1
|
The Intake of Coffee Increases the Absorption of Aspirin in Mice by Modifying Gut Microbiome. Pharmaceutics 2022; 14:pharmaceutics14040746. [PMID: 35456580 PMCID: PMC9031453 DOI: 10.3390/pharmaceutics14040746] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
The absorption of orally administered aspirin into the blood was affected by gastrointestinal environmental factors such as gut pH, digestive enzymes, and microbiota. The intake of coffee affects the pharmacological effects of aspirin. Therefore, we examined the gut microbiota-mediated effect of coffee bean extract (CBE) intake on the pharmacokinetics of aspirin in mice. The intake of CBE modified the gut microbiota composition and their α- and β-diversities: It decreased the Proteobacteria, Helicobacteriaceae, and Bacteroidaceae populations in the fecal microbiota composition, while the S24-7_f (Muribaculaceae) and Lactobacillaceae populations increased. The fecal aspirin-hydrolyzing activities of humans and mice to salicylic acid were 0.045 ± 0.036 μmole/h/g and 0.032 ± 0.003 μmole/h/g, respectively. However, CBE treatment significantly suppressed the aspirin-hydrolyzing activity in mice. Furthermore, the area under the serum concentration–time curves (AUCs) of aspirin and salicylic acid were 0.265 ± 0.050 µg·h/mL and 16.224 ± 5.578 µg·h/mL in CBE-treated mice, respectively, and 0.248 ± 0.042 µg·h/mL and 10.756 ± 2.071 µg·h/mL in control mice, respectively. Moreover, CBE treatment suppressed the multidrug resistance protein 4 (Mrp4) expression in the intestines of mice, while the P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) expression was not affected. Furthermore, the CBE-treated mouse fecal lysate suppressed Mrp4 expression in Caco-2 cells compared to that of vehicle-treated mice, while CBE treatment did not affect Mrp4 expression. Oral gavage of caffeine also suppressed the Mrp4 expression in the intestines of mice. These findings suggest that intake of coffee can increase the absorption of aspirin by modifying the gut microbiome.
Collapse
|
2
|
Yang M, Wang L, Ni M, Neuber B, Wang S, Gong W, Sauer T, Schubert ML, Hückelhoven-Krauss A, Xia R, Ge J, Kleist C, Eckstein V, Sellner L, Müller-Tidow C, Dreger P, Schmitt M, Schmitt A. Dual Effects of Cyclooxygenase Inhibitors in Combination With CD19.CAR-T Cell Immunotherapy. Front Immunol 2021; 12:670088. [PMID: 34122428 PMCID: PMC8189155 DOI: 10.3389/fimmu.2021.670088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells targeting CD19 came into clinical practice for the treatment of B cell lymphoma in 2018. However, patients being treated for B cell lymphoma often suffer from comorbidities such as chronic pain, cardiovascular diseases and arthritis. Thus, these patients frequently receive concomitant medications that include nonsteroidal anti-inflammatory drugs (NSAIDs) like cyclooxygenase (COX) inhibitors. Celecoxib, a selective COX-2 inhibitor, and aspirin, a non-selective COX-1 and COX-2 inhibitor, are being used as anti-inflammatory, analgesic and anti-pyretic drugs. In addition, several studies have also focused on the anti-neoplastic properties of COX-inhibitors. As the influence of COX-inhibitors on CD19.CAR-T cells is still unknown, we investigated the effect of celecoxib and aspirin on the quantity and quality of CD19.CAR-T cells at different concentrations with special regard to cytotoxicity, activation, cytokine release, proliferation and exhaustion. A significant effect on CAR-T cells could be observed for 0.1 mmol/L of celecoxib and for 4 mmol/L of aspirin. At these concentrations, we found that both COX-inhibitors could induce intrinsic apoptosis of CD19.CAR-T cells showing a significant reduction in the ratio of JC-10 red to JC-10 green CAR-T cells from 6.46 ± 7.03 (mean ± SD) to 1.76 ± 0.67 by celecoxib and to 4.41 ± 0.32 by aspirin, respectively. Additionally, the ratios of JC-10 red to JC-10 green Daudi cells were also decreased from 3.41 ± 0.30 to 0.77 ± 0.06 by celecoxib and to 1.26 ± 0.04 by aspirin, respectively. Although the cytokine release by CD19.CAR-T cells upon activation was not hampered by both COX-inhibitors, activation and proliferation of CAR-T cells were significantly inhibited via diminishing the NF-ĸB signaling pathway by a significant down-regulation of expression of CD27 on CD4+ and CD8+ CAR-T cells, followed by a clear decrease of phosphorylated NF-ĸB p65 in both CD4+ and CD8+ CAR-T cells by a factor of 1.8. Of note, COX-inhibitors hampered expansion and induced exhaustion of CAR-T cells in an antigen stress assay. Collectively, our findings indicate that the use of COX-inhibitors is a double-edged sword that not only induces apoptosis in tumor cells but also impairs the quantity and quality of CAR-T cells. Therefore, COX-inhibitors should be used with caution in patients with B cell lymphoma under CAR-T cell therapy.
