Branched-chain amino acid catabolism of Thermoanaerobacter strain AK85 and the influence of culture conditions on branched-chain alcohol formation.
Amino Acids 2019;
51:1039-1054. [PMID:
31134352 DOI:
10.1007/s00726-019-02744-z]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
The bioprocessing of amino acids to branched-chain fatty acids and alcohols is described using Thermoanaerobacter strain AK85. The amino acid utilization profile was evaluated without an electron scavenger, with thiosulfate, and in a co-culture with a methanogen. There was an emphasis on the production of branched-chain alcohols and fatty acids from the branched-chain amino acids, particularly the influence of culture conditions which was investigated using isoleucine, which revealed that the concentration of thiosulfate was of great importance for the branched-chain alcohols/fatty acid ratio produced. Kinetic studies show that branched-chain amino acid fermentation is relatively slow as compared to glucose metabolism with the concentrations of the branched-chain alcohol increasing over time. To understand the flow of electrons and to investigate if the branched-chain fatty acid was being converted to branched-chain alcohol, enzyme assays and fermentation studies using 13C-labeled leucine and 3-methyl-1-butyrate were performed which indeed suggest that carboxylic acid reduction is a source of branched-chain alcohols when Thermoanaerobacter strain AK85 was cultivated with thiosulfate as an electron scavenger.
Collapse