transmembrane helices enclosed inside the cage and cytoplasmic domains situated at the base of the cage. FtsH K61/D62/S63 in the β2-β3 loop in the periplasmic domain directly interact with HflK, contributing to complex formation. Pull-down and in vivo enzymatic activity assays validate the importance of the interacting interface for FtsH-HflKC complex formation. Structural comparison with the substrate-bound human m-AAA protease AFG3L2 offers implications for the HflKC cage in modulating substrate access to FtsH. Together, our findings provide a better understanding of FtsH-type AAA protease holoenzyme assembly and regulation.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| | - Tatsuhiko Yokoyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| | - Ing Tsyr Beh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jian Shi
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
2
|
Miyazaki R, Akiyama Y, Mori H. Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation. eLife 2020; 9:62623. [PMID: 33320090 PMCID: PMC7793623 DOI: 10.7554/elife.62623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the translocation and arrest-cancelation of VemP. We also identified the conserved Arg-85 residue of VemP as a crucial element that confers PpiD-dependence to VemP and plays an essential role in the regulated arrest-cancelation. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Synthetic hydrophobic peptides derived from MgtR weaken Salmonella pathogenicity and work with a different mode of action than endogenously produced peptides. Sci Rep 2019; 9:15253. [PMID: 31649255 PMCID: PMC6813294 DOI: 10.1038/s41598-019-51760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/24/2019] [Indexed: 12/03/2022] Open
Abstract
Due to the antibiotic resistance crisis, novel therapeutic strategies need to be developed against bacterial pathogens. Hydrophobic bacterial peptides (small proteins under 50 amino acids) have emerged as regulatory molecules that can interact with bacterial membrane proteins to modulate their activity and/or stability. Among them, the Salmonella MgtR peptide promotes the degradation of MgtC, a virulence factor involved in Salmonella intramacrophage replication, thus providing the basis for an antivirulence strategy. We demonstrate here that endogenous overproduction of MgtR reduced Salmonella replication inside macrophages and lowered MgtC protein level, whereas a peptide variant of MgtR (MgtR-S17I), which does not interact with MgtC, had no effect. We then used synthetic peptides to evaluate their action upon exogenous addition. Unexpectedly, upon addition of synthetic peptides, both MgtR and its variant MgtR-S17I reduced Salmonella intramacrophage replication and lowered MgtC and MgtB protein levels, suggesting a different mechanism of action of exogenously added peptides versus endogenously produced peptides. The synthetic peptides did not act by reducing bacterial viability. We next tested their effect on various recombinant proteins produced in Escherichia coli and showed that the level of several inner membrane proteins was strongly reduced upon addition of both peptides, whereas cytoplasmic or outer membrane proteins remained unaffected. Moreover, the α-helical structure of synthetic MgtR is important for its biological activity, whereas helix-helix interacting motif is dispensable. Cumulatively, these results provide perspectives for new antivirulence strategies with the use of peptides that act by reducing the level of inner membrane proteins, including virulence factors.
Collapse
|
4
|
Yoshitani K, Hizukuri Y, Akiyama Y. An in vivo protease activity assay for investigating the functions of the Escherichia coli membrane protease HtpX. FEBS Lett 2019; 593:842-851. [PMID: 30903618 DOI: 10.1002/1873-3468.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 11/06/2022]
Abstract
Escherichia coli HtpX is an M48 family zinc metalloproteinase located in the cytoplasmic membrane. Previous studies suggested that it is involved in the quality control of membrane proteins. However, its in vivo proteolytic function has not been characterized in detail, mainly because the physiological substrates have not been identified and no model substrate that allows sensitive detection of the protease activity is available. We constructed a new model substrate of HtpX and established an in vivo semiquantitative and convenient protease activity assay system for HtpX. This system enables detection of differential protease activities of HtpX mutants carrying mutations in conserved regions. This system would also be useful for investigating the functions of HtpX and its homologs in other bacteria.
Collapse
Affiliation(s)
- Kohei Yoshitani
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| |
Collapse
|
5
|
Abstract
For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of Escherichia coli. While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| |
Collapse
|
6
|
Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J Bacteriol 2012; 194:5388-403. [PMID: 22865844 DOI: 10.1128/jb.00899-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa exhibits distinct surface-associated behaviors, including biofilm formation, flagellum-mediated swarming motility, and type IV pilus-driven twitching. Here, we report a role for the minor pilins, PilW and PilX, components of the type IV pilus assembly machinery, in the repression of swarming motility. Mutating either the pilW or pilX gene alleviates the inhibition of swarming motility observed for strains with elevated levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP) due to loss of BifA, a c-di-GMP-degrading phosphodiesterase. Blocking PilD peptidase-mediated processing of PilW and PilX renders the unprocessed proteins defective for pilus assembly but still functional in c-di-GMP-mediated swarming repression, indicating our ability to separate these functions. Strains with mutations in pilW or pilX also fail to exhibit the increase in c-di-GMP levels observed when wild-type (WT) or bifA mutant cells are grown on a surface. We also provide data showing that c-di-GMP levels are increased upon PilY1 overexpression in surface-grown cells and that this c-di-GMP increase does not occur in the absence of the SadC diguanylate cyclase. Increased levels of endogenous PilY1, PilX, and PilA are observed when cells are grown on a surface compared to liquid growth, linking surface growth and enhanced signaling via SadC. Our data support a model wherein PilW, PilX, and PilY1, in addition to their role(s) in type IV pilus biogenesis, function to repress swarming via modulation of intracellular c-di-GMP levels. By doing so, these pilus assembly proteins contribute to P. aeruginosa's ability to coordinately regulate biofilm formation with its two surface motility systems.
Collapse
|
7
|
Vertommen A, Panis B, Swennen R, Carpentier SC. Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 2011; 74:1165-81. [PMID: 21354347 DOI: 10.1016/j.jprot.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
Abstract
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.
Collapse
Affiliation(s)
- A Vertommen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
8
|
Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol 2010; 192:2950-64. [PMID: 20233936 DOI: 10.1128/jb.01642-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular signaling molecule cyclic-di-GMP (c-di-GMP) has been shown to influence surface-associated behaviors of Pseudomonas aeruginosa, including biofilm formation and swarming motility. Previously, we reported a role for the bifA gene in the inverse regulation of biofilm formation and swarming motility. The bifA gene encodes a c-di-GMP-degrading phosphodiesterase (PDE), and the Delta bifA mutant exhibits increased cellular pools of c-di-GMP, forms hyperbiofilms, and is unable to swarm. In this study, we isolated suppressors of the Delta bifA swarming defect. Strains with mutations in the pilY1 gene, but not in the pilin subunit pilA gene, show robust suppression of the swarming defect of the Delta bifA mutant, as well as its hyperbiofilm phenotype. Despite the ability of the pilY1 mutation to suppress all the c-di-GMP-related phenotypes, the global pools of c-di-GMP are not detectably altered in the Delta bifA Delta pilY1 mutant relative to the Delta bifA single mutant. We also show that enhanced expression of the pilY1 gene inhibits swarming motility, and we identify residues in the putative VWA domain of PilY1 that are important for this phenotype. Furthermore, swarming repression by PilY1 specifically requires the diguanylate cyclase (DGC) SadC, and epistasis analysis indicates that PilY1 functions upstream of SadC. Our data indicate that PilY1 participates in multiple surface behaviors of P. aeruginosa, and we propose that PilY1 may act via regulation of SadC DGC activity but independently of altering global c-di-GMP levels.