Collapse
Affiliation(s)
- Mingya Yang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ming Ni
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Brigitte Neuber
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sanmei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Wenjie Gong
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Department of Hematology, the first Affiliated Hospital of Soochow University, Suzhou, China
| | - Tim Sauer
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ruixiang Xia
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jian Ge
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Christian Kleist
- Department of Nuclear Medicine, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Volker Eckstein
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Takeda Pharma Vertrieb GmbH & Co. KG, Berlin, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Banihani SA, Shatnawi RM. Aspirin decreases human sperm motility and vitality, chelates seminal calcium, but insignificantly reduces seminal nitric oxide production. Andrologia 2020; 52:e13776. [DOI: 10.1111/and.13776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Saleem A. Banihani
- Department of Medical Laboratory Sciences Jordan University of Science and Technology Irbid Jordan
| | - Reema M. Shatnawi
- Department of Medical Laboratory Sciences Jordan University of Science and Technology Irbid Jordan
| |
Collapse
|
4
|
New changes in pregnancy and lactation labelling: Review of dermatologic drugs. Int J Womens Dermatol 2019; 5:216-226. [PMID: 31700976 PMCID: PMC6831768 DOI: 10.1016/j.ijwd.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Background The U.S. Food and Drug Administration has published new pregnancy and lactation labelling rules that set standards on the presentation of information with regard to drug usage during pregnancy and breastfeeding, as well as the effects on fertility. These guidelines became effective June 30, 2015, and classified the risks of using prescription drugs during pregnancy in three detailed subsections: Pregnancy, Lactation, and Females and Males of Reproductive Potential. These sections describe the risks within a real-world context of caring for these patients. Objective In this study, we reclassified and categorized drugs and treatments commonly used in dermatology according to these new guidelines. Methods We performed a search of the medical literature about the use of relevant prescription drugs during pregnancy and breastfeeding and their effect on fertility. The search included prospective and retrospective studies, review articles from PubMed-indexed journals (from inception to November 2018), U.S. Food and Drug Administration records, pregnancy exposure registries, relevant information and studies provided in drug labeling by companies, and updated pharmacologic texts and guidelines up to 2018. Results Topical immunomodulators, systemic immunomodulators (including biologics), systemic antipruritic agents, antimicrobials, as well as acne, hair, and cosmetic agents were included. We have made best attempts to review and consolidate existing and new data and include them in our guide. Conclusion This new narrative format facilitates prescribing by considering a variety of factors. One previously overlooked aspect was the impact on the reproductive potential of both male and female patients. Rather than depending on overly simplistic letter risk categories, dermatologists will now need to make prescribing decisions based on each patient and the information provided, which will allow for better decision making and patient care.
