1
|
Yeast Hybrids in Brewing. FERMENTATION 2022. [DOI: 10.3390/fermentation8020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbiology has long been a keystone in fermentation, and innovative yeast molecular biotechnology continues to represent a fruitful frontier in brewing science. Consequently, modern understanding of brewer’s yeast has undergone significant refinement over the last few decades. This publication presents a condensed summation of Saccharomyces species dynamics with an emphasis on the relationship between; traditional Saccharomyces cerevisiae ale yeast, S. pastorianus interspecific hybrids used in lager production, and novel hybrid yeast progress. Moreover, introgression from other Saccharomyces species is briefly addressed. The unique history of Saccharomyces cerevisiae and Saccharomyces hybrids is exemplified by recent genomic sequencing studies aimed at categorizing brewing strains through phylogeny and redefining Saccharomyces species boundaries. Phylogenetic investigations highlight the genomic diversity of Saccharomyces cerevisiae ale strains long known to brewers for their fermentation characteristics and phenotypes. The discovery of genomic contributions from interspecific Saccharomyces species into the genome of S. cerevisiae strains is ever more apparent with increasing research investigating the hybrid nature of modern industrial and historical fermentation yeast.
Collapse
|
2
|
Yang H, Zong X, Xu Y, Li W, Zeng Y, Zhao H. Efficient fermentation of very high-gravity worts by brewer's yeast with wheat gluten hydrolysates and their ultrafiltration fractions supplementations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Guimarães A, Abrunhosa L, Pastrana LM, Cerqueira MA. Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Compr Rev Food Sci Food Saf 2018; 17:594-614. [PMID: 33350124 DOI: 10.1111/1541-4337.12345] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/23/2023]
Abstract
Edible films and coatings have been extensively studied in recent years due to their unique properties and advantages over more traditional conservation techniques. Edible films and coatings improve shelf life and food quality, by providing a protective barrier against physical and mechanical damage, and by creating a controlled atmosphere and acting as a semipermeable barrier for gases, vapor, and water. Edible films and coatings are produced using naturally derived materials, such as polysaccharides, proteins, and lipids, or a mixture of these materials. These films and coatings also offer the possibility of incorporating different functional ingredients such as nutraceuticals, antioxidants, antimicrobials, flavoring, and coloring agents. Films and coatings are also able to incorporate living microorganisms. In the last decade, several works reported the incorporation of bacteria to confer probiotic or antimicrobial properties to these films and coatings. The incorporation of probiotic bacteria in films and coatings allows them to reach the consumers' gut in adequate amounts to confer health benefits to the host, thus creating an added value to the food product. Also, other microorganisms, either bacteria or yeast, can be incorporated into edible films in a biocontrol approach to extend the shelf life of food products. The incorporation of yeasts in films and coatings has been suggested primarily for the control of the postharvest disease. This work provides a comprehensive review of the use of edible films and coatings for the incorporation of living microorganisms, aiming at the biopreservation and probiotic ability of food products.
Collapse
Affiliation(s)
- Ana Guimarães
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo M Pastrana
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
4
|
Russell I, Stewart GG. Valuable Techniques in the Genetic Manipulation of Industrial Yeast Strains. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-43-0084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- I. Russell
- Production Research Department, Labatt Brewing Company Limited, London, Ontario, Canada N6A 4M3
| | - G. G. Stewart
- Production Research Department, Labatt Brewing Company Limited, London, Ontario, Canada N6A 4M3
| |
Collapse
|
5
|
Killer Yeast Identification. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-44-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Hammond JRM. Microscopes, Microbes, and Manipulation: 35 Years in Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-3010-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Krogerus K, Magalhães F, Vidgren V, Gibson B. Novel brewing yeast hybrids: creation and application. Appl Microbiol Biotechnol 2016; 101:65-78. [PMID: 27885413 PMCID: PMC5203825 DOI: 10.1007/s00253-016-8007-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland. .,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
8
|
Improved wine yeasts by direct mating and selection under stressful fermentative conditions. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2596-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Solieri L, Verspohl A, Bonciani T, Caggia C, Giudici P. Fast method for identifying inter- and intra-species Saccharomyces hybrids in extensive genetic improvement programs based on yeast breeding. J Appl Microbiol 2015; 119:149-61. [PMID: 25892524 DOI: 10.1111/jam.12827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/05/2023]
Abstract