Collapse
|
9
|
Yusa F, Steiner JM, Löffelhardt W. Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa. BMC Evol Biol 2008; 8:304. [PMID: 18976493 PMCID: PMC2600650 DOI: 10.1186/1471-2148-8-304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 11/01/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanelles, the peptidoglycan-armored plastids of glaucocystophytes, occupy a unique bridge position in between free-living cyanobacteria and chloroplasts. In some respects they side with cyanobacteria whereas other features are clearly shared with chloroplasts. The Sec translocase, an example for "conservative sorting" in the course of evolution, is found in the plasma membrane of all prokaryotes, in the thylakoid membrane of chloroplasts and in both these membrane types of cyanobacteria. RESULTS In this paper we present evidence for a dual location of the Sec translocon in the thylakoid as well as inner envelope membranes of the cyanelles from Cyanophora paradoxa, i. e. conservative sorting sensu stricto. The prerequisite was the generation of specific antisera directed against cyanelle SecY that allowed immunodetection of the protein on SDS gels from both membrane types separated by sucrose density gradient floatation centrifugation. Immunoblotting of blue-native gels yielded positive but differential results for both the thylakoid and envelope Sec complexes, respectively. In addition, heterologous antisera directed against components of the Toc/Tic translocons and binding of a labeled precursor protein were used to discriminate between inner and outer envelope membranes. CONCLUSION The envelope translocase can be envisaged as a prokaryotic feature missing in higher plant chloroplasts but retained in cyanelles, likely for protein transport to the periplasm. Candidate passengers are cytochrome c6 and enzymes of peptidoglycan metabolism. The minimal set of subunits of the Toc/Tic translocase of a primitive plastid is proposed.
Collapse
Affiliation(s)
- Fumie Yusa
- SLT, Nagahama-city, Shiga-ken 526-0829, Japan.
| | | | | |
Collapse
|
10
|
Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B. Proteome analysis of non-model plants: a challenging but powerful approach. MASS SPECTROMETRY REVIEWS 2008; 27:354-77. [PMID: 18381744 DOI: 10.1002/mas.20170] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.
Collapse
|
11
|
Koide K, Ito K, Akiyama Y. Substrate Recognition and Binding by RseP, an Escherichia coli Intramembrane Protease. J Biol Chem 2008; 283:9562-70. [DOI: 10.1074/jbc.m709984200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Entry exclusion in the IncHI1 plasmid R27 is mediated by EexA and EexB. Plasmid 2008; 59:86-101. [DOI: 10.1016/j.plasmid.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/04/2007] [Accepted: 11/27/2007] [Indexed: 11/18/2022]
|
13
|
Merritt JH, Brothers KM, Kuchma SL, O'Toole GA. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 2007; 189:8154-64. [PMID: 17586642 PMCID: PMC2168701 DOI: 10.1128/jb.00585-07] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 06/11/2007] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa has served as an important organism in the study of biofilm formation; however, we still lack an understanding of the mechanisms by which this microbe transitions to a surface lifestyle. A recent study of the early stages of biofilm formation implicated the control of flagellar reversals and production of an exopolysaccharide (EPS) as factors in the establishment of a stable association with the substratum and swarming motility. Here we present evidence that SadC (PA4332), an inner membrane-localized diguanylate cyclase, plays a role in controlling these cellular functions. Deletion of the sadC gene results in a strain that is defective in biofilm formation and a hyperswarmer, while multicopy expression of this gene promotes sessility. A DeltasadC mutant was additionally found to be deficient in EPS production and display altered reversal behavior while swimming in high-viscosity medium, two behaviors proposed to influence biofilm formation and swarming motility. Epistasis analysis suggests that the sadC gene is part of a genetic pathway that allows for the concomitant regulation of these aspects of P. aeruginosa surface behavior. We propose that SadC and the phosphodiesterase BifA (S. L. Kuchma et al., J. Bacteriol. 189:8165-8178, 2007), via modulating levels of the signaling molecule cyclic-di-GMP, coregulate swarming motility and biofilm formation as P. aeruginosa transitions from a planktonic to a surface-associated lifestyle.
Collapse
Affiliation(s)
- Judith H Merritt
- Department of Microbiology and Immunology, Rm. 505, Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
14
|
Braun RJ, Kinkl N, Beer M, Ueffing M. Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 2007; 389:1033-45. [PMID: 17680235 DOI: 10.1007/s00216-007-1514-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 01/26/2023]
Abstract
One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.
Collapse
Affiliation(s)
- Ralf J Braun
- GSF-National Research Center for Environment and Health, Institute of Human Genetics, Ingolstaedter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | | | | | |
Collapse
|
15
|
Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O'Toole GA. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 2007; 189:8165-78. [PMID: 17586641 PMCID: PMC2168662 DOI: 10.1128/jb.00586-07] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The intracellular signaling molecule, cyclic-di-GMP (c-di-GMP), has been shown to influence bacterial behaviors, including motility and biofilm formation. We report the identification and characterization of PA4367, a gene involved in regulating surface-associated behaviors in Pseudomonas aeruginosa. The PA4367 gene encodes a protein with an EAL domain, associated with c-di-GMP phosphodiesterase activity, as well as a GGDEF domain, which is associated with a c-di-GMP-synthesizing diguanylate cyclase activity. Deletion of the PA4367 gene results in a severe defect in swarming motility and a hyperbiofilm phenotype; thus, we designate this gene bifA, for biofilm formation. We show that BifA localizes to the inner membrane and, in biochemical studies, that purified BifA protein exhibits phosphodiesterase activity in vitro but no detectable diguanylate cyclase activity. Furthermore, mutational analyses of the conserved EAL and GGDEF residues of BifA suggest that both domains are important for the observed phosphodiesterase activity. Consistent with these data, the DeltabifA mutant exhibits increased cellular pools of c-di-GMP relative to the wild type and increased synthesis of a polysaccharide produced by the pel locus. This increased polysaccharide production is required for the enhanced biofilm formed by the DeltabifA mutant but does not contribute to the observed swarming defect. The DeltabifA mutation also results in decreased flagellar reversals. Based on epistasis studies with the previously described sadB gene, we propose that BifA functions upstream of SadB in the control of biofilm formation and swarming.