Collapse
|
5
|
Ratchford SM, Lavin KM, Perkins RK, Jemiolo B, Trappe SW, Trappe TA. Aspirin as a COX inhibitor and anti-inflammatory drug in human skeletal muscle. J Appl Physiol (1985) 2017; 123:1610-1616. [PMID: 28706001 DOI: 10.1152/japplphysiol.01119.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although aspirin is one of the most common anti-inflammatory drugs in the world, the effect of aspirin on human skeletal muscle inflammation is almost completely unknown. This study examined the potential effects and related time course of an orally consumed aspirin dose on the inflammatory prostaglandin E2 (PGE2)/cyclooxygenase (COX) pathway in human skeletal muscle. Skeletal muscle biopsies were taken from the vastus lateralis of 10 healthy adults (5 male and 5 female, 25 ± 2 yr old) before (Pre) and 2, 4, and 24 h after (Post) a standard dose (975mg) of aspirin and partitioned for analysis of 1) in vivo PGE2 levels in resting skeletal muscle and 2) ex vivo skeletal muscle PGE2 production when stimulated with the COX substrate arachidonic acid (5 μM). PGE2 levels in vivo and PGE2 production ex vivo were generally unchanged at each time point after aspirin consumption. However, most individuals clearly showed suppression of PGE2, but at varying time points after aspirin consumption. When the maximum suppression after aspirin consumption was examined for each individual, independent of time, PGE2 levels in vivo (184 ± 17 and 104 ± 23pg/g wet wt at Pre and Post, respectively) and PGE2 production ex vivo (2.74 ± 0.17 and 2.09 ± 0.11pg·mg wet wt-1·min-1 at Pre and Post, respectively) were reduced ( P < 0.05) by 44% and 24%, respectively. These results provide evidence that orally consumed aspirin can inhibit the COX pathway and reduce the inflammatory mediator PGE2 in human skeletal muscle. Findings from this study highlight the need to expand our knowledge regarding the potential role for aspirin regulation of the deleterious influence of inflammation on skeletal muscle health in aging and exercising individuals. NEW & NOTEWORTHY This study demonstrated that orally consumed aspirin can target the prostaglandin/cyclooxygenase pathway in human skeletal muscle. This pathway has been shown to regulate skeletal muscle metabolism and inflammation in aging and exercising individuals. Given the prevalence of aspirin consumption, these findings may have implications for skeletal muscle health in a large segment of the population.
Collapse
Affiliation(s)
| | - Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ryan K Perkins
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
6
|
Safety Assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12–15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate. Int J Toxicol 2016. [DOI: 10.1177/1091581803022s303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent—miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents—miscellaneous (Capryloyl, 0.1% to 1%; C12–15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents—miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD50 in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a “baby” aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were generally negative. Methyl Salicylate, in a mouse skin-painting study, did not induce neoplasms. Likewise, Methyl Salicylate was negative in a mouse pulmonary tumor system. In clinical tests, Salicylic Acid (2%) produced minimal cumulative irritation and slight or no irritation(1.5%); TEA-Salicylate (8%) produced no irritation; Methyl Salicylate (>12%) produced pain and erythema, a 1% aerosol produced erythema, but an 8% solution was not irritating; Ethylhexyl Salicylate (4%) and undiluted Tridecyl Salicylate produced no irritation. In atopic patients, Methyl Salicylate caused irritation as a function of concentration (no irritation at concentrations of 15% or less). In normal skin, Salicylic Acid, Methyl Salicylate, and Ethylhexyl (Octyl) Salicylate are not sensitizers. Salicylic Acid is not a photosensitizer, nor is it phototoxic. Salicylic Acid and Ethylhexyl Salicylate are low-level photoprotective agents. Salicylic Acid is well-documented to have keratolytic action on normal human skin. Because of the possible use of these ingredients as exfoliating agents, a concern exists that repeated use may effectively increase exposure of the dermis and epidermis to UV radiation. It was concluded that the prudent course of action would be to advise the cosmetics industry that there is a risk of increased UV radiation damage with the use of any exfoliant, including Salicylic Acid and the listed salicylates, and that steps need to be taken to formulate cosmetic products with these ingredients as exfoliating agents so as not to increase sun sensitivity, or when increased sun sensitivity would be expected, to include directions for the daily use of sun protection. The available data were not sufficient to establish a limit on concentration of these ingredients, or to identify the minimum pH of formulations containing these ingredients, such that no skin irritation would occur, but it was recognized that it is possible to formulate cosmetic products in a way such that significant irritation would not be likely, and it was concluded that the cosmetics industry should formulate products containing these ingredients so as to be nonirritating. Although simultaneous use of several products containing Salicylic Acid could produce exposures greater than would be seen with use of baby aspirin (an exposure generally considered to not present a reproductive or developmental toxicity risk), it was not considered likely that consumers would simultaneously use multiple cosmetic products containing Salicylic Acid. Based on the available information, the Cosmetic Ingredient Review Expert Panel reached the conclusion that these ingredients are safe as used when formulated to avoid skin irritation and when formulated to avoid increasing the skin's sun sensitivity, or, when increased sun sensitivity would be expected, directions for use include the daily use of sun protection.
Collapse
|
7
|
Preclinical pharmacokinetic evaluation and metabolites identification of methyl salicylate-2-O-β-d-lactoside in rats using LC-MS/MS and Q-TOF-MS methods. J Pharm Biomed Anal 2015; 109:1-10. [PMID: 25746501 DOI: 10.1016/j.jpba.2015.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/07/2015] [Accepted: 02/12/2015] [Indexed: 11/23/2022]
Abstract
Methyl salicylate-2-O-β-d-lactoside (MSL) is a natural salicylate derivative from the traditional Chinese medicine of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis). As a non-steroidal anti-inflammatory drug (NSAID), MSL exerts a significant anti-arthritis effect but hardly has any gastrointestinal toxicity. In this paper, the pharmacokinetics, distribution, excretion and identification of MSL and its metabolites are described following rat oral and intravenous administration. The biological samples were quantified by UPLC-MS/MS and the metabolites in urine and feces were identified by using Q-TOF-MS. These results will support future investigations leading to clinical development of this drug.
Collapse
|
8
|
Lecchi M, D’Alonzo L, Negro A, Martelletti P. Pharmacokinetics and safety of a new aspirin formulation for the acute treatment of primary headaches. Expert Opin Drug Metab Toxicol 2014; 10:1381-95. [DOI: 10.1517/17425255.2014.952631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel antimalarial Spiroindolone KAE609 (Cipargamin) to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother 2014; 58:6209-14. [PMID: 25114127 PMCID: PMC4187895 DOI: 10.1128/aac.03393-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This first-in-human randomized, double-blind, placebo-controlled, ascending-single and -multiple oral dose study was designed to evaluate the safety, tolerability, and pharmacokinetics in healthy volunteers of KAE609 (cipargamin; formerly NITD609), a spiroindolone now in trials for malaria treatment. It was studied in single-dose cohorts (1 to 300 mg, including one 30-mg food effect cohort) with 4 to 10 subjects in each cohort and in multiple-dose cohorts (10 to 150 mg once daily for 3 days) with 8 subjects in each cohort. The follow-up period was 6 to 8 days post-last dose. Safety and pharmacokinetics were assessed at scheduled time points during the study. Systemic exposure in terms of the area under the concentration-time curve from 0 h extrapolated to infinity (AUC0-∞) increased in a dose-proportional manner over the dose range of 1 to 300 mg. The AUC from time zero to the time of the last quantifiable concentration (AUClast) and the maximum concentration of drug in plasma (Cmax) also increased in an approximately dose-proportional manner. When administered daily for 3 days, the accumulation ratio on day 3 (the AUC from time zero to 24 h postdosing [AUC0-24] on day 3/AUC0-24 on day 1) was in the range of 1.5 to 2 in the studied dose range (10 to 150 mg) and was consistent with an elimination half-life of around 24 h. Urine analysis for unchanged KAE609 revealed negligible amounts (≤0.01%) were excreted renally. The high fat food intake did not affect the extent of KAE609 absorption (AUC); however, the Cmax was reduced by around 27%. KAE609 was tolerated in this study, with transient gastrointestinal and genitourinary adverse events of mild to moderate intensity (semen discoloration, diarrhea, nausea and abdominal discomfort, dizziness and headache, catheter site hematoma). Gastrointestinal and genitourinary adverse events increased with rising doses.