AIMS The present work proposes a two-step molecular strategy to select inter- and intra-species Saccharomyces hybrids obtained by spore-to-spore mating, one of the most used methods for generating improved hybrids from homothallic wine yeasts. METHODS AND RESULTS As low spore viability and haplo-selfing are the main causes of failed mating, at first, we used colony screening PCR (csPCR) of discriminative gene markers to select hybrids directly on dissection plate and discard homozygous diploid colonies arisen from one auto-diploidized progenitor. Then, pre-selected candidates were submitted to recursive streaking and conventional PCR in order to discriminate between the hybrids with stable genomic background and the false-positive admixtures of progenitor cells both undergone haplo-selfing. csPCRs of internal transcribed spacer (ITS) 1 or 2, and the subsequent digestion with diagnostic endonucleases HaeIII and RsaI, respectively, were efficient to select six new Saccharomyces cerevisiae × Saccharomyces uvarum hybrids from 64 crosses. Intragenic minisatellite regions in PIR3, HSP150, and DAN4 genes showed high inter-strain size variation detectable by cost-effective agarose gel electrophoresis and were successful to validate six new intra-species S. cerevisiae hybrids from 34 crosses. CONCLUSIONS Both protocols reduce significantly the number of massive DNA extractions, prevent misinterpretations caused by one or both progenitors undergone haplo-selfing, and can be easily implemented in yeast labs without any specific instrumentation. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides a method for the marker-assisted selection of several inter- and intra-species yeast hybrids in a cost-effective, rapid and reproducible manner.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - A Verspohl
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - T Bonciani
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| | - C Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - P Giudici
- Department of Life Sciences, Unimore Microbial Culture Collection, Reggio Emilia, Italy
| |
Collapse
|
10
|
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 2014; 38:947-95. [PMID: 24724938 PMCID: PMC4293462 DOI: 10.1111/1574-6976.12073] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Tim Snoek
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Martina Picca Nicolino
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| |
Collapse
|
11
|
|
12
|
|
13
|
Atkinson B. TECHNICAL OPPORTUNITIES FOR MALTING AND BREWING IN THE ′90's*. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1988.tb04583.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Ogden K, Tubb RS. INHIBITION OF BEER-SPOILAGE LACTIC ACID BACTERIA BY NISIN. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1985.tb04361.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Stewart GG, Russell I. ONE HUNDRED YEARS OF YEAST RESEARCH AND DEVELOPMENT IN THE BREWING INDUSTRY. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1986.tb04453.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Holz CM, Stahl U. Ribosomally synthesized antimicrobial peptides in prokaryotic and eukaryotic organisms. FOOD BIOTECHNOL 2009. [DOI: 10.1080/08905439509549888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Rouse S, van Sinderen D. Bioprotective potential of lactic acid bacteria in malting and brewing. J Food Prot 2008; 71:1724-33. [PMID: 18724772 DOI: 10.4315/0362-028x-71.8.1724] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.
Collapse
Affiliation(s)
- Susan Rouse
- Department of Microbiology, Bioscience Institute, National University of Ireland, Western Road, Cork, Ireland
| | | |
Collapse
|
18
|
|
19
|
İzgü F, Altınbay D, Derinel Y. Immunization of the industrial fermentation starter culture strain of Saccharomyces cerevisiae to a contaminating killer toxin-producing Candida tropicalis. Food Microbiol 2004. [DOI: 10.1016/j.fm.2004.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Mönch J, Stahl U. Polymorphisms of industrial strains ofsaccharomycesyeasts: Genotypic and phenotypic features. FOOD BIOTECHNOL 2000. [DOI: 10.1080/08905430009549984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Conti S, Cantelli C, Gerloni M, Fisicaro P, Magliani W, Bertolotti D, Mozzoni P, Sullivan D, Coleman D, Polonelli L. Killer factor interference in mixed opportunistic yeast cultures. Mycopathologia 1996; 135:1-8. [PMID: 9008877 DOI: 10.1007/bf00436568] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interaction of the killer yeast Pichia anomala UP 25F with the killer toxin-sensitive clinical isolate Candida albicans UCSC 10S and its natural toxin-resistant mutant derivative C. albicans UCSC 10R were studied under various conditions. A differential inhibition was shown to occur in vitro at pH and temperature values, which are not encountered in vivo, only by using preformed killer toxin, since antagonism due to yeast growth proved to be predominant on the killer effect. Under adverse growth conditions, the P. anomala killer yeast proved to be able to produce an anatoxin antigenically related to the active or heat inactivated killer toxin. These findings suggest that killer toxins may not function as potential virulence factors in the competition between the opportunistic killer yeast P. anomala and sensitive microorganisms for colonization in the course of natural human infections.
Collapse
Affiliation(s)
- S Conti
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vondrejs V, Janderová B, Valásek L. Yeast killer toxin K1 and its exploitation in genetic manipulations. Folia Microbiol (Praha) 1996; 41:379-93. [PMID: 9131795 DOI: 10.1007/bf02815687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- V Vondrejs
- Department of Genetics and Microbiology, Faculty of Natural Science, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
23
|
Abstract
Yeasts are best known for their beneficial contributions to society, and the literature abounds with discussions of their role in the fermentation of alcoholic beverages, bread, and other products. Yeasts also cause spoilage, but, with a few exceptions, this unwanted activity often goes unrecognized and underestimated as a major problem in the food and beverage industries. In some cases, there is only a fine line between what is perceived as either a spoilage or beneficial activity. This review examines the occurrence and growth of yeasts in foods and beverages with respect to their spoilage activities, the biochemistry of this spoilage, and technologies for the enumeration and identification of spoilage yeasts.
Collapse
Affiliation(s)
- G Fleet
- Department of Food Science and Technology, University of New South Wales, Kensington, Australia
| |
Collapse
|
24
|
|
25
|
Špaček R, Vondrejs V. Rapid method for estimation of killer toxin activity in yeasts. Biotechnol Lett 1986. [DOI: 10.1007/bf01032565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Janderová B, Davaasurengijn T, Vondrejs V, Bendová O. A new killer brewing yeast capable of degrading dextrin and starch. J Basic Microbiol 1986. [DOI: 10.1002/jobm.3620261014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|