Collapse
Affiliation(s)
- Sherry L Kuchma
- Department of Microbiology and Immunology, Dartmouth Medical School, Rm. 505, Vail Building, North College St., Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
16
|
Akiyama Y, Maegawa S. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol Microbiol 2007; 64:1028-37. [PMID: 17501925 DOI: 10.1111/j.1365-2958.2007.05715.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rhomboids are a family of serine proteases belonging to intramembrane cleaving proteases, which are supposed to catalyse proteolysis of a substrate protein within the membrane. It remains unclear whether substrates of the rhomboid proteases have a common sequence feature that allows specific cleavage by rhomboids. We showed previously that GlpG, the Escherichia coli rhomboid, can cleave a type I model membrane protein Bla-LY2-MBP having the second transmembrane region of lactose permease (LY2) at the extramembrane region in vivo and in vitro, and that determinants for proteolysis reside within the LY2 sequence. Here we characterized sequence features in LY2 that allow efficient cleavage by GlpG and identified two elements, a hydrophilic region encompassing the cleavage site and helix-destabilizing residues in the downstream hydrophobic region. Importance of the positioning of helix-destabilizers relative to the cleavage site was suggested. These two elements appear to co-operatively promote proteolysis of substrates by GlpG. Finally, random mutagenesis of the cleavage site residues in combination with in vivo screening revealed that GlpG prefers residues with a small side chain and a negative charge at the P1 and P1' sites respectively.
Collapse
Affiliation(s)
- Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | |
Collapse
|
17
|
Kashino Y, Harayama T, Pakrasi HB, Satoh K. Preparation of membrane proteins for analysis by two-dimensional gel electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:282-92. [PMID: 17113836 DOI: 10.1016/j.jchromb.2006.10.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/23/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
In order to separate hydrophobic membrane proteins, we have developed a novel two-dimensional electrophoresis system. For the iso-electric focusing, agarose was used as a supporting matrix and n-dodecyl-beta-D-maltopyranoside was used as a surfactant. In combination with a previously developed Tris/MES electrophoresis system in the second dimension, distinct spots were reproducibly detected from hydrophobic membrane proteins whose grand average hydropathicity (GRAVY) exceed 0.3. In contrast to the immobilized pH gradient system, c-type heme was also visualized in this system.
Collapse
Affiliation(s)
- Yasuhiro Kashino
- Department of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | |
Collapse
|
18
|
Koide K, Maegawa S, Ito K, Akiyama Y. Environment of the active site region of RseP, an Escherichia coli regulated intramembrane proteolysis protease, assessed by site-directed cysteine alkylation. J Biol Chem 2006; 282:4553-4560. [PMID: 17179147 DOI: 10.1074/jbc.m607339200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) plays crucial roles in both prokaryotic and eukaryotic organisms. Proteases for RIP cleave transmembrane regions of substrate membrane proteins. However, the molecular mechanisms for the proteolysis of membrane-embedded transmembrane sequences are largely unknown. Here we studied the environment surrounding the active site region of RseP, an Escherichia coli S2P ortholog involved in the sigma(E) pathway of extracytoplasmic stress responses. RseP has two presumed active site motifs, HEXXH and LDG, located in membrane-cytoplasm boundary regions. We examined the reactivity of cysteine residues introduced within or in the vicinity of these two active site motifs with membrane-impermeable thiol-alkylating reagents under various conditions. The active site positions were inaccessible to the reagents in the native state, but many of them became partially modifiable in the presence of a chaotrope, while requiring simultaneous addition of a chaotrope and a detergent for full modification. These results suggest that the active site of RseP is not totally embedded in the lipid phase but located within a proteinaceous structure that is partially exposed to the aqueous milieu.
Collapse
Affiliation(s)
- Kayo Koide
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Saki Maegawa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Koreaki Ito
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
19
|
Hinsa SM, O'Toole GA. Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. MICROBIOLOGY-SGM 2006; 152:1375-1383. [PMID: 16622054 DOI: 10.1099/mic.0.28696-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A role for the outer-membrane-associated LapA protein in early biofilm formation by Pseudomonas fluorescens WCS365 has previously been shown. This paper reports that lapD, a gene located adjacent to the lapA gene, also plays a role in biofilm formation. A mutation in lapD results in a conditional biofilm defect in a static assay - this biofilm phenotype is exacerbated when biofilm formation is assayed in a flow-cell system. Furthermore, a lapD mutation shows a partial defect in the transition from reversible to irreversible attachment, consistent with an early role for the lapD gene product in biofilm formation. LapD is shown to be localized to the inner membrane of P. fluorescens. The data show decreased LapA associated with the cell surface, but no apparent change in cytoplasmic levels of this protein or lapA transcription, in a lapD mutant. A model is proposed wherein the role of LapD in biofilm formation is modulating the secretion of the LapA adhesin.
Collapse
Affiliation(s)
- Shannon M Hinsa
- Department of Microbiology and Immunology, Room 505 Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Room 505 Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
20
|
Chiba S, Ito K, Akiyama Y. The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations. Mol Microbiol 2006; 60:448-57. [PMID: 16573693 DOI: 10.1111/j.1365-2958.2006.05104.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two membrane proteases, FtsH and HtpX, are jointly essential for Escherichia coli cell viability, presumably through their abilities to degrade abnormal membrane proteins. To search for additional cellular factors involved in membrane protein quality control, we isolated multicopy suppressors that alleviated the growth defect of the ftsH/htpX dual disruption mutant. One of them was ybbK, which is renamed qmcA, encoding a membrane-bound prohibitin homology (PHB) domain family protein. Multicopy suppression was also observed with hflK-hflC, encoding another set of PHB domain membrane proteins, which had been known to form a complex (HflKC) and to interact with FtsH. Whereas the DeltaftsH sfhC21 (a viability defect suppressor for DeltaftsH) strain exhibited temperature sensitivity in the presence of cAMP, additional disruption of both qmcA and hflK-hflC exaggerated the growth defect. Pull-down and sedimentation experiments showed that QmcA, like HflKC, forms an oligomer and interacts with FtsH. Protease accessibility assays revealed that QmcA, unlike periplasmically exposed HflKC, possesses a cytoplasmically disposed large C-terminal domain, thus assuming the type I (NOUT-CIN) orientation. We discuss possible significance of having PHB domains on both sides of the membrane.
Collapse
Affiliation(s)
- Shinobu Chiba
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
21
|
Sakoh M, Ito K, Akiyama Y. Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. J Biol Chem 2005; 280:33305-10. [PMID: 16076848 DOI: 10.1074/jbc.m506180200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli HtpX is a putative membrane-bound zinc metalloprotease that has been suggested to participate in the proteolytic quality control of membrane proteins in conjunction with FtsH, a membrane-bound and ATP-dependent protease. Here, we biochemically characterized HtpX and confirmed its proteolytic activities against membrane and soluble proteins. HtpX underwent self-degradation upon cell disruption or membrane solubilization. Consequently, we purified HtpX under denaturing conditions and then refolded it in the presence of a zinc chelator. When supplemented with Zn2+, the purified enzyme exhibited self-cleavage activity. In the presence of zinc, it also degraded casein and cleaved a solubilized membrane protein, SecY. We verified its ability to cleave SecY in vivo by overproducing both HtpX and SecY. These results showed that HtpX is a zinc-dependent endoprotease member of the membrane-localized proteolytic system in E. coli.