Collapse
|
10
|
Zhang D, Ma X, Xin W, Huang C, Zhang W, Zhang T, Du G. Pharmacokinetics of methyl salicylate-2-O-β-D-lactoside, a novel salicylic acid analog isolated from Gaultheria yunnanensis, in dogs. Biomed Chromatogr 2013; 27:1680-4. [PMID: 23798357 DOI: 10.1002/bmc.2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/20/2013] [Accepted: 05/24/2013] [Indexed: 11/05/2022]
Abstract
Methyl salicylate-2-O-β-D-lactoside (MSL), a natural salicylate derivative of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis), has been shown to provide a beneficial anti-inflammatory effect in animal models. Studies on the pharmacokinetics and bioavailability of MSL can provide both a substantial foundation for understanding its mechanism and empirical evidence to support its use in clinical practice. A simple and sensitive high-performance liquid chromatography (HPLC) method, coupled with ultraviolet analyte detection, was developed for determining the concentration of MSL and its metabolite in beagle plasma. Chromatographic separation was achieved on a Agilent Zorbax SB-C18 column (5 μM,4.6 × 250 mm). The mobile phase consisted of aqueous solution containing 0.1% phosphoric acid and acetonitrile (82:90, v/v), at a flow rate of 1 mL/min. Validation of the assay demonstrated that the developed HPLC method was sensitive, accurate and selective for the determination of MSL and its metabolite in dog plasma. After orally administering three doses of MSL, it could no longer be detected in dog plasma and its metabolite, salicylic acid, was detected. Salicylic acid showed a single peak in the plasma concentration-time curves and linear pharmacokinetics following the three oral doses (r(2) > 0.99). In contrast, only MSL was detected in plasma following intravenous administration. These results will aid in understanding the pharmacological significance of MSL. The developed method was successfully used for evaluation of the oral and intravenous pharmacokinetic profile of MSL in dogs.
Collapse
Affiliation(s)
- Dan Zhang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Bocheńska P, Pyka A. DETERMINATION OF ACETYLSALICYLIC ACID IN PHARMACEUTICAL DRUGS BY TLC WITH DENSITOMETRIC DETECTION IN UV. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2012.676949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Paulina Bocheńska
- a Department of Analytical Chemistry, Faculty of Pharmacy , Medical University of Silesia , Sosnowiec , Poland
| | - Alina Pyka
- a Department of Analytical Chemistry, Faculty of Pharmacy , Medical University of Silesia , Sosnowiec , Poland
| |
Collapse
|
12
|
Cao YJ, Caffo B, Choi L, Radebaugh CL, Fuchs EJ, Hendrix CW. Noninvasive quantitation of drug concentration in prostate and seminal vesicles: improvement and validation with desipramine and aspirin. J Clin Pharmacol 2007; 48:176-83. [PMID: 18094213 DOI: 10.1177/0091270007310547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The accessory glands of the male genital tract are the sites of several major health problems, including benign prostatic hyperplasia, prostate cancer, and human immunodeficiency virus (HIV) transmission. We aimed to validate and improve our noninvasive method for the quantitation of drug concentrations in these physiological subcompartments. Twenty-seven men were dosed with 100 mg desipramine (a weak base) and 975 mg aspirin (a weak acid) and ejaculated their semen in 1 pass across 5 compartments of a collection device 2.5 hours later. A Bayesian latent-variable model previously developed by our group was further advanced for the estimation of drug concentrations in prostate and seminal vesicles based on drug and biomarker concentrations in the split ejaculate. Under normality assumptions, desipramine concentration (with 95% credible intervals) in prostate and seminal vesicles were 27 (8.3-52) ng/mL and 7.6 (4.0-11) ng/mL, respectively; salicylate concentration in prostate and seminal vesicles were 2.0 (0.093-6.5) microg/mL, and 9.9 (8.2-12) microg/mL, respectively. The prostate-to-seminal vesicles concentration ratio was 0.20 (0.0087-0.75) for salicylate and 3.6 (0.91-9.9) for desipramine. We conclude that our quantitative analysis along with the split ejaculate method is sensitive, reproducible, and applicable for the assessment of pharmacokinetics of the accessory glands of the male genital tract.
Collapse
Affiliation(s)
- Ying-Jun Cao
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Three mechanisms have been proposed for exposure of the conceptus to chemicals in semen: access of chemicals to the maternal circulation after absorption from the vagina, direct chemical exposure of the conceptus following transport from the vagina to the uterine cavity, and delivery to the egg and subsequent conceptus of chemical bound to the sperm cell. We review published data for each of these three mechanisms. Human seminal fluid chemical concentrations are typically similar to or lower than blood concentrations, although some antimicrobial agents achieve higher concentrations in semen than in blood. Vaginal absorption of medications has been shown to occur, although the vehicles in which these medications are delivered to the vagina may maintain contact with the vaginal epithelium to a greater extent than does semen. Assuming total absorption of a seminal dose of a chemical with a high semen:blood concentration ratio, distribution within the recipient woman would result in a blood concentration at least three orders of magnitude lower than that in the man. Direct delivery of seminal chemicals into the uterine cavity of humans has not been shown to occur, although it may occur in species such as the rat in which seminal fluid has access to the uterine cavity. Chemicals in or on human sperm cells have been demonstrated with respect to tetracycline and cocaine in vitro and aluminum, lead, and cadmium in vivo. The in vitro cocaine study offers sufficiently quantitative data with which to predict that oocyte concentrations would be five orders of magnitude lower than blood concentrations associated with cocaine abuse, assuming a maximally cocaine-bound sperm were capable of fertilizing. Thus, even using liberal assumptions about transmission of chemicals in semen or sperm, predicted exposure levels of a pregnant woman or of the conceptus are three or more orders of magnitude lower than blood concentrations in the man whose semen is the putative vehicle for chemical transport.
Collapse
Affiliation(s)
- Leah Klemmt
- College of William and Mary, Williamsburg, Virginia, USA
| | | |
Collapse
|
14
|
Clifford MN, Copeland EL, Bloxsidge JP, Mitchell LA. Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica 2000; 30:317-26. [PMID: 10752646 DOI: 10.1080/004982500237703] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Nine habitual tea-drinking volunteers were recruited and asked to follow a low-polyphenol and low-caffeine diet for 6 days and to provide daily 24-h urine samples. On day 4 of the experiment strong black tea brewed under standardized conditions was re-introduced to the volunteers' diet. 2. 1H-NMR and HPLC profiling of the urine samples indicated that consumption of black tea (6-10 mugs per day) was associated with a significant (p = 0.00017) increase in hippuric acid excretion relative to control, increasing from 153-512 to 742-1374 mg day(-1). The excretion of substantial amounts of hippuric acid has not previously been associated with black tea consumption. 3. For some volunteers, the quantity of benzoic acid processed exceeded the acceptable daily intake (ADI), but this is not considered to constitute any hazard. 4. A mass-balance analysis indicated that the necessary quantity of benzoic acid could not be obtained from the contents of gallic acid, flavanols, flavonol glycosides and theaflavins in black tea even if 100% transformation was obtained, suggesting that the thearubigins (the major and chemically ill-defined polyphenols of black tea) may be an important source.
Collapse
Affiliation(s)
- M N Clifford
- Food Safety Research Group, School of Biological Sciences, University of Surrey, Guildford, UK.
| | | | | | | |
Collapse
|
15
|
Pichini S, Altieri I, Zuccaro P, Pacifici R. Drug monitoring in nonconventional biological fluids and matrices. Clin Pharmacokinet 1996; 30:211-28. [PMID: 8882302 DOI: 10.2165/00003088-199630030-00003] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Determination of the concentration of drugs and metabolites in biological fluids or matrices other than blood or urine (most commonly used in laboratory testing) may be of interest in certain areas of drug concentration monitoring. Saliva is the only fluid which can be used successfully as a substitute for blood in therapeutic drug monitoring, while an individual's past history of medication, compliance and drug abuse, can be obtained from drug analysis of the hair or nails. Drug concentrations in the bile and faeces can account for excretion of drugs and metabolites other than by the renal route. Furthermore, it is important that certain matrices (tears, nails, cerebrospinal fluid, bronchial secretions, peritoneal fluid and interstitial fluid) are analysed, as these may reveal the presence of a drug at the site of action; others (fetal blood, amniotic fluid and breast milk) are useful for determining fetal and perinatal exposure to drugs. Finally, drug monitoring in fluids such as cervical mucus and seminal fluid can be associated with morpho-physiological modifications and genotoxic effects. Drug concentration measurement in nonconventional matrices and fluids, although sometimes expensive and difficult to carry out, should therefore be considered for inclusion in studies of the pharmacokinetics and pharmacodynamics of new drugs.
Collapse
Affiliation(s)
- S Pichini
- Clinical Biochemistry Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
16
|
Abstract
Over the past 50 years, a decline in the quality of semen has been observed, possibly resulting in a reduction in male fertility. Among the factors affecting semen quality, exposure to drugs is of particular importance. It is known that drugs can be transported to the seminal plasma, which is made up of secretions from the various accessory genital glands. There is evidence that many drugs enter the male genitourinary tract by an ion-trapping process. Lipid solubility and the degree of ionisation of the drug, which depend on the pH of plasma and seminal fluid, are important factors in this process. To date, few studies have been conducted on this topic. Pharmacokinetic evaluation of the fluids of the male accessory gland have been performed in the case of chloroquine and caffeine only, while the effects of mesalazine (5-aminosalicylic acid), sulfasalazine, salicylate, propranolol, diltiazem, flunarizine, verapamil, caffeine and nicotine on sperm physiology and morphology have been examined. Although data from the literature are scarce and incomplete, it is evident that many drugs can be excreted into semen. These drugs may interfere with the most common semen characteristics, potentially resulting in a male-mediated teratogenic effect, or local and systemic responses in female recipients. Therefore, it may be advisable to include, in the processes of drug development, pharmacokinetic evaluation of a drug in the semen and analysis of standard microscopic parameters of the semen. This is particularly important for drugs known to concentrate in the semen.
Collapse
Affiliation(s)
- S Pichini
- Clinical Biochemistry Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
17
|
Patel DK, Hesse A, Ogunbona A, Notarianni LJ, Bennett PN. Metabolism of aspirin after therapeutic and toxic doses. Hum Exp Toxicol 1990; 9:131-6. [PMID: 2375880 DOI: 10.1177/096032719000900302] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1 The urinary recovery of metabolites of aspirin (ASA) was studied in 45 volunteers who took a therapeutic dose (600 mg) of ASA by mouth and in 37 patients who took ASA in overdose. 2 The main metabolite recovered from the volunteers was the glycine conjugate, salicyluric acid (SUA), which accounted for 75.01 +/- 1.19% of total urinary metabolites, whereas salicylic acid (SA) accounted for 8.82 +/- 0.56%. Recovery of SUA was negatively correlated with that of SA (r = -0.8625, P less than 0.001). 3. In 24 patients with admission plasma salicylate concentrations of 240-360 mg l-1, SUA accounted for 46.66 +/- 3.22% and SA for 31.88 +/- 4.02%. 4. In 13 patients with admission plasma salicylate concentrations of 715-870 mg l-1, SUA accounted for 21.57 +/- 3.65% and SA for 64.72 +/- 4.82%. 5. Reduced excretion of salicylate as SUA was also accompanied by increased elimination as gentisic acid and salicylic acid phenolic glucuronide indicating that the unsaturated processes that lead to the formation of these metabolites contribute significantly (22-23%) to the inactivation of large doses of salicylate. 6. While the Michalis-Menten kinetics of ASA have been well demonstrated at lower doses, our findings illustrate the progressive saturation of SUA formation under conditions of increasing ASA load to toxic amounts and raise issues about the in-vivo glycine pool when ASA is taken in overdose.
Collapse
Affiliation(s)
- D K Patel
- Medicinal Biochemistry Department, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | | | | | | | |
Collapse
|