1
|
Oh J, Shin N, Lim G, Han Y, Joo JC, Jeon WY, Ahn J, Kim HT, Bhatia SK, Yang YH. Enhanced production of extracellular triacylglycerol lipase for bioplastic degradation by replacing signal peptide. J Biotechnol 2025; 403:93-102. [PMID: 40221049 DOI: 10.1016/j.jbiotec.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
With the increase in plastic production, efficient and timely plastic degradation are urgently needed. In that point, biodegradable plastics have attracted attention as potential solutions for environmental pollution of plastics. However, finding of superior degrading strains and enzymes such as esterase, cutinase, and triacylglycerol lipase (TGL) of bioplastic are still needed together with the efficient secretion systems of degrading enzymes. As a result, we investigated methods to enhance protein expression and secretion of novel bioplastic degrading enzyme by using signal peptides. The genes encoding TGL from Bacillus sp. JY35 and various secretory (Sec) pathway signal peptides were cloned together by replacing the original signal sequence, and they were expressed under T7 promoters in Escherichia coli BL21 (DE3). Esterase activity with p-nitrophenol esters, a plate assay, and SDS-PAGE were performed to screen and evaluate signal peptide efficiency. As a result, the PhoA-TGL combination was the most effective against bioplastic degradation, achieving a Polycaprolactone (PCL) degradation efficiency of 77 %, which was approximately 3.3 times higher than that of TGL with the original signal peptide. Furthermore, Polybutylene succinate (PBS) degradation under similar conditions was 1.5 times higher. Overall, this study showed signal peptide engineering could enhance the extracellular secretion and degradation system of triacylglycerol lipase (TGL) and highlights the potential of PhoA signal peptides and E. coli host to enhance production and secretion of plastic-degrading enzyme and degrading system.
Collapse
Affiliation(s)
- Jinok Oh
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gaeun Lim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yebin Han
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Woo-Young Jeon
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Dhouib R, Vagenas D, Hong Y, Verderosa AD, Martin JL, Heras B, Totsika M. Antivirulence DsbA inhibitors attenuate Salmonella enterica serovar Typhimurium fitness without detectable resistance. FASEB Bioadv 2021; 3:231-242. [PMID: 33842848 PMCID: PMC8019255 DOI: 10.1096/fba.2020-00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 11/15/2022] Open
Abstract
Inhibition of the DiSulfide Bond (DSB) oxidative protein folding machinery, a major facilitator of virulence in Gram‐negative bacteria, represents a promising antivirulence strategy. We previously developed small molecule inhibitors of DsbA from Escherichia coli K‐12 (EcDsbA) and showed that they attenuate virulence of Gram‐negative pathogens by directly inhibiting multiple diverse DsbA homologues. Here we tested the evolutionary robustness of DsbA inhibitors as antivirulence antimicrobials against Salmonella enterica serovar Typhimurium under pathophysiological conditions in vitro. We show that phenylthiophene DsbA inhibitors slow S. Typhimurium growth in minimal media, phenocopying S. Typhimurium isogenic dsbA null mutants. Through passaging experiments, we found that DsbA inhibitor resistance was not induced under conditions that rapidly induced resistance to ciprofloxacin, an antibiotic commonly used to treat Salmonella infections. Furthermore, no mutations were identified in the dsbA gene of inhibitor‐treated S. Typhimurium, and S. Typhimurium virulence remained susceptible to DsbA inhibitors. Our work demonstrates that under in vitro pathophysiological conditions, DsbA inhibitors can have both antivirulence and antibiotic action. Importantly, our finding that DsbA inhibitors appear to be evolutionarily robust offers promise for their further development as next‐generation antimicrobials against Gram‐negative pathogens.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Yaoqin Hong
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Anthony D Verderosa
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Jennifer L Martin
- Griffith Institute for Drug Discovery Griffith University Nathan QLD Australia.,University of Wollongong Wollongong NSW Australia
| | - Begoña Heras
- La Trobe Institute for Molecular Science La Trobe University Bundoora VIC Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| |
Collapse
|
3
|
Comparison of Single and Multiple Turnovers of SecYEG in Escherichia coli. J Bacteriol 2020; 202:JB.00462-20. [PMID: 32989086 DOI: 10.1128/jb.00462-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Precursor proteins are translocated across the cytoplasmic membrane in Escherichia coli by the general secretory, or Sec, pathway. The main components of the pathway are the integral membrane heterotrimeric SecYEG complex and the peripheral membrane ATPase, SecA. In this study, we have applied an in vitro assay using inverted cytoplasmic membrane vesicles to investigate the complex cycle that leads to translocation. We compared the apparent rate constants for nine precursors under two experimental conditions, single turnover and multiple turnovers. For each precursor, the rate constant for a single turnover was higher than for multiple turnovers, indicating that a different step limits the rate under the two conditions. We conclude that the rate-limiting step for a single turnover is an early step in the initial phase of transit through the channel, whereas the rate of multiple turnovers is limited by the resetting of the translocon. The presence of the chaperone SecB during multiple turnovers increased the maximal amplitude translocated for the three precursor species tested, pGBP, pPhoA, and proOmpA, and also increased the apparent rate constants for both pGBP and pPhoA. The rate constant for proOmpA was decreased by the presence of SecB.IMPORTANCE Vastly different experimental techniques and conditions have been used to study export in E. coli We demonstrated that altering experimental conditions can change the step that is observed during study. Investigators should consider specific experimental conditions when comparing data from different laboratories, as well as when comparing data from different experiments within a laboratory. We have shown that each precursor species has inherent properties that determine the translocation rate; thus generalizations from studies of a single species must be made with caution. A summary of advantages and disadvantages in use of nine precursors is presented.
Collapse
|
4
|
Szekely O, Olsen GL, Novakovic M, Rosenzweig R, Frydman L. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J Am Chem Soc 2020; 142:9267-9284. [PMID: 32338002 PMCID: PMC7304870 DOI: 10.1021/jacs.0c00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Hyperpolarized water
can be a valuable aid in protein NMR, leading
to amide group 1H polarizations that are orders of magnitude
larger than their thermal counterparts. Suitable procedures can exploit
this to deliver 2D 1H–15N correlations
with good resolution and enhanced sensitivity. These enhancements
depend on the exchange rates between the amides and the water, thereby
yielding diagnostic information about solvent accessibility. This
study applied this “HyperW” method to four proteins
exhibiting a gamut of exchange behaviors: PhoA(350–471), an unfolded 122-residue fragment; barstar, a fully folded ribonuclease
inhibitor; R17, a 13.3 kDa system possessing folded and unfolded forms
under slow interconversion; and drkN SH3, a protein domain whose folded
and unfolded forms interchange rapidly and with temperature-dependent
population ratios. For PhoA4(350–471) HyperW sensitivity
enhancements were ≥300×, as expected for an unfolded protein
sequence. Though fully folded, barstar also exhibited substantial
enhancements; these, however, were not uniform and, according to CLEANEX
experiments, reflected the solvent-exposed residues. R17 showed the
expected superposition of ≥100-fold enhancements for its unfolded
form, coexisting with more modest enhancements for their folded counterparts.
Unexpected, however, was the behavior of drkN SH3, for which HyperW
enhanced the unfolded but, surprisingly, enhanced even more certain folded protein sites. These preferential enhancements were
repeatedly and reproducibly observed. A number of explanations—including
three-site exchange magnetization transfers between water and the
unfolded and folded states; cross-correlated relaxation processes
from hyperpolarized “structural” waters and labile side-chain
protons; and the possibility that faster solvent exchange rates characterize
certain folded sites over their unfolded counterparts—are considered
to account for them.
Collapse
|
5
|
Borlinghaus J, Bolger A, Schier C, Vogel A, Usadel B, Gruhlke MC, Slusarenko AJ. Genetic and molecular characterization of multicomponent resistance of Pseudomonas against allicin. Life Sci Alliance 2020; 3:e202000670. [PMID: 32234751 PMCID: PMC7119367 DOI: 10.26508/lsa.202000670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
The common foodstuff garlic produces the potent antibiotic defense substance allicin after tissue damage. Allicin is a redox toxin that oxidizes glutathione and cellular proteins and makes garlic a highly hostile environment for non-adapted microbes. Genomic clones from a highly allicin-resistant Pseudomonas fluorescens (PfAR-1), which was isolated from garlic, conferred allicin resistance to Pseudomonas syringae and even to Escherichia coli Resistance-conferring genes had redox-related functions and were on core fragments from three similar genomic islands identified by sequencing and in silico analysis. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin resistance. Taken together, our data define a multicomponent resistance mechanism against allicin in PfAR-1, achieved through horizontal gene transfer.
Collapse
Affiliation(s)
- Jan Borlinghaus
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Anthony Bolger
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Christina Schier
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alexander Vogel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Björn Usadel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Martin Ch Gruhlke
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| |
Collapse
|
6
|
A robust fractionation method for protein subcellular localization studies in Escherichia coli. Biotechniques 2020; 66:171-178. [PMID: 30987443 DOI: 10.2144/btn-2018-0135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fractionation in Gram-negative bacteria is used to identify the subcellular localization of proteins, in particular the localization of exported recombinant proteins. The process of cell fractionation can be fraught with cross-contamination issues and often lacks supporting data for fraction purity. Here, we compare three periplasm extraction and two cell disruption techniques in different combinations to investigate which process gives uncontaminated compartments from Escherichia coli. From these data, a robust method named PureFrac was compiled that gives pure periplasmic fractions and a superior recovery of soluble cytoplasmic proteins. The process extracts periplasm using cold osmotic shock with magnesium, prior to sonication and ultracentrifugation to separate the cytoplasm from insoluble material. This method handles cells cultivated in various conditions and allows preparation of active proteins in their respective compartments.
Collapse
|
7
|
Mutagenesis of DsbAss is Crucial for the Signal Recognition Particle Mechanism in Escherichia coli: Insights from Molecular Dynamics Simulations. Biomolecules 2019; 9:biom9040133. [PMID: 30987187 PMCID: PMC6523802 DOI: 10.3390/biom9040133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
The disulfide bond signal sequence (DsbAss) protein is characterized as an important virulence factor in gram-negative bacteria. This study aimed to analyze the "alanine" alteration in the hydrophobic (H) region of DsbAss and to understand the conformational DsbAss alteration(s) inside the fifty-four homolog (Ffh)-binding groove which were revealed to be crucial for translocation of ovine growth hormone (OGH) to the periplasmic space in Escherichia coli via the secretory (Sec) pathway. An experimental design was used to explore the hydrophobicity and alteration of alanine (Ala) to isoleucine (Ile) in the tripartite structure of DsbAss. As a result, two DsbAss mutants (Ala at positions -11 and -13) with same hydrophobicity of 1.539 led to the conflicting translocation of the active OGH gene. We performed molecular dynamics (MD) simulations and molecular mechanics generalized born surface area (MM-GBSA) binding free energy calculations to examine the interaction energetic and dynamic aspects of DsbAss/signal repetition particle 54 (SRP54) binding, which has a principle role in Escherichia coli Sec pathways. Although both DsbAss mutants retained helicity, the MD simulation analysis evidenced that altering Ala-13 changed the orientation of the signal peptide in the Ffh M binding domain groove, favored more stable interaction energies (MM-GBSA ΔGtotal = -140.62 kcal mol-1), and hampered the process of OGH translocation, while Ala-11 pointed outward due to unstable conformation and less binding energy (ΔGtotal = -124.24 kcal mol-1). Here we report the dynamic behavior of change of "alanine" in the H-domain of DsbAss which affects the process of translocation of OGH, where MD simulation and MM-GBSA can be useful initial tools to investigate the virulence of bacteria.
Collapse
|
8
|
Sutoh S, Uemura Y, Yamaguchi Y, Kiyotou A, Sugihara R, Nagayasu M, Kurokawa M, Ito K, Tsunekawa N, Nemoto M, Inagaki K, Tamura T. Redox-tuning of oxidizing disulfide oxidoreductase generates a potent disulfide isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:194-201. [DOI: 10.1016/j.bbapap.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
9
|
Hamed MB, Vrancken K, Bilyk B, Koepff J, Novakova R, van Mellaert L, Oldiges M, Luzhetskyy A, Kormanec J, Anné J, Karamanou S, Economou A. Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins. Front Microbiol 2018; 9:3019. [PMID: 30581427 PMCID: PMC6292873 DOI: 10.3389/fmicb.2018.03019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023] Open
Abstract
Fluorescent proteins are a major cell biology tool to analyze protein sub-cellular topology. Here we have applied this technology to study protein secretion in the Gram-positive bacterium Streptomyces lividans TK24, a widely used host for heterologous protein secretion biotechnology. Green and monomeric red fluorescent proteins were fused behind Sec (SPSec) or Tat (SPTat) signal peptides to direct them through the respective export pathway. Significant secretion of fluorescent eGFP and mRFP was observed exclusively through the Tat and Sec pathways, respectively. Plasmid over-expression was compared to a chromosomally integrated spSec-mRFP gene to allow monitoring secretion under high and low level synthesis in various media. Fluorimetric detection of SPSec-mRFP recorded folded states, while immuno-staining detected even non-folded topological intermediates. Secretion of SPSec-mRFP is unexpectedly complex, is regulated independently of cell growth phase and is influenced by the growth regime. At low level synthesis, highly efficient secretion occurs until it is turned off and secretory preforms accumulate. At high level synthesis, the secretory pathway overflows and proteins are driven to folding and subsequent degradation. High-level synthesis of heterologous secretory proteins, whether secretion competent or not, has a drastic effect on the endogenous secretome, depending on their secretion efficiency. These findings lay the foundations of dissecting how protein targeting and secretion are regulated by the interplay between the metabolome, secretion factors and stress responses in the S. lividans model.