Collapse
Affiliation(s)
- Machiko Sakoh
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
22
|
Saikawa N, Akiyama Y, Ito K. FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J Struct Biol 2004; 146:123-9. [PMID: 15037243 DOI: 10.1016/j.jsb.2003.09.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Indexed: 10/26/2022]
Abstract
FtsH is an ATP-dependent and membrane-associated protease, which exerts processive proteolysis against membrane-embedded and soluble substrate proteins. Although previous studies suggested that it functions as a homo-oligomer and it also interacts with HflK-HflC membrane protein complex (HflKC), it is still important to address the question of what kind of supramolecular assembly FtsH forms in wild-type cells. Now we show that FtsH in wild-type Escherichia coli cells exists exclusively as a large complex, termed FtsH holo-enzyme, which can be separated from bulk of membrane proteins after detergent solubilization and velocity sedimentation. This complex appears to have molecular mass of around 1000 kDa. A tentative model is presented that it is composed of hexamers of FtsH and of HflKC, with an ability to bind one or a few substrate molecules.
Collapse
Affiliation(s)
- Naoya Saikawa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
23
|
Mori H, Tsukazaki T, Masui R, Kuramitsu S, Yokoyama S, Johnson AE, Kimura Y, Akiyama Y, Ito K. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J Biol Chem 2003; 278:14257-64. [PMID: 12533543 DOI: 10.1074/jbc.m300230200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecY and SecE are the two principal translocase subunits that create a channel-like pathway for the transit of preprotein across the bacterial cytoplasmic membrane. Here we report the cloning, expression, and purification of the SecYE complex (TSecYE) from a thermophilic bacterium, Thermus thermophilus HB8. Purified TSecYE can be reconstituted into proteoliposomes that function in T. thermophilus SecA (TSecA) dependent preprotein translocation. After the mixing of TSecYE derivatives labeled with either a donor or an acceptor fluorophore during reconstitution, fluorescence resonance energy transfer experiments demonstrated that 2 or more units of TSecYE in the lipid bilayer associate to form a largely non-exchangeable oligomeric structure.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Laursen BS, Siwanowicz I, Larigauderie G, Hedegaard J, Ito K, Nakamura Y, Kenney JM, Mortensen KK, Sperling-Petersen HU. Characterization of mutations in the GTP-binding domain of IF2 resulting in cold-sensitive growth of Escherichia coli. J Mol Biol 2003; 326:543-51. [PMID: 12559921 DOI: 10.1016/s0022-2836(02)01367-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The infB gene encodes translation initiation factor IF2. We have determined the entire sequence of infB from two cold-sensitive Escherichia coli strains IQ489 and IQ490. These two strains have been isolated as suppressor strains for the temperature-sensitive secretion mutation secY24. The mutations causing the suppression phenotype are located within infB. The only variations from the wild-type (wt) infB found in the two mutant strains are a replacement of Asp409 with Glu in strain IQ489 and an insertion of Gly between Ala421 and Gly422 in strain IQ490. Both positions are located in the GTP-binding G-domain of IF2. A model of the G-domain of E.coli IF2 is presented in. Physiological quantities of the recombinant mutant proteins were expressed in vivo in E.coli strains from which the chromosomal infB gene has been inactivated. At 42 degrees C, the mutants sustained normal cell growth, whereas a significant decrease in growth rate was found at 25 degrees C for both mutants as compared to wt IF2 expressed in the control strain. Circular dichroism spectra were recorded of the wt and the two mutant proteins to investigate the structural properties of the proteins. The spectra are characteristic of alpha-helix dominated structure, and reveal a significant different behavior between the wt and mutant IF2s with respect to temperature-induced conformational changes. The temperature-induced conformational change of the wt IF2 is a two-state process. In a ribosome-dependent GTPase assay in vitro the two mutants showed practically no activity at temperatures below 10 degrees C and a reduced activity at all temperatures up to 45 degrees C, as compared to wt IF2. The results indicate that the amino acid residues, Asp409 and Gly422, are located in important regions of the IF2 G-domain and demonstrate the importance of GTP hydrolysis in translation initiation for optimal cell growth.
Collapse
|
25
|
Mori H, Akiyama Y, Ito K. A SecE mutation that modulates SecY-SecE translocase assembly, identified as a specific suppressor of SecY defects. J Bacteriol 2003; 185:948-56. [PMID: 12533470 PMCID: PMC142837 DOI: 10.1128/jb.185.3.948-956.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 11/04/2002] [Indexed: 11/20/2022] Open
Abstract
The SecY39(Cs) (cold-sensitive) alteration of Arg357 results in a defect of translocation initiation. As a means to dissect the Sec translocation machinery, we isolated mutations that act as suppressors of the secY39 defect. A specific secE mutation, designated secE105, was thus isolated. This mutation proved to be identical with the prlG2 mutation and to suppress a number of cold-sensitive secY mutations. However, other prlG mutations did not effectively suppress the secY defects. Evidence indicates that the Ser105-to-Pro alteration in the C-terminal transmembrane segment of SecE weakens SecY-SecE association. In vitro analyses showed that the SecE(S105P) alteration preferentially stimulates the initial phase of translocation. It is suggested that the S105P alteration affects the SecYEG channel such that it is more prone to open and to accept the translocation initiation domain of a preprotein molecule.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
26
|
Mori H, Shimizu Y, Ito K. Superactive SecY variants that fulfill the essential translocation function with a reduced cellular quantity. J Biol Chem 2002; 277:48550-7. [PMID: 12351621 DOI: 10.1074/jbc.m204436200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fifth and the sixth cytoplasmic regions (C5 and C6) of SecY are important for the SecA-driven preprotein translocation reaction. A cold-sensitive mutation, secY205 (Tyr-429 --> Asp), in C6 impairs the ATP- and precursor-dependent SecA insertion into the membrane. We now identified second site mutations that suppressed the defect. Cis-placement of these mutations proved to suppress mutations at another essential residue (Arg-357) of SecY as well. Thus, they tolerate the otherwise defective SecY alterations in the same molecule. Two alterations (Ile-195 to Ser in TM5 region and Ile-408 to Leu in TM10 region) were found to make the translocation channel more active, because it enabled cells to survive with reduced content of the SecYE complex. These mutations only very weakly suppressed a signal sequence defect of the lambda receptor protein. The mutant SecYEG translocase exhibited higher than normal activity in vitro, being accompanied by striking independence of the proton motive force as well as by stabilization of a bound and active SecA species against urea treatment. These results have been interpreted in terms of balance shifts between channel closing and channel opening alterations in the SecYEG translocase.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Sakyo-ku, Japan
| | | | | |
Collapse
|
27
|
Shimohata N, Chiba S, Saikawa N, Ito K, Akiyama Y. The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 2002; 7:653-62. [PMID: 12081643 DOI: 10.1046/j.1365-2443.2002.00554.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The abnormal accumulation of misfolded proteins outside the plasma (cytoplasmic or inner) membrane up-regulates the synthesis of a class of envelope-localized catalysts of protein folding and degradation. The pathway for this transmembrane signalling is mediated by the CpxR-CpxA two-component phospho-relay mechanism. RESULTS We now show that an abnormality in the plasma membrane proteins, due either to the impairment of FtsH, a protease acting against integral membrane proteins, or to the overproduction of a substrate membrane protein of FtsH, activates this stress response pathway. Under such conditions, the cpxR gene function becomes essential for cell growth. We further show that the expression of a putative protease, HtpX, in the plasma membrane, is under the control of CpxR. Synthetic growth inhibition was observed when the ftsH and htpX disruption mutations had been combined, suggesting that these gene products have some complementary or overlapping proteolytic functions. Topology analyses indicated that the metalloproteinase active site of HtpX is located on the cytosolic side of the membrane. CONCLUSIONS Taken together, these results suggest that the Cpx "extracytoplasmic" stress response system controls the quality of the plasma membrane, even on its cytoplasmic side.
Collapse
|
28
|
Akiyama Y. Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:8066-71. [PMID: 12034886 PMCID: PMC123021 DOI: 10.1073/pnas.122616899] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FtsH is a membrane-bound, ATP-dependent metalloprotease in Escherichia coli that degrades some integral membrane proteins and cytoplasmic proteins. In this study, we show that FtsH-dependent degradation of both membrane-bound and soluble proteins is retarded when cells are treated with carbonyl cyanide-3-chlorophenylhydrazone or 2,4-dinitrophenol uncouplers, which dissipate the proton-motive force. In vitro casein degradation by membrane-integrated FtsH was stimulated by succinate, a respiratory substrate; this stimulation was counteracted by cyanide-3-chlorophenylhydrazone. Potassium thiocyanate, which specifically collapses Deltapsi, partially canceled the effect of succinate, but ammonium sulfate, which collapses DeltapH, showed little effect. These results indicate that the proton-motive force, in particular the Deltapsi component, plays a role in efficient degradation of substrates by FtsH in its native state. FtsH variants with altered transmembrane regions did not receive proton-motive force stimulation, suggesting that the proton-motive force activates FtsH, directly or indirectly, through the transmembrane region.
Collapse
Affiliation(s)
- Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
29
|
Saikawa N, Ito K, Akiyama Y. Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB). Biochemistry 2002; 41:1861-8. [PMID: 11827531 DOI: 10.1021/bi015748o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli FtsH (HflB) is a membrane-bound and ATP-dependent metalloprotease. Its cytoplasmic domain contains a zinc-binding motif, H(417)EXXH, whose histidine residues have been shown to be functionally important. Although they are believed to be involved directly in zinc coordination, nothing is known about the third zinc ligand of this protease. Sequence alignment indicates that glutamic acid residues are conserved among the FtsH homologues at positions corresponding to Glu(479) and Glu(585) of E. coli FtsH. We replaced each of them by Gln, Asp, Lys, or Val. Mutations at position 479 compromised the proteolytic functions of FtsH in vivo. In vitro proteolytic activities of the E479Q, E479V, and E479D mutant enzymes were much lower than that of the wild-type protein and were significantly stimulated by a high concentration of zinc ion. These mutant proteins retained the wild-type levels of ATPase activities, and their trypsin susceptibilities as well as CD spectra were essentially indistinguishable from those of the wild-type protein, indicating that the mutations did not cause gross conformational changes in FtsH. They exhibited reduced zinc contents upon purification. From these results, we conclude that Glu(479) is a zinc-coordinating residue.
Collapse
Affiliation(s)
- Naoya Saikawa
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
30
|
Izutsu K, Wada A, Wada C. Expression of ribosome modulation factor (RMF) in Escherichia coli requires ppGpp. Genes Cells 2001; 6:665-76. [PMID: 11532026 DOI: 10.1046/j.1365-2443.2001.00457.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND During the transition from the logarithmic to the stationary phase, 70S ribosomes are dimerized into the 100S form, which has no translational activity. Ribosome Modulation Factor (RMF) is induced during the stationary phase and binds to the 50S ribosomal subunit, which directs the dimerization of 70S ribosomes. Unlike many other genes induced in the stationary phase, rmf transcription is independent of the sigma S. To identify the factors that regulate the growth phase-dependent induction of rmf, mutant strains deficient in global regulators were examined for lacZ expression directed by the rmf promoter. RESULTS Among mutants of defective global regulators, only ppGpp deficiency (relA-spoT double mutant) drastically reduced the level of rmf transcription to less than 10% of that seen in the wild-type. Neither RMF nor 100S ribosomes were detected in this mutant in the stationary phase. rmf transcription correlated well with cellular ppGpp levels during amino acid starvation, IPTG induction of Ptrc-relA455 and in other mutants with artificially increased ppGpp levels. Although the growth rate also correlated inversely with both ppGpp levels and rmf transcription, the observation that the growth rates of the ppGpp-deficient and wild-type strains varied equivalently when grown on different media indicates that the link between rmf transcription and ppGpp levels is not a function of the growth rate. CONCLUSIONS ppGpp appears to positively regulate rmf transcription, at least in vivo. Thus, RMF provides a novel negative translational control by facilitating the formation of inactive ribosome dimers (100S) under the stringent circumstances of the stationary phase.
Collapse
Affiliation(s)
- K Izutsu
- The Institute for Virus Research, Kyoto University, Shogoin-Kawaracho, Sakyo-Ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
31
|
Izutsu K, Wada C, Komine Y, Sako T, Ueguchi C, Nakura S, Wada A. Escherichia coli ribosome-associated protein SRA, whose copy number increases during stationary phase. J Bacteriol 2001; 183:2765-73. [PMID: 11292794 PMCID: PMC99491 DOI: 10.1128/jb.183.9.2765-2773.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Accepted: 02/06/2001] [Indexed: 11/20/2022] Open
Abstract
Protein D has previously been demonstrated to be associated with Escherichia coli ribosomes by the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis. In this study, we show that protein D is exclusively present in the 30S ribosomal subunit and that its gene is located at 33.6 min on the E. coli genetic map, between ompC and sfcA. The gene consists of 45 codons, coding for a protein of 5,096 Da. The copy number of protein D per ribosomal particle varied during growth and increased from 0.1 in the exponential phase to 0.4 in the stationary phase. For these reasons, protein D was named SRA (stationary-phase-induced ribosome-associated) protein and its gene was named sra. The amount of SRA protein within the cell was found to be controlled mainly at the transcriptional level: its transcription increased rapidly upon entry into the stationary phase and was partly dependent on an alternative sigma factor (sigma S). In addition, global regulators, such as factor inversion stimulation (FIS), integration host factor (IHF), cyclic AMP, and ppGpp, were found to play a role either directly or indirectly in the transcription of sra in the stationary phase.
Collapse
Affiliation(s)
- K Izutsu
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Akiyama Y, Ito K. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB). EMBO J 2000; 19:3888-95. [PMID: 10921871 PMCID: PMC306588 DOI: 10.1093/emboj/19.15.3888] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FtsH (HflB) is an Escherichia coli ATP-dependent protease that degrades some integral membrane and cytoplasmic proteins. While anchored to the cytoplasmic membrane by the two transmembrane (TM) segments near the N-terminus, it has a large cytoplasmic domain. The N-terminal region also has a role in homo-oligomerization of this protein. To study the significance of the membrane integration and oligomer formation, we constructed FtsH derivatives in which the N-terminal region had been deleted or replaced with either the leucine zipper sequence from Saccharomyces cerevisiae GCN4 protein or TM regions from other membrane proteins. The cytoplasmic domain, which was monomeric and virtually inactive, was converted, by the attachment of the leucine zipper, to an oligomer with proteolytic function against a soluble, but not a membrane-bound substrate. In contrast, chimeric TM-FtsH proteins were active against both substrate classes. We suggest that the cytoplasmic domain has intrinsic but weak self-interaction ability, which becomes effective with the aid of the leucine zipper or membrane tethering, and that membrane association is essential for FtsH to degrade integral membrane proteins.
Collapse
Affiliation(s)
- Y Akiyama
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
33
|
Koch HG, Hengelage T, Neumann-Haefelin C, MacFarlane J, Hoffschulte HK, Schimz KL, Mechler B, Müller M. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Biol Cell 1999; 10:2163-73. [PMID: 10397756 PMCID: PMC25430 DOI: 10.1091/mbc.10.7.2163] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coli which, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4. 5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and DeltamicroH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.
Collapse
Affiliation(s)
- H G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
35
|
Akiyama Y, Kihara A, Mori H, Ogura T, Ito K. Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation. J Biol Chem 1998; 273:22326-33. [PMID: 9712851 DOI: 10.1074/jbc.273.35.22326] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FtsH is a membrane-bound and ATP-dependent protease of Escherichia coli, known to degrade SecY, a membrane protein for protein translocation, and CII, a soluble transcription factor for lysis/lysogeny decision of phage lambda. FtsH forms a homo-oligomeric complex as well as a hetero-oligomeric complex with HflKC, a putative modulator of FtsH. Although FtsH has a small periplasmic region, HflKC is mostly exposed to the periplasmic space. We studied the roles of the periplasmic region of FtsH by engineering mutations in this protein. FtsHDelta236, lacking most of the periplasmic region, retained the in vivo ability to degrade SecY but not CII, resulting in high frequency lysogenization of lambda. Several insertion mutations in the periplasmic region of FtsH also differentially affected the proteolytic activities of FtsH. Interestingly, purified and detergent-solubilized FtsHDelta236 was as active as the wild-type enzyme in degrading SecY and CII, although its ATPase activity was lowered 5-fold. Affinity chromatography using histidine-tagged derivatives showed that the periplasmic domain-deleted FtsH no longer interacted with FtsH or HflKC. Although FtsHDelta236-His6-Myc lost the static FtsH-FtsH interaction, it retained the ability to change its conformation in an ATP-dependent manner at 37 degreesC, leading to a limited oligomerization. These results suggest that the periplasmic region of FtsH has crucial roles in the protein-protein interactions of this complex and in the modulation of its proteolytic functions against different substrates.
Collapse
Affiliation(s)
- Y Akiyama
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
36
|
Hwang J, Zhong X, Tai PC. Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. J Bacteriol 1997; 179:6264-70. [PMID: 9335271 PMCID: PMC179538 DOI: 10.1128/jb.179.20.6264-6270.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The antibacterial peptide toxin colicin V uses a dedicated signal sequence-independent system for its secretion in Escherichia coli and requires the products of three genes, cvaA, cvaB, and tolC. As a member of the membrane fusion protein family, CvaA is supposed to form a bridge that connects the inner and outer membranes via interaction with CvaB and TolC, respectively. In this study, we investigated the possible interaction of these proteins. When CvaA or CvaB was absent, the corresponding amount of CvaB or CvaA, respectively, was decreased, and the amounts of both proteins were reduced when TolC was depleted. Translational lacZ fusions showed that TolC did not affect the synthesis of either CvaA-beta-galactosidase or CvaB-beta-galactosidase, and CvaA or CvaB did not affect the synthesis of CvaB-beta-galactosidase or CvaA-beta-galactosidase, respectively. However, the stabilities of CvaA and CvaB proteins were affected by the absence of one another and by that of TolC. The instability of CvaA was more severe in TolC-depleted cells than in CvaB-depleted cells. On the other hand, CvaB was less stable in the absence of CvaA than in the absence of TolC. In addition, using a cross-linking reagent, we showed that CvaA directly interacts with both CvaB and TolC proteins. Taken together, these data support the hypothesized structural role of CvaA in connecting CvaB and TolC.
Collapse
Affiliation(s)
- J Hwang
- Department of Biology, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|
37
|
Akiyama Y, Kihara A, Ito K. Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett 1996; 399:26-8. [PMID: 8980112 DOI: 10.1016/s0014-5793(96)01283-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Escherichia coli FtsH is a membrane-bound ATPase with a proteolytic activity against the SecY subunit of protein translocase. We now report that subunit a of the membrane-embedded Fo part of H+-ATPase is another substrate of FtsH. Pulse-chase experiments showed that subunit a is unstable when it alone (without Fo subunits b and c) was oversynthesized and that it is stabilized in the ftsH mutants. Selective and ATP-dependent degradation of subunit a by purified FtsH protein was demonstrated in vitro. These results suggest that FtsH serves as a quality-control mechanism to avoid potentially harmful accumulation of free subunit a in the membrane.
Collapse
Affiliation(s)
- Y Akiyama
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
38
|
Akiyama Y, Kihara A, Tokuda H, Ito K. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J Biol Chem 1996; 271:31196-201. [PMID: 8940120 DOI: 10.1074/jbc.271.49.31196] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The FtsH protein is a membrane-bound ATPase of Escherichia coli that was proposed to be involved in membrane protein assembly as well as degradation of some unstable proteins. SecY, a subunit of protein translocase, is FtsH dependently degraded in vivo when it fails to associate with its partner (the SecE protein). We constructed a series of mutants in which mutations were introduced into conserved residues in the two ATP binding consensus sequences or the zinc binding sequence of FtsH. We purified wild-type and mutant FtsH proteins by making use of a polyhistidine tag attached to their carboxyl termini. Complementation analysis and ATPase activity assays in vitro indicated that, of the two sets of ATP binding sequence motifs, the one located C-terminally (A1) is essential for ATPase activity and in vivo functioning of FtsH. Wild-type FtsH protein degraded purified SecY in an ATP hydrolysis-dependent manner in vitro. Mutant proteins without ATPase activity were inactive in proteolysis. A zinc binding motif mutant showed a decreased proteolytic activity. SecY and FtsH were cross-linkable with each other in the membrane, provided that FtsH had an ATPase-inactivating mutation. These results demonstrate that FtsH binds to and degrades SecY, its A1 motif and the zinc binding motif being important for the proteolytic activity. FtsH-dependent proteolysis was also demonstrated for SecY in crude membrane extracts, whereas a majority of other membrane proteins were not degraded, indicating that FtsH has high selectivity in protein degradation.
Collapse
Affiliation(s)
- Y Akiyama
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-01, Japan.
| | | | | | | |
Collapse
|
39
|
Akiyama Y, Ito K. A new Escherichia coli gene, fdrA, identified by suppression analysis of dominant negative FtsH mutations. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:202-8. [PMID: 7500942 DOI: 10.1007/bf00290367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An Escherichia coli membrane protein, FtsH, has been implicated in several cellular processes, including integration of membrane proteins, translocation of secreted proteins, and degradation of some unstable proteins. However, how it takes part in such diverse cellular events is largely unknown. We previously isolated dominant negative ftsH mutations and proposed that FtsH functions in association with some other cellular factor(s). To test this proposal we isolated multicopy suppressors of dominant negative ftsH mutations. One of the multicopy suppressor clones contained an N-terminally truncated version of a new gene that was designated fdrA. The FdrA fragment suppressed both of the phenotypes--increased abnormal translocation of a normally cytoplasmic domain of a model membrane protein and retardation of protein export--caused by dominant negative FtsH proteins. The intact fdrA gene (11.9 min on the chromosome) directed the synthesis of a 60 kDa protein in vitro.
Collapse
Affiliation(s)
- Y Akiyama
- Department of Cell Biology, Kyoto University, Japan
| | | |
Collapse
|
40
|
Kath T, Schäfer G. A secY homologous gene in the crenarchaeon Sulfolobus acidocaldarius. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:155-8. [PMID: 7495856 DOI: 10.1016/0167-4781(95)00165-d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nucleotide sequence of an open reading frame, located upstream of the gene for adenylate kinase, was determined in the thermoacidophile crenarchaeon Sulfolobus acidocaldarius. Data bank searches identified the sequence as a secY homologous gene. The DNA derived protein sequence of total 463 amino acids contains 10 hydrophobic domains. A sequence alignment with other prokaryotic and eukaryotic secY sequences reveals significant homology, but the secY primary sequence of S. acidocaldarius shows only a low degree of similarity with the secY counterparts of the euryarchaea Methanococcus vannielii and Haloarcula marismortui. A transcription analysis indicates, that the secY gene is cotranscribed with the gene coding for adenylate kinase.
Collapse
Affiliation(s)
- T Kath
- Institute of Biochemistry, Medical University of Lübeck, Germany
| | | |
Collapse
|
41
|
Akiyama Y, Yoshihisa T, Ito K. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J Biol Chem 1995; 270:23485-90. [PMID: 7559511 DOI: 10.1074/jbc.270.40.23485] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The FtsH (HflB) protein of Escherichia coli is integrated into the membrane with two N-terminally located transmembrane segments, while its large cytoplasmic domain is homologous to the AAA family of ATPases. The previous studies on dominant negative ftsH mutants raised a possibility that FtsH functions in multimeric states. We found that FtsH was eluted at fractions corresponding to a larger molecular weight than expected from monomeric structure in size-exclusion chromatography. Moreover, treatment of membranes or their detergent extracts with a cross-linker, dithiobis(succinimidyl propionate), yielded cross-linked products of FtsH. To dissect possible FtsH complex, we constructed an FtsH derivative with c-Myc epitope at its C terminus (FtsH-His6-Myc). When membranes prepared from cells in which FtsH-His6-Myc was overproduced together with the normal FtsH were treated with the cross-linker, intact FtsH and in vitro degradation products of FtsH-His6-Myc without the tag were cross-linked with the tagged FtsH protein. Co-immunoprecipitation experiments confirmed the interaction between the FtsH molecules. To identify regions of FtsH required or sufficient for this interaction, we constructed chimeric proteins between FtsH and EnvZ, a protein with a similar topological arrangement, by exchanging their corresponding domains. We found that only the FtsH-EnvZ hybrid protein with an FtsH-derived membrane anchoring domain and an EnvZ-derived cytoplasmic domain caused a dominant ftsH phenotype and was cross-linked with FtsH. We suggest that the N-terminal transmembrane region of FtsH mediates directly the interaction between the FtsH subunits.
Collapse
Affiliation(s)
- Y Akiyama
- Department of Cell Biology, Kyoto University, Japan
| | | | | |
Collapse
|
42
|
Laidler V, Chaddock AM, Knott TG, Walker D, Robinson C. A SecY homolog in Arabidopsis thaliana. Sequence of a full-length cDNA clone and import of the precursor protein into chloroplasts. J Biol Chem 1995; 270:17664-7. [PMID: 7629062 DOI: 10.1074/jbc.270.30.17664] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Proteins are translocated across the thylakoid membrane by two distinct pathways in higher plant chloroplasts, one of which is related to prokaryotic Sec-dependent translocation mechanisms. SecY is an essential, hydrophobic component of the membrane-bound translocase complex in bacteria, and we report here the nucleotide sequence of a full-length cDNA encoding a homolog of SecY from Arabidopsis thaliana. The predicted protein of 551 residues includes an amino-terminal extension of approximately 120 residues when compared with other SecY proteins. The deduced sequence of the mature protein, cpSecY, is 41% identical with SecY from Synechococcus and 33% identical with the Escherichia coli protein. The extension serves to target the protein into chloroplasts; transcription-translation of the cDNA yields a 58-kDa precursor protein which is imported into pea chloroplasts, processed to a product of 46 kDa, and targeted into the thylakoid membrane.
Collapse
Affiliation(s)
- V Laidler
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Shimoike T, Taura T, Kihara A, Yoshihisa T, Akiyama Y, Cannon K, Ito K. Product of a new gene, syd, functionally interacts with SecY when overproduced in Escherichia coli. J Biol Chem 1995; 270:5519-26. [PMID: 7890670 DOI: 10.1074/jbc.270.10.5519] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A mutant form of SecY, SecY-d1, was previously suggested to sequester a component(s) of the protein translocator complex. Its synthesis from a plasmid leads to interference with protein export in Escherichia coli. SecE is a target of this sequestration, and its overproduction cancels the export interference. We now report that overexpression of another gene, termed syd, also suppresses secY-d1. The nucleotide sequence of syd predicted that it encodes a protein of 181 amino acid residues, which has been identified by overproduction, purification, and determination of the amino-terminal sequence. Cell fractionation experiments suggested that Syd is loosely associated with the cytoplasmic surface of the cytoplasmic membrane. SecY may be involved in the membrane association of Syd since the association is saturable, the extent of which depends on the overproduction of SecY. SecY is rapidly degraded in vivo unless its primary partner, SecE, is sufficiently available. Overproduction of Syd was found to stabilize oversynthesized SecY. However, Syd cannot stabilize the SecY-d1 form of SecY. Thus, in the presence of both secY+ and secY-d1, Syd increases the effective SecY+/SecY-d1 ratio in the cell and cancels the dominant interference by the latter. We also found that overproduction of Syd dramatically inhibits protein export in the secY24 mutant cell in which SecY-SecE interaction has been weakened. These results indicate that Syd, especially when it is overproduced, has abilities to interact with SecY. Possible significance of such interactions is discussed in conjunction with the apparent lack of phenotypic consequences of genetic disruption of syd.
Collapse
Affiliation(s)
- T Shimoike
- Department of Cell Biology, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Rosenow C, Esumeh F, Roberts IS, Jann K. Characterization and localization of the KpsE protein of Escherichia coli K5, which is involved in polysaccharide export. J Bacteriol 1995; 177:1137-43. [PMID: 7868584 PMCID: PMC176716 DOI: 10.1128/jb.177.5.1137-1143.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Escherichia coli with group II capsules, the synthesis and cellular expression of capsular polysaccharide are encoded by the kps gene cluster. This gene cluster is composed of three regions. The central region 2 encodes proteins involved in polysaccharide synthesis, and the flanking regions 1 and 3 direct the translocation of the finished polysaccharide across the cytoplasmic membrane and its surface expression. The kps genes of the K5 polysaccharide, which is a group II capsular polysaccharide, have been cloned and sequenced. Region 1 contains the kpsE, -D, -U, -C, and -S genes. In this communication we describe the KpsE protein, the product of the kpsE gene. A truncated kpsE gene was fused with a truncated beta-galactosidase gene to generate a fusion protein containing the first 375 amino acids of beta-galactosidase and amino acids 67 to 382 of KpsE (KpsE'). This fusion protein was isolated and cleaved with factor Xa, and the purified KpsE' was used to immunize rabbits. Intact KpsE was extracted from the membranes of a KpsE-overexpressing recombinant strain with octyl-beta-glucoside. It was purified by affinity chromatography with immobilized anti-KpsE antibodies. Cytofluorometric analysis using the anti-KpsE antibodies with whole cells and spheroplasts, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) of proteins from spheroplasts and membranes before and after treatment with proteinase K, indicated that the KpsE protein is associated with the cytoplasmic membrane and has an exposed periplasmic domain. By TnphoA mutagenesis and by constructing beta-lactamase fusions to the KpseE protein, it was possible to determine the topology of the KpsE protein within the cytoplasmic membrane.
Collapse
Affiliation(s)
- C Rosenow
- Max-Planck-Institut für Immunobiologie, Freiburg, Germany
| | | | | | | |
Collapse
|
45
|
Protein translocation genetics. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1874-5172(06)80006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Arkowitz RA, Bassilana M. Protein translocation in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:311-43. [PMID: 7819269 DOI: 10.1016/0304-4157(94)90012-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R A Arkowitz
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
47
|
|
48
|
Taura T, Akiyama Y, Ito K. Genetic analysis of SecY: additional export-defective mutations and factors affecting their phenotypes. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:261-9. [PMID: 8190079 DOI: 10.1007/bf00301061] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of secY mutants of Escherichia coli showing protein export defects were isolated by a combination of localized mutagenesis and secA-lacZ screening. Most of them were cold sensitive and contained single base substitutions in secY leading to amino acid replacements in various parts of the SecY protein, mainly in the cytoplasmic and the transmembrane domains. A temperature-sensitive mutant with an export defect had the same base substitution as secY24, which was characterized previously. Many cold-sensitive secY mutants exhibited rapid responses to temperature lowering but their apparent defects varied at the permissive temperature. Others exhibited delayed responses to the temperature shift. Some secY mutations, including secY39, interfered with protein export when expressed from a multicopy plasmid, even in the presence of wild-type secY on the chromosome. Such "dominant negative" mutations, including secY-d1, which was studied previously, were all located in either cytoplasmic domain 5 or 6, which is consistent with our previous proposal that the C-terminal region of SecY is important for its function as a protein translocator. We also studied the phenotypes of strains in which one of the secY mutations was combined with the components of the secD operon. Overexpression of secD partially suppressed the secY39 mutation, while overexpression of secF exacerbated the export defects of secY122 and secY125 mutations. Overexpression of "yajC", located within the secD operon, suppressed secY-d1. Although yajC itself proved to be dispensable, its disruption impaired the growth of the secY39 mutant at 42 degrees C. These observations suggest that SecY interacts with SecD, SecF, and the product of yajC.
Collapse
Affiliation(s)
- T Taura
- Department of Cell Biology, Kyoto University, Japan
| | | | | |
Collapse
|
49
|
Zumft WG, Braun C, Cuypers H. Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:481-90. [PMID: 7508388 DOI: 10.1111/j.1432-1033.1994.tb19962.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) reductase is an integral membrane component of the anaerobic respiratory chain of Pseudomonas stutzeri that transforms nitrate to dinitrogen (denitrification). The enzyme catalyzes the reduction of NO to nitrous oxide. The structural genes for the NO reductase complex, norC and norB, were sequenced and their organization established by primer extension and Northern blot analysis. The norCB genes encoding the cytochrome c and cytochrome b subunits of the enzyme are contiguous and transcribed as a single 2.0-kb transcript. The promoter region has a canonical recognition motif for the transcriptional activator protein Fnr, centered at -40.5 nucleotides from the initiation site of transcription. No similarity of the derived gene products to known cytochromes of b- or c-type was found in a data bank search. Post-translational processing of the two subunits was limited to the removal of the terminal methionine to leave an N-terminal serine in either subunit. The mature cytochrome c subunit (16508Da, 145 residues) is predicted to be a bitopic protein with a single membrane anchor. The mature cytochrome b subunit (53006Da, 473 residues) is a putatively polytopic, strongly hydrophobic membrane-bound protein with 12 potential transmembrane segments. Several histidine and proline residues were identified with potentially structural and/or functional importance. Mutational inactivation of NO reductase by deletion of norB or the norCB genes affected strongly the in vivo activity of respiratory nitrite reductase (cytochrome cd1), but to a much lesser extent the expression level of this enzyme. In turn, mutational inactivation of the structural gene for cytochrome cd1, nirS, or loss of in vivo nitrite reduction by mutation of the nirT gene, encoding a presumed tetraheme cytochrome, lowered the expression level of NO reductase to 5-20%, but hardly its catalytic activity. The cellular concentration of NO reductase increased again on restoration of nitrite reduction in the nirS::Tn5 mutant MK202 by complementation with nirS or with the heterologous nirK gene, encoding the Cu-containing nitrite reductase from Pseudomonas aureofaciens. Thus, NO may be required as an inducer for its own reductase. Our results show that the nitrite-reducing system and the NO-reducing system are not operating independently from each other but are interlaced by activity modulation and regulation of enzyme synthesis.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, Germany
| | | | | |
Collapse
|
50
|
Taura T, Baba T, Akiyama Y, Ito K. Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J Bacteriol 1993; 175:7771-5. [PMID: 8253665 PMCID: PMC206951 DOI: 10.1128/jb.175.24.7771-7775.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
While SecY in wild-type Escherichia coli cells is stable and is complexed with other proteins within the membrane, moderately overexpressed and presumably uncomplexed SecY was degraded with a half-life of 2 min. The fact that the amount of stable SecY is strictly regulated by the degradation of excess SecY was demonstrated by competitive entry of the SecY+ protein and a SecY-LacZ alpha fusion protein into the stable pool. Simultaneous overexpression of SecE led to complete stabilization of excess SecY. Overproduced SecD and SecF did not affect the stability of SecY, but plasmids carrying ORF12 located within the secD-secF operon partially stabilized this protein. In contrast, mutational reduction of the SecE content (but not the ORF12 content) led to the appearance of two populations of newly synthesized SecY molecules, one that was immediately degraded and one that was completely stable. Thus, the E. coli cell is equipped with a system that eliminates SecY unless it is complexed with SecE, a limiting partner of SecY. Our observations implied that in wild-type cells, SecY and SecE rapidly associate with each other and remain complexed.
Collapse
Affiliation(s)
- T Taura
- Department of Cell Biology, Kyoto University, Japan
| | | | | | | |
Collapse
|