Collapse
Affiliation(s)
- Mohamed Belal Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Molecular Biology Department, National Research Centre, Dokki, Egypt
| | - Kristof Vrancken
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Joachim Koepff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lieve van Mellaert
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Smith RP, Whitten AE, Paxman JJ, Kahler CM, Scanlon MJ, Heras B. Production, biophysical characterization and initial crystallization studies of the N- and C-terminal domains of DsbD, an essential enzyme in Neisseria meningitidis. Acta Crystallogr F Struct Biol Commun 2018; 74:31-38. [PMID: 29372905 PMCID: PMC5947690 DOI: 10.1107/s2053230x17017800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/12/2017] [Indexed: 11/10/2022] Open
Abstract
The membrane protein DsbD is a reductase that acts as an electron hub, translocating reducing equivalents from cytoplasmic thioredoxin to a number of periplasmic substrates involved in oxidative protein folding, cytochrome c maturation and oxidative stress defence. DsbD is a multi-domain protein consisting of a transmembrane domain (t-DsbD) flanked by two periplasmic domains (n-DsbD and c-DsbD). Previous studies have shown that DsbD is required for the survival of the obligate human pathogen Neisseria meningitidis. To help understand the structural and functional aspects of N. meningitidis DsbD, the two periplasmic domains which are required for electron transfer are being studied. Here, the expression, purification and biophysical properties of n-NmDsbD and c-NmDsbD are described. The crystallization and crystallographic analysis of n-NmDsbD and c-NmDsbD are also described in both redox states, which differ only in the presence or absence of a disulfide bond but which crystallized in completely different conditions. Crystals of n-NmDsbDOx, n-NmDsbDRed, c-NmDsbDOx and c-NmDsbDRed diffracted to 2.3, 1.6, 2.3 and 1.7 Å resolution and belonged to space groups P213, P321, P41 and P1211, respectively.
Collapse
Affiliation(s)
- Roxanne P. Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Andrew E. Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales 2234, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
11
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Miyazaki R, Myougo N, Mori H, Akiyama Y. A photo-cross-linking approach to monitor folding and assembly of newly synthesized proteins in a living cell. J Biol Chem 2017; 293:677-686. [PMID: 29158258 DOI: 10.1074/jbc.m117.817270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
Many proteins form multimeric complexes that play crucial roles in various cellular processes. Studying how proteins are correctly folded and assembled into such complexes in a living cell is important for understanding the physiological roles and the qualitative and quantitative regulation of the complex. However, few methods are suitable for analyzing these rapidly occurring processes. Site-directed in vivo photo-cross-linking is an elegant technique that enables analysis of protein-protein interactions in living cells with high spatial resolution. However, the conventional site-directed in vivo photo-cross-linking method is unsuitable for analyzing dynamic processes. Here, by combining an improved site-directed in vivo photo-cross-linking technique with a pulse-chase approach, we developed a new method that can analyze the folding and assembly of a newly synthesized protein with high spatiotemporal resolution. We demonstrate that this method, named the pulse-chase and in vivo photo-cross-linking experiment (PiXie), enables the kinetic analysis of the formation of an Escherichia coli periplasmic (soluble) protein complex (PhoA). We also used our new technique to investigate assembly/folding processes of two membrane complexes (SecD-SecF in the inner membrane and LptD-LptE in the outer membrane), which provided new insights into the biogenesis of these complexes. Our PiXie method permits analysis of the dynamic behavior of various proteins and enables examination of protein-protein interactions at the level of individual amino acid residues. We anticipate that our new technique will have valuable utility for studies of protein dynamics in many organisms.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naomi Myougo
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Mori
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Smith RP, Mohanty B, Williams ML, Scanlon MJ, Heras B. H N, N, C α and C β assignments of the two periplasmic domains of Neisseria meningitidis DsbD. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:181-186. [PMID: 28589218 DOI: 10.1007/s12104-017-9743-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
DsbD is a disulfide bond reductase present in the inner membrane of many Gamma-Proteobacteria. In the human pathogen Neisseria meningitidis, DsbD is required for viability and represents a potential target for the development of antibiotics. Here we report the chemical shift assignments (HN, N, Cα and Cβ) for the reduced and oxidized forms of the two periplasmic domains of N. meningitidis DsbD, n-NmDsbD and c-NmDsbD. The backbone amide resonances in all four forms were completely assigned, and the secondary structures for the core regions of the proteins were calculated using 13Cαβ shifts. The reduced and oxidized forms of each domain have similar secondary shifts suggesting they retain the same fold. We anticipate that these data will provide an important basis for studying the interaction between n-NmDsbD and c-NmDsbD, which is required for electron transfer across the bacterial cytoplasmic membrane.
Collapse
Affiliation(s)
- Roxanne P Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Martin L Williams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Begoña Heras
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
14
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Chen L, Wang M, Huang L, Zhang Z, Liu F, Lu G. XC_0531 encodes a c-type cytochrome biogenesis protein and is required for pathogenesis in Xanthomonas campestris pv. campestris. BMC Microbiol 2017; 17:142. [PMID: 28655353 PMCID: PMC5488342 DOI: 10.1186/s12866-017-1056-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Background The phytopathogenic Xanthomonas campestris pv.campestris is a gram-negative bacterium and the causal agent of black-rot disease of cruciferous crops. Many gram-negative bacteria possess a family of proteins, called Dsbs, which are involved in disulfide bond formation in certain periplasmic proteins. In our preliminary screening of the virulence to the plants we identified that gene XC_0531 which annotated gene dsbD of Xanthomonas campestris pv. campestris (Xcc) is related to the virulence to the host plants. Results Here, we found XC_0531 encoded a DsbD like protein. Its deletion is sensitive to DTT and copper, decreased accumulation of free thiols in periplasm. Its deletion also affected heme synthesis, position of Soret band and the production of peak c550. This suggests that XC_0531 is related to c-type cytochromes biogenesis. XC_0531 mutation decreased the utilization of different carbon sources (such as galactose, xylose, maltose, saccharose and glucose), reduced extracellular polysaccharide (EPS) production, decreased extracellular enzyme activities (protease, cellulose and amylase), slowed down growth rate of Xcc and weakened virulence to the plants. These results suggest that these phenotypes caused by XC_0531 mutation is possibly due to deficient biosynthesis of c-type cytochromes in respiration chain and the formation of disulfide bonds. Our work confirmed the function of XC_0531 and provide theory basis for scientists working on molecular mechanisms of cytochrome c biogenesis, pathogenesis of Xcc, development of EPS commercial values and protecting plant from black rot. Conclusion We confirmed the function of gene XC_0531, which encodes a DsbD like protein, a protein correlated with c-type cytochrome biogenesis. This gene is related to the virulence to plants by affecting funtion of cytochromes c and probably disulfide bonds modification of proteins in type II secretion system (T2SS). Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1056-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.,Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Mingpeng Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Li Huang
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.
| |
Collapse
|
16
|
Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium Actinomyces oris. mBio 2017. [PMID: 28634238 PMCID: PMC5478893 DOI: 10.1128/mbio.00399-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Gram-positive actinobacteria Actinomyces spp. are key colonizers in the development of oral biofilms due to the inherent ability of Actinomyces to adhere to receptor polysaccharides on the surface of oral streptococci and host cells. This receptor-dependent bacterial interaction, or coaggregation, requires a unique sortase-catalyzed pilus consisting of the pilus shaft FimA and the coaggregation factor CafA forming the pilus tip. While the essential role of the sortase machine SrtC2 in pilus assembly, biofilm formation, and coaggregation has been established, little is known about trans-acting factors contributing to these processes. We report here a large-scale Tn5 transposon screen for mutants defective in Actinomyces oris coaggregation with Streptococcus oralis. We obtained 33 independent clones, 13 of which completely failed to aggregate with S. oralis, and the remainder of which exhibited a range of phenotypes from severely to weakly defective coaggregation. The former had Tn5 insertions in fimA, cafA, or srtC2, as expected; the latter were mapped to genes coding for uncharacterized proteins and various nuo genes encoding the NADH dehydrogenase subunits. Electron microscopy and biochemical analyses of mutants with nonpolar deletions of nuo genes and ubiE, a menaquinone C-methyltransferase-encoding gene downstream of the nuo locus, confirmed the pilus and coaggregation defects. Both nuoA and ubiE mutants were defective in oxidation of MdbA, the major oxidoreductase required for oxidative folding of pilus proteins. Furthermore, supplementation of the ubiE mutant with exogenous menaquinone-4 rescued the cell growth and pilus defects. Altogether, we propose that the A. oris electron transport chain is biochemically linked to pilus assembly via oxidative protein folding. The Gram-positive actinobacterium A. oris expresses adhesive pili, or fimbriae, that are essential to biofilm formation and Actinomyces interactions with other bacteria, termed coaggregation. While the critical role of the conserved sortase machine in pilus assembly and the disulfide bond-forming catalyst MdbA in oxidative folding of pilins has been established, little is known about other trans-acting factors involved in these processes. Using a Tn5 transposon screen for mutants defective in coaggregation with Streptococcus oralis, we found that genetic disruption of the NADH dehydrogenase and menaquinone biosynthesis detrimentally alters pilus assembly. Further biochemical characterizations determined that menaquinone is important for reactivation of MdbA. This study supports the notion that the electron transport chain is biochemically linked to pilus assembly in A. oris via oxidative folding of pilin precursors.
Collapse
|
17
|
Lim JK, Jung HC, Kang SG, Lee HS. Redox regulation of SurR by protein disulfide oxidoreductase in Thermococcus onnurineus NA1. Extremophiles 2017; 21:491-498. [PMID: 28251348 DOI: 10.1007/s00792-017-0919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023]
Abstract
Protein disulfide oxidoreductases are redox enzymes that catalyze thiol-disulfide exchange reactions. These enzymes include thioredoxins, glutaredoxins, protein disulfide isomerases, disulfide bond formation A (DsbA) proteins, and Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO) homologues. In the genome of a hyperthermophilic archaeon, Thermococcus onnurineus NA1, the genes encoding one PfPDO homologue (TON_0319, Pdo) and three more thioredoxin- or glutaredoxin-like proteins (TON_0470, TON_0472, TON_0834) were identified. All except TON_0470 were recombinantly expressed and purified. Three purified proteins were reduced by a thioredoxin reductase (TrxR), indicating that each protein can form redox complex with TrxR. SurR, a transcription factor involved in the sulfur response, was tested for a protein target of a TrxR-redoxin system and only Pdo was identified to be capable of catalyzing the reduction of SurR. Electromobility shift assay demonstrated that SurR reduced by the TrxR-Pdo system could bind to the DNA probe with the SurR-binding motif, GTTttgAAC. In this study, we present the TrxR-Pdo couple as a redox-regulator for SurR in T. onnurineus NA1.
Collapse
Affiliation(s)
- Jae Kyu Lim
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hae-Chang Jung
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun Sook Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
18
|
Ellis M, Patel P, Edon M, Ramage W, Dickinson R, Humphreys DP. Development of a high yieldingE. coliperiplasmic expression system for the production of humanized Fab' fragments. Biotechnol Prog 2016; 33:212-220. [DOI: 10.1002/btpr.2393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 10/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Mark Ellis
- Discovery Research, Protein Sciences; UCB Pharma, 208 Bath Road; Slough, Berkshire SL1 3WE U.K
| | | | - Marjory Edon
- Novasep, 5 chemin du Pilon, St Maurice de Beynost; Miribel 01708 France
| | - Walter Ramage
- NIBSC, Blanche Lane, South Mimms, Potters Bar; Hertfordshire EN6 3QG U.K
| | | | - David P. Humphreys
- Discovery Research, Protein Sciences; UCB Pharma, 208 Bath Road; Slough, Berkshire SL1 3WE U.K
| |
Collapse
|
19
|
Abstract
For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of Escherichia coli. While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| |
Collapse
|
20
|
Smith RP, Paxman JJ, Scanlon MJ, Heras B. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents. Molecules 2016; 21:molecules21070811. [PMID: 27438817 PMCID: PMC6273893 DOI: 10.3390/molecules21070811] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/21/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.
Collapse
Affiliation(s)
- Roxanne P Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Royal Parade, Parkville, Vic 3052, Australia.
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| |
Collapse
|
21
|
Schwechheimer C, Rodriguez DL, Kuehn MJ. NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli. Microbiologyopen 2015; 4:375-89. [PMID: 25755088 PMCID: PMC4475382 DOI: 10.1002/mbo3.244] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/10/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Outer membrane vesicles (OMVs) are ubiquitously secreted from the outer membrane (OM) of Gram-negative bacteria. These heterogeneous structures are composed of OM filled with periplasmic content from the site of budding. By analyzing mutants that have vesicle production phenotypes, we can gain insight into the mechanism of OMV budding in wild-type cells, which has thus far remained elusive. In this study, we present data demonstrating that the hypervesiculation phenotype of the nlpI deletion mutant of Escherichia coli correlates with changes in peptidoglycan (PG) dynamics. Our data indicate that in stationary phase cultures the nlpI mutant exhibits increased PG synthesis that is dependent on spr, consistent with a model in which NlpI controls the activity of the PG endopeptidase Spr. In log phase, the nlpI mutation was suppressed by a dacB mutation, suggesting that NlpI regulates penicillin-binding protein 4 (PBP4) during exponential growth. The data support a model in which NlpI negatively regulates PBP4 activity during log phase, and Spr activity during stationary phase, and that in the absence of NlpI, the cell survives by increasing PG synthesis. Further, the nlpI mutant exhibited a significant decrease in covalent outer membrane (OM-PG) envelope stabilizing cross-links, consistent with its high level of OMV production. Based on these results, we propose that one mechanism wild-type Gram-negative bacteria can use to modulate vesiculation is by altering PG-OM cross-linking via localized modulation of PG degradation and synthesis.
Collapse
Affiliation(s)
- Carmen Schwechheimer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
| | - Daniel L Rodriguez
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
| |
Collapse
|
22
|
Lester J, Kichler S, Oickle B, Fairweather S, Oberc A, Chahal J, Ratnayake D, Creuzenet C. Characterization ofHelicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production ofHelicobactercystein-rich protein HcpE. Mol Microbiol 2015; 96:110-33. [DOI: 10.1111/mmi.12923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Jeffrey Lester
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Sari Kichler
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Brandon Oickle
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | | | - Alexander Oberc
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Jaspreet Chahal
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Dinath Ratnayake
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| | - Carole Creuzenet
- Microbiology and Immunology; Western University; London N6A5C1 Canada
| |
Collapse
|
23
|
Kpadeh ZZ, Day SR, Mills BW, Hoffman PS. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization. Mol Microbiol 2015; 95:1054-69. [PMID: 25534767 DOI: 10.1111/mmi.12914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein-disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S-S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant-negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single-player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.
Collapse
Affiliation(s)
- Zegbeh Z Kpadeh
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia Health System, Charlottesville, VA, 22901, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | | | | | | |
Collapse
|
24
|
Polythioester synthesis in Ralstonia eutropha H16: Novel insights into 3,3′-thiodipropionic acid and 3,3′-dithiodipropionic acid catabolism. J Biotechnol 2014; 184:187-98. [DOI: 10.1016/j.jbiotec.2014.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
|
25
|
Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 2014; 344:1250494. [PMID: 24812405 DOI: 10.1126/science.1250494] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular chaperones prevent aggregation and misfolding of proteins, but scarcity of structural data has impeded an understanding of the recognition and antiaggregation mechanisms. We report the solution structure, dynamics, and energetics of three trigger factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. Nuclear magnetic resonance (NMR) relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion, but as the number and length of the PhoA regions engaged by TF increase, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and, by acting as unfoldases and holdases, prevent the aggregation and premature (mis)folding of unfolded proteins.
Collapse
Affiliation(s)
- Tomohide Saio
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
26
|
Slotboom DJ. Flipping the sidedness of disulfide bond formation. J Mol Biol 2013; 425:3265-7. [PMID: 23851015 DOI: 10.1016/j.jmb.2013.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dirk Jan Slotboom
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for advanced Materials, The Netherlands.
| |
Collapse
|
27
|
Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J Bacteriol 2013; 195:4161-73. [PMID: 23852867 DOI: 10.1128/jb.02192-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) are composed of outer membrane and periplasmic components and are ubiquitously secreted by Gram-negative bacteria. OMVs can disseminate virulence factors for pathogenic bacteria as well as serve as an envelope stress response. From a transposon mutant screen for OMV phenotypes, it was discovered that an nlpA mutant of Escherichia coli produces fewer OMVs than the wild type, whereas a degP mutant produces higher levels of OMVs. NlpA is an inner-membrane-anchored lipoprotein that has a minor role in methionine import. DegP is a periplasmic chaperone/protease for misfolded envelope proteins that is critical when cells are heat shocked. To reveal how these proteins contribute to OMV production, the mutations were combined and the double mutant analyzed. The ΔnlpA ΔdegP strain displayed a high-temperature growth defect that corresponded to the production of fewer OMVs than produced by the ΔdegP strain. This phenotype also pertained to other undervesiculation mutations in a ΔdegP background. The hypovesiculation phenotype of ΔnlpA in the wild-type strain as well as in the degP deletion strain was found to be a stationary-phase phenomenon. The periplasm of the ΔnlpA ΔdegP strain was determined to contain significantly more protein in stationary phase than the wild type. Additionally, misfolded DegP substrate outer membrane porins were detected in ΔdegP mutant-derived OMVs. These data suggest that an accumulation of envelope proteins resulting from decreased vesiculation was toxic and contributed to the growth defect. We conclude that OMV production contributes to relieve the envelope of accumulated toxic proteins and that NlpA plays an important role in the production of vesicles in stationary phase.
Collapse
|
28
|
FrnE, a cadmium-inducible protein in Deinococcus radiodurans, is characterized as a disulfide isomerase chaperone in vitro and for its role in oxidative stress tolerance in vivo. J Bacteriol 2013; 195:2880-6. [PMID: 23603741 DOI: 10.1128/jb.01503-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ~15- and ~3-fold, respectively. These cells also showed nearly 6 times less resistance to gamma radiation at 12 kGy and ~2-fold-higher sensitivity to 40 mM hydrogen peroxide than the wild type. In trans expression of drFrnE increased cytotoxicity of dithiothreitol (DTT) in the dsbA mutant of Escherichia coli. Recombinant drFrnE showed disulfide isomerase activity and could maintain insulin in its reduced form in the presence of DTT. While an equimolar ratio of wild-type protein could protect malate dehydrogenase completely from thermal denaturation at 42 °C, the C22S mutant of drFrnE provided reduced protection to malate dehydrogenase from thermal inactivation. These results suggested that drFrnE is a protein disulfide isomerase in vitro and has a role in oxidative stress tolerance of D. radiodurans possibly by protecting the damaged cellular proteins from inactivation.
Collapse
|
29
|
LUO M, GUAN Y, YAO S. Optimization of DsbA Purification from Recombinant Escherichia coli Broth Using Box-Behnken Design Methodology. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Luo M, Guan YX, Yao SJ. On-column refolding of denatured lysozyme by the conjoint chromatography composed of SEC and immobilized recombinant DsbA. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2971-7. [DOI: 10.1016/j.jchromb.2011.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
31
|
Abstract
The identification of protein disulfide isomerase, almost 50 years ago, opened the way to the study of oxidative protein folding. Oxidative protein folding refers to the composite process by which a protein recovers both its native structure and its native disulfide bonds. Pathways that form disulfide bonds have now been unraveled in the bacterial periplasm (disulfide bond protein A [DsbA], DsbB, DsbC, DsbG, and DsbD), the endoplasmic reticulum (protein disulfide isomerase and Ero1), and the mitochondrial intermembrane space (Mia40 and Erv1). This review summarizes the current knowledge on disulfide bond formation in both prokaryotes and eukaryotes and highlights the major problems that remain to be solved.
Collapse
Affiliation(s)
- Matthieu Depuydt
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
32
|
Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 2011; 14:1729-60. [PMID: 21241169 DOI: 10.1089/ars.2010.3344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Nikaido H. Structure and mechanism of RND-type multidrug efflux pumps. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:1-60. [PMID: 21692366 DOI: 10.1002/9780470920541.ch1] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, California, USA
| |
Collapse
|
34
|
Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 2010; 13:1231-46. [PMID: 20367276 PMCID: PMC2959184 DOI: 10.1089/ars.2010.3187] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond-forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan.
| | | |
Collapse
|
35
|
Sideris DP, Tokatlidis K. Oxidative protein folding in the mitochondrial intermembrane space. Antioxid Redox Signal 2010; 13:1189-204. [PMID: 20214493 DOI: 10.1089/ars.2010.3157] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disulfide bond formation is a crucial step for oxidative folding and necessary for the acquisition of a protein's native conformation. Introduction of disulfide bonds is catalyzed in specialized subcellular compartments and requires the coordinated action of specific enzymes. The intermembrane space of mitochondria has recently been found to harbor a dedicated machinery that promotes the oxidative folding of substrate proteins by shuttling disulfide bonds. The newly identified oxidative pathway consists of the redox-regulated receptor Mia40 and the sulfhydryl oxidase Erv1. Proteins destined to the intermembrane space are trapped by a disulfide relay mechanism that involves an electron cascade from the incoming substrate to Mia40, then on to Erv1, and finally to molecular oxygen via cytochrome c. This thiol-disulfide exchange mechanism is essential for the import and for maintaining the structural stability of the incoming precursors. In this review we describe the mechanistic parameters that define the interaction and oxidation of the substrate proteins in light of the recent publications in the mitochondrial oxidative folding field.
Collapse
Affiliation(s)
- Dionisia P Sideris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | | |
Collapse
|
36
|
Majidzadeh-A K, Mahboudi F, Hemayatkar M, Davami F, Barkhordary F, Adeli A, Soleimani M, Davoudi N, Khalaj V. Human Tissue Plasminogen Activator Expression in Escherichia coli using Cytoplasmic and Periplasmic Cumulative Power. Avicenna J Med Biotechnol 2010; 2:131-6. [PMID: 23408156 PMCID: PMC3558155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/04/2010] [Indexed: 11/23/2022] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease, which is composed of five distinct structural domains with 17 disulfide bonds, representing a model of high-disulfide proteins in human body. One of the most important limitations for high yield heterologous protein production in Escherichia coli (E. coli) is the expression of complex proteins with multiple disulfide bridges. In this study the combination of two distinct strategies, manipulated cytoplasm and native periplasm, was applied to produce the functional full length tPA enzyme in E. coli. Using a PelB signal peptide sequence at 5' site of tPA gene, the expression cassette was prepared and subsequently was transformed into a strain with manipulated oxidizing cytoplasm. Then the induction was made to express the protein of interest. The SDS-PAGE analysis and gelatin hydrolysis confirmed the successful expression of functional tPA. The results of this study showed that complex proteins can be produced in E. coli using the cumulative power of both cytoplasm and periplasm.
Collapse
Affiliation(s)
- Keivan Majidzadeh-A
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran,Iranian Center for Breast Cancer (ICBC), ACECR, Tehran, Iran
| | - Fereidoun Mahboudi
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Hemayatkar
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Barkhordary
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Adeli
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Noushin Davoudi
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Vahid Khalaj, Ph.D., Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. Tel: +98 21 66480780. Fax: +98 21 66480780. E-mail:
| |
Collapse
|
37
|
Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 2009; 138:1164-73. [PMID: 19766568 DOI: 10.1016/j.cell.2009.07.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 05/04/2009] [Accepted: 07/16/2009] [Indexed: 11/20/2022]
Abstract
Most bacterial exported proteins cross the cytoplasmic membrane as unfolded polypeptides. However, little is known about how they fold during or after this process due to the difficulty in detecting folding intermediates. Here we identify cotranslational and posttranslational folding intermediates of a periplasmic protein in which the protein and DsbA, a periplasmic disulfide bond-forming enzyme, are covalently linked by a disulfide bond. The cotranslational mixed-disulfide intermediate is, upon further chain elongation, resolved, releasing the oxidized polypeptide, thus allowing us to follow the folding process. This analysis reveals that two cysteines that are joined to form a structural disulfide can play different roles during the folding reaction and that the mode of translocation (cotranslational verse posttranslational) can affect the folding process of a protein in the periplasm. The latter finding leads us to propose that the activity of the ribosome (translation) can modulate protein folding even in an extracytosolic compartment.
Collapse
|
38
|
Arredondo SA, Chen TF, Riggs AF, Gilbert HF, Georgiou G. Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC. J Biol Chem 2009; 284:23972-9. [PMID: 19581640 DOI: 10.1074/jbc.m109.010199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial protein-disulfide isomerase DsbC is a homodimeric V-shaped enzyme that consists of a dimerization domain, two alpha-helical linkers, and two opposing thioredoxin fold catalytic domains. The functional significance of the two catalytic domains of DsbC is not well understood yet. We have engineered heterodimer-like DsbC derivatives covalently linked via (Gly(3)-Ser) flexible linkers. We either inactivated one of the catalytic sites (CGYC), or entirely removed one of the catalytic domains while maintaining the putative binding area intact. Variants having a single active catalytic site display significant levels of isomerase activity. Furthermore, mDsbC[H45D]-dim[D53H], a DsbC variant lacking an entire catalytic domain but with an intact dimerization domain, also showed isomerase activity, albeit at lower levels. In addition, the absence of the catalytic domain allowed this protein to catalyze in vivo oxidation. Our results reveal that two catalytic domains in DsbC are not essential for disulfide bond isomerization and that a determining feature in isomerization is the availability of a substrate binding domain.
Collapse
Affiliation(s)
- Silvia A Arredondo
- Department of Chemical Engineering, School of Biological Sciences, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
MacRitchie DM, Buelow DR, Price NL, Raivio TL. Two-component signaling and gram negative envelope stress response systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:80-110. [PMID: 18792683 DOI: 10.1007/978-0-387-78885-2_6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawn M MacRitchie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
41
|
Arredondo S, Segatori L, Gilbert HF, Georgiou G. De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC. J Biol Chem 2008; 283:31469-76. [PMID: 18782764 DOI: 10.1074/jbc.m803346200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli disulfide isomerase, DsbC is a V-shaped homodimer with each monomer comprising a dimerization region that forms part of a putative peptide-binding pocket and a thioredoxin catalytic domain. Disulfide isomerases from prokaryotes and eukaryotes exhibit little sequence homology but display very similar structural organization with two thioredoxin domains facing each other on top of the dimerization/peptide-binding region. To aid the understanding of the mechanistic significance of thioredoxin domain dimerization and of the peptide-binding cleft of DsbC, we constructed a series of protein chimeras comprising unrelated protein dimerization domains fused to thioredoxin superfamily enzymes. Chimeras consisting of the dimerization domain and the alpha-helical linker of the bacterial proline cis/trans isomerase FkpA and the periplasmic oxidase DsbA gave rise to enzymes that catalyzed the folding of multidisulfide substrate proteins in vivo with comparable efficiency to E. coli DsbC. In addition, expression of FkpA-DsbAs conferred modest resistance to CuCl2, a phenotype that depends on disulfide bond isomerization. Selection for resistance to elevated CuCl2 concentrations led to the isolation of FkpA-DsbA mutants containing a single amino acid substitution that changed the active site of the DsbA domain from CPHC into CPYC, increasing the similarity to the DsbC active site (CGYC). Unlike DsbC, which is resistant to oxidation by DsbB-DsbA and does not normally catalyze disulfide bond formation under physiological conditions, the FkpA-DsbA chimeras functioned both as oxidases and isomerases. The engineering of these efficient artificial isomerases delineates the key features of catalysis of disulfide bond isomerization and enhances our understanding of its evolution.
Collapse
Affiliation(s)
- Silvia Arredondo
- Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
42
|
Onder O, Turkarslan S, Sun D, Daldal F. Overproduction or absence of the periplasmic protease DegP severely compromises bacterial growth in the absence of the dithiol: disulfide oxidoreductase DsbA. Mol Cell Proteomics 2008; 7:875-90. [PMID: 18174153 PMCID: PMC2401338 DOI: 10.1074/mcp.m700433-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 12/31/2007] [Indexed: 02/05/2023] Open
Abstract
Facultative phototrophic bacterium Rhodobacter capsulatus DsbA-null mutants are proficient in photosynthesis but are defective in respiration especially in enriched growth medium at 35 degrees C. They also exhibit severe pleiotropic phenotypes extending from motility defects to osmofragility and oxidative stresses. In this work, using a combined proteomics and molecular genetics approach, we demonstrated that the respiratory defect of R. capsulatus DsbA-null mutants originates from the overproduction of the periplasmic protease DegP, which renders them temperature-sensitive for growth. The DsbA-null mutants reverted frequently to overcome this growth defect by decreasing, but not completely eliminating, their DegP activity. In agreement with these findings, we showed that overproduction of DegP abolishes the newly restored respiratory growth ability of the revertants in all growth media. Structural localizations of the reversion mutations in DegP revealed the regions and amino acids that are important for its protease-chaperone activity. Remarkably although R. capsulatus DsbA-null or DegP-null mutants were viable, DegP-null DsbA-null double mutants were lethal at all growth temperatures. This is unlike Escherichia coli, and it indicates that in the absence of DsbA some DegP activity is required for survival of R. capsulatus. Absence of a DegQ protease homologue in some bacteria together with major structural variations among the DegP homologues, including a critical disulfide bond-bearing region, correlates well with the differences seen between various species like R. capsulatus and E. coli. Our findings illustrate the occurrence of two related but distinct periplasmic protease families in bacterial species.
Collapse
Affiliation(s)
- Ozlem Onder
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19014-6019, USA
| | | | | | | |
Collapse
|
43
|
Vlamis-Gardikas A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revisited. Biochim Biophys Acta Gen Subj 2008; 1780:1170-200. [PMID: 18423382 DOI: 10.1016/j.bbagen.2008.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Electron flow via thiols is a theme with many variations in all kingdoms of life. The favourable physichochemical properties of the redox active couple of two cysteines placed in the optimised environment of the thioredoxin fold allow for two electron transfers in between top biological reductants and ultimate oxidants. The reduction of ribonucleotide reductases by thioredoxin and thioredoxin reductase of Escherichia coli (E. coli) was one of the first pathways to be elucidated. Diverse functions such as protein folding in the periplasm, maturation of respiratory enzymes, detoxification of hydrogen peroxide and prevention of oxidative damage may be based on two electron transfers via thiols. A growing field is the relation of thiol reducing pathways and the interaction of E. coli with different organisms. This concept combined with the sequencing of the genomes of different bacteria may allow for the identification of fine differences in the systems employing thiols for electron flow between pathogens and their corresponding mammalian hosts. The emerging possibility is the development of novel antibiotics.
Collapse
Affiliation(s)
- Alexios Vlamis-Gardikas
- Center of Basic Research I-Biochemistry Division, Biomedical Research Foundation (BRFAA), Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.
| |
Collapse
|
44
|
Takatsuka Y, Nikaido H. Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli. J Bacteriol 2007; 189:8677-84. [PMID: 17905989 PMCID: PMC2168954 DOI: 10.1128/jb.01127-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 09/14/2007] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli AcrB is a multidrug efflux transporter that recognizes multiple toxic chemicals having diverse structures. Recent crystallographic studies of the asymmetric trimer of AcrB suggest that each protomer in the trimeric assembly goes through a cycle of conformational changes during drug export. However, biochemical evidence for these conformational changes has not been provided previously. In this study, we took advantage of the observation that the external large cleft in the periplasmic domain of AcrB appears to become closed in the crystal structure of one of the three protomers, and we carried out in vivo cross-linking between cysteine residues introduced by site-directed mutagenesis on both sides of the cleft, as well as at the interface between the periplasmic domains of the AcrB trimer. Double-cysteine mutants with mutations in the cleft or the interface were inactive. The possibility that this was due to the formation of disulfide bonds was suggested by the restoration of transport activity of the cleft mutants in a dsbA strain, which had diminished activity to form disulfide bonds in the periplasm. Furthermore, rapidly reacting, sulfhydryl-specific chemical cross-linkers, methanethiosulfonates, inactivated the AcrB transporter with double-cysteine residues in the cleft expressed in dsbA cells, and this inactivation could be observed within a few seconds after the addition of a cross-linker in real time by increased ethidium influx into the cells. These observations indicate that conformational changes, including the closure of the external cleft in the periplasmic domain, are required for drug transport by AcrB.
Collapse
Affiliation(s)
- Yumiko Takatsuka
- Department of Molecular and Cell Biology, 426 Barker Hall, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
45
|
Inaba K, Ito K. Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:520-9. [PMID: 18082634 DOI: 10.1016/j.bbamcr.2007.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
Abstract
All organisms possess specific cellular machinery that introduces disulfide bonds into proteins newly synthesized and transported out of the cytosol. In E. coli, the membrane-integrated DsbB protein cooperates with ubiquinone to generate a disulfide bond, which is transferred to DsbA, a periplasmic dithiol oxido-reductase that serves as the direct disulfide bond donor to proteins folding oxidatively in this compartment. Despite the extensive accumulation of knowledge on this oxidation system, molecular details of the DsbB reaction mechanisms had been controversial due partly to the lack of structural information until our recent determination of the crystal structure of a DsbA-DsbB-ubiquinone complex. In this review we discuss the structural and chemical nature of reaction intermediates in the DsbB catalysis and the illuminated molecular mechanisms that account for the de novo formation of a disulfide bond and its donation to DsbA. It is suggested that DsbB gains the ability to oxidize its specific substrate, DsbA, having very high redox potential, by undergoing a DsbA-induced rearrangement of cysteine residues. One of the DsbB cysteines that are now reduced then interacts with ubiquinone to form a charge transfer complex, leading to the regeneration of a disulfide at the DsbB active site, and the cycle can begin anew.
Collapse
Affiliation(s)
- Kenji Inaba
- Division of Protein Chemistry, Post-Genome Science Center, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
46
|
Beckwith J. What lies beyond uranus? Preconceptions, ignorance, serendipity and suppressors in the search for biology's secrets. Genetics 2007; 176:733-40. [PMID: 17579239 PMCID: PMC1894603 DOI: 10.1534/genetics.107.076240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jon Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
47
|
Messens J, Collet JF, Van Belle K, Brosens E, Loris R, Wyns L. The Oxidase DsbA Folds a Protein with a Nonconsecutive Disulfide. J Biol Chem 2007; 282:31302-7. [PMID: 17702751 DOI: 10.1074/jbc.m705236200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the last unsolved problems of molecular biology is how the sequential amino acid information leads to a functional protein. Correct disulfide formation within a protein is hereby essential. We present periplasmic ribonuclease I (RNase I) from Escherichia coli as a new endogenous substrate for the study of oxidative protein folding. One of its four disulfides is between nonconsecutive cysteines. In general view, the folding of proteins with nonconsecutive disulfides requires the protein disulfide isomerase DsbC. In contrast, our study with RNase I shows that DsbA is a sufficient catalyst for correct disulfide formation in vivo and in vitro. DsbA is therefore more specific than generally assumed. Further, we show that the redox potential of the periplasm depends on the presence of glutathione and the Dsb proteins to maintain it at-165 mV. We determined the influence of this redox potential on the folding of RNase I. Under the more oxidizing conditions of dsb(-) strains, DsbC becomes necessary to correct non-native disulfides, but it cannot substitute for DsbA. Altogether, DsbA folds a protein with a nonconsecutive disulfide as long as no incorrect disulfides are formed.
Collapse
Affiliation(s)
- Joris Messens
- Brussels Center for Redox Biology, Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, 1050 Brussel, Belgium.
| | | | | | | | | | | |
Collapse
|
48
|
Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K. Crystal Structure of the DsbB-DsbA Complex Reveals a Mechanism of Disulfide Bond Generation. Cell 2006; 127:789-801. [PMID: 17110337 DOI: 10.1016/j.cell.2006.10.034] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/18/2006] [Accepted: 10/03/2006] [Indexed: 11/22/2022]
Abstract
Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space. DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase. To gain insight into disulfide bond formation, we determined the crystal structure of the DsbB-DsbA complex at 3.7 A resolution. The structure of DsbB revealed four transmembrane helices and one short horizontal helix juxtaposed with Cys130 in the mobile periplasmic loop. Whereas DsbB in the resting state contains a Cys104-Cys130 disulfide, Cys104 in the binary complex is engaged in the intermolecular disulfide bond and captured by the hydrophobic groove of DsbA, resulting in separation from Cys130. This cysteine relocation prevents the backward resolution of the complex and allows Cys130 to approach and activate the disulfide-generating reaction center composed of Cys41, Cys44, Arg48, and ubiquinone. We propose that DsbB is converted by its specific substrate, DsbA, to a superoxidizing enzyme, capable of oxidizing this extremely oxidizing oxidase.
Collapse
Affiliation(s)
- Kenji Inaba
- Institute for Virus Research, Kyoto University and CREST, Japan Science and Technology Agency, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Messens J, Collet JF. Pathways of disulfide bond formation in Escherichia coli. Int J Biochem Cell Biol 2006; 38:1050-62. [PMID: 16446111 DOI: 10.1016/j.biocel.2005.12.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022]
Abstract
Disulfide bond formation is required for the correct folding of many secreted proteins. Cells possess protein-folding catalysts to ensure that the correct pairs of cysteine residues are joined during the folding process. These enzymatic systems are located in the endoplasmic reticulum of eukaryotes or in the periplasm of Gram-negative bacteria. This review focuses on the pathways of disulfide bond formation and isomerization in bacteria, taking Escherichia coli as a model.
Collapse
Affiliation(s)
- Joris Messens
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel (VUB), Belgium
| | | |
Collapse